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Abstract

We study the effects of the time evolution of the matter-gravity coupling on the luminosity
distance, showing it can provide a natural explanation to the apparent Hubble tension. The
gravitational coupling evolution induces a modification of the Friedman equation with
respect to the ΛCDM model, which we study in both the Einstein and Jordan frame. We
consider a phenomenological parametrization of the low redshift variation of the coupling
in a narrow redshift shell, showing how it can affect the distance of the anchors used
to calibrate supernovae (SNe), while higher redshift background observations are not
affected. This effect is purely geometrical, and it is not related to any change of the intrinsic
SNe physical properties. The effects of a time varying gravity coupling only manifest on
sufficiently long time scales, such as in cosmological observations at different redshifts, and
if ignored lead to apparent tensions in the values of cosmological parameters estimated
with observations from different epochs of the Universe history.

Keywords: Hubble constant; modified gravity; standard candles

1. Introduction
The standard cosmological model based on assuming general relativity and large

scale homogeneity and isotropy has proved quite successful in explaining the Universe we
observe. Nevertheless there is some increasing evidence that local [1] and high redshift [2]
estimations of Hubble parameter H0 are not consistent, although recent observations are
significantly reducing the difference [3]. Several solutions to explain this tension have been
proposed, for example in terms of early dark energy [4,5], or local inhomogeneities [6].
See [7–9] for a review of the vast literature on the subject. Many efforts have been focused
on providing an early Universe explanation for this discrepancy, while in this paper we
will consider a local solution of the tension.

We show that a late time variation of the matter-gravity coupling can have an impor-
tant effect on the anchors used to calibrate SNe, and provide an explanation to the tension.
We derive the modified Friedman equation both in the Jordan and Einstein frame, to clar-
ify the relation between cosmological parameters in the two frames, and use the Jordan
frame formulation for calculating observational effects, since it simplifies the calculation
of the luminosity distance. The effect on SNe distance is negligible, since they are located
at higher redshift, while the distance of the anchors is modified w.r.t. a ΛCDM model,
inducing a difference between the local estimation of the Hubble constant, and the value
obtained from higher redshift observations, which are not affected by the local variation
of the gravity coupling. As an application, we consider a model with a local variation of
the gravitational coupling around z ≈ 0.001, and show how it can fit well the local Hloc

0
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estimation [1] and SNe data at the same time, with a value of the parameter H0 compatible
with higher redshift observations [2].

2. Varying Matter-Gravity Coupling
Effective field theory is a powerful theoretical approach to study the Universe using

very general model independent symmetry principles. The most general Jordan frame EFT
quadratic order action [10] for single-field models can be written schematically as

L =
√
−gJ

[
Ω2RJ + LDE

J + Lmatter
J (gJ)

]
, (1)

which in the Einstein frame corresponds to

L =
√
−gE

[
RE + LDE

E + Lmatter
E (Ω−2gE)

]
, (2)

where Ω plays the role of effective Planck mass, gE and gJ denote the metric respectively in
the Einstein and Jordan frame, and the two frames are related by the conformal transforma-
tion gE = Ω2 gJ, and we are using units in which 8πG = c = 1 . The term Lmatter

E (Ω−2gE)

in Equation (2) indicates that in the Einstein frame matter is not minimally coupled to the
metric, i.e., indices in the matter Lagrangian are contracted with Ω−2gE, not just gE. We
will discuss in more details the implications of non-minimal coupling in the next section.

Physical observables should be invariant under conformal transformations, which
are just field redefinitions, but the components of the energy-momentum tensor are not
invariant [11], and under a generic transformation g̃ = Ω2g they transform as T̃ν

µ = Ω−4Tν
µ .

This implies that the field equations obtained by varying the action with respect to the
metric in different frames will have different energy-stress tensors on the r.h.s., and in
particular the Friedman equation obtained assuming a FRW background metric, will be
different in the two frames. In the following we will denote with a subscript E and J
quantities respectively in the Einstein and Jordan frame.

3. Equations of Motion in Jordan and Einstein Frame
In order to understand the effects of conformal transformations let us consider how the

equations of motion of massive particle transform. The equation of motion for a massive
particle minimally coupled to gravity is obtained from the action

S = m0

∫
gµν

dxµ

dτ

dxν

dτ
dτ , (3)

where we are denoting with τ the proper time, and xµ(τ) are the coordinates of the particle
as a function of proper time. The above action is the natural covariant generalization of the
classical mechanics kinetic energy, and its variation is equivalent [12] to that of the action

S = m0

∫ √
gµν

dxµ

dτ

dxν

dτ
dτ = m0

∫
ds , (4)

where ds denotes the infinitesimal distance, implying that massive particles move along
curves minimizing the distance between space-time points, i.e., geodesics. The variation of
the action implies the Lagrange equations, which are the geodesics equations

ẍµ + Γµ
ρσxρxσ = 0 , (5)



Universe 2025, 11, 278 3 of 15

where Γµ
ρσ denotes the Christoffel connection coefficients. After a conformal transformation

g̃ = Ω2g the action takes the form

S = m0

∫
Ω−2 g̃µν

dxµ

dτ

dxν

dτ
dτ , (6)

showing that matter is not minimally coupled to gravity in the new frame, while the
Christoffel coefficients transform as [13]

Γ̃µ
ρσ = Γµ

ρσ +
1
Ω

(
δ

µ
ρ Ω,σ + δ

µ
σ Ω,ρ − gρσgµαΩ,α

)
, (7)

Γµ
ρσ = Γ̃µ

ρσ −
1
Ω

(
δ̃

µ
ρ Ω,σ + δ̃

µ
σ Ω,ρ − g̃ρσ g̃µαΩ,α

)
. (8)

Using the above transformations we can obtain the equation of motion (5) in terms of the
metric g̃

ẍµ + Γ̃µ
ρσxρxσ =

1
Ω

(
δ̃

µ
ρ Ω,σ + δ̃

µ
σ Ω,ρ − g̃ρσ g̃µαΩ,α

)
xρxσ . (9)

The right hand side of Equation (9) indicates that particles do not follow the geodesics cor-
responding to the metric g̃, which is sometime interpreted as the effect of a fifth force [14].
In this paper we will define as Jordan frame the one in which matter is minimally coupled
to gravity, in which particles propagate along geodesics, while in the Einstein frame, which
according to the general notation introduced above corresponds to gE = g̃ = Ω2g = Ω2gJ ,
particles do not follow geodesics. The Einstein and Jordan frame calculations of phys-
ical observables must agree, since conformal transformations have no physical effect,
and correspond only to a field redefinition, but it can be useful, although not necessary,
to compare the two equivalent formulations to understand the difference with respect to
general relativity.

4. Jordan Frame Modified Friedman Equation
In the Jordan frame the variation of the action w.r.t. the metric gives the field equation

Ω2Gµν
J = Tµν

J , (10)

from which we obtain the modified Friedman equation

HJ(z)2 =

[
Ω(0)
Ω(z)

]2

H2
J,0

[
ΩM(1 + z)3 + ΩR(1 + z)4 + ΩDE(1 + z)3(1+w)

]
, (11)

where HJ = ȧJ/aJ denotes the Jordan frame Hubble parameter, and aJ is the Jordan frame
scale factor. From the null geodesics equation we get that the comoving distance is given by

r =
∫ daJ

HJa2
J

, (12)

and from the relation between aæ and the redshift we can compute the luminosity distance
in a flat Universe, giving the standard formula

DL(z) = (1 + z)
∫ z

0

dz′

HJ(z′)
. (13)
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5. Einstein Frame Modified Friedman Equation and Conservation Laws
Let us assume a flat FRW metric

ds2
J = dt2

J − aJ(tJ)
2γijdxjdxj . (14)

The results that follow can be easily generalized to a curved universe, so we will just focus
on the flat case. Assuming no interaction between fluids in the Jordan frame, since matter
follows the Jordan frame metric geodesics, the energy momentum tensor is conserved in
the Jordan frame [12]

∇µTµν
J = 0 , (15)

ρ̇J + 3
ȧJ

aJ
(ρJ + PJ) = 0 , (16)

where a dot denotes a derivative w.r.t. the Jordan frame time tJ. For a FRW metric the
conformal transformation gE = Ω2gJ corresponds to a scale factor redefinition

aE = Ω aJ , (17)

where aE is the Einstein frame scale factor, while the components of a tensor in the two
frames are related [11] by

T µ
E,ν = Ω−4T µ

J,ν , (18)

which for a perfect fluid imply

ρE = Ω−4ρJ , PE = Ω−4PJ . (19)

Substituting Equations (17) and (18) in Equation (16) we obtain

ρ̇E + 3
ȧE

aE
(ρE + PE) + (ρE − 3PE)

Ω′

Ω
= 0 . (20)

The modification of the continuity equation is due to the non minimal Einstein frame
gravity coupling, and is the manifestation of the fifth force [14], or equivalently of the
universal interaction of the scalar field with any other field.

For a perfect fluid minimally coupled to the Jordan frame metric the equation of state
PJ = w ρJ and the continuity equation imply the well known relation

ρJ ∝ a−3(1+w)
J . (21)

In the Einstein frame we can obtain a similar relation by rewriting the modified continuity
equation in terms of the scale factor

dρE

daE
ȧE + 3

ȧE

aE
ρE(1 + w) + ρE(1 − 3w)

dΩ
daE

ȧE

Ω
= 0 , (22)

which gives the solution

ρE(aE) ∝ a−3(1+w)
E Ω3w−1 . (23)

Note that Equation (23) can be also obtained directly by combining Equations (17), (19) and (21).
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The redshift is related to the scale factor in the two frames by [15]

(1 + z) =
aJ(0)
aJ(z)

=
Ω(z)
Ω(0)

aE(0)
aE(z)

, (24)

which substituted in Equation (23) gives

ρE(z) = ρE(0)(1 + z)3(1+w)

[
Ω(z)
Ω(0)

]−4

, (25)

in agreement with Equation (18).
In the Einstein frame the metric is

ds2
E = dt2

E − aE(tE)
2γijdxjdxj . (26)

where dtE = Ω dtJ. The first Friedman equation in the Einstein frame takes the form

H2
E =

1
3 ∑

i
ρE,i (27)

where the Hubble parameter is defined in the Einstein frame as

HE =
daE

dtE
, (28)

and ρE,i are the energy densities of the different fluids.
From Equations (25) and (27) we obtain the redshift space equation

HE(z)2 =

[
Ω(0)
Ω(z)

]4

H2
E,0

[
ΩM(1 + z)3 + ΩR(1 + z)4 + ΩDE(1 + z)3(1+w)

]
, (29)

where we have defined in the standard way the dimensionless density parameters

Ωi =
ρE,i(0)
3H2

E,0
, (30)

and factorized the common factor [Ω(0)/Ω(z)]4. As expected, Equation (29) reduces to
the standard ΛCDM form when Ω(z) = 1, i.e., when matter is minimally coupled to the
Einstein frame metric gE, but if Ω(z) ̸= 1 the cosmological parameters HE,0 and Ωi will
differ from the ΛCDM ones.

Note that the modified Friedman equation in Equation (29) could be obtained directly
from Equations (19) and (27), but the above derivation based on obtaining ρE(z) from
the Jordan frame conservation equation is useful to understand the physical origin of the
redshift space Friedman equation modification, and to check and interpret it in terms of
conservation laws in different frames. As previously mentioned, note that the Hubble
parameter and the density parameters appearing in the Friedman equation are not the
same in the two frames due to the conformal transformations of the energy-stress tensor
components given in Equation (19) and the difference between aE and aJ, while physical
observables such as the luminosity distance are conformally invariant [16–18].

Assuming isotropy, photons propagate along null geodesics defined by ds2
E = Ω2ds2

J =

dt2
E − a2

Edr2 = 0, implying dr = dtE/aE, from which we obtain the standard flat FRW formula

r =
∫ daE

HEa2
E

. (31)
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From Equation (24) we can see that in the Jordan dz = −daJ/a2
J , allowing to derive

Equation (13), while in the Einstein frame dz also depends on dΩ, making more conve-
nient the calculation of the luminosity distance in the Jordan frame, as we will do in the
following sections.

6. ΩΛCDM Model
Let’s consider a model with a cosmological constant ΛJ in the Jordan frame, which

gives the modified redshift space Friedman equation

HJ(z)2 =

[
Ω(0)
Ω(z)

]2

H2
J,0

[
ΩM(1 + z)3 + Ωλ

]
. (32)

The corresponding Lagrangian in the Jordan frame is

L =
√
−gJ

[
Ω2RJ − 2 ΛJ + Lmatter

J (gJ)
]

. (33)

Another possibility is to define a model with a cosmological constant in the Einstein frame,
as shown in Appendix A, and we leave this case for a future work. The function Ω(z)
is related to the running of the effective Planck mass, and since local observation such
as solar system constraints, or high redshift observations such as the cosmic microwave
background, do not provide strong evidence of a deviation from the Planck mass, we
will introduce a transient modification, in order to satisfy other existing observational
constraints. For this reason we will model the evolution of Ω(z) with this parametrization

Ω(z)2 = Ω(0)2

{
1 + λ

[
tanh

(
z − z0 + ∆z

σ

)
− tanh

(
z − z0 − ∆z

σ

)]}
, (34)

corresponding to a local variation around z0, and an asymptotic value equal to Ω(0),
as shown in Figure 1. We will call this ΩΛCDM model. Note that the luminosity distance
is given by the integral in Equation (13), so it is natural to expect that for object located at
z ≫ z0 the local variation of Ω(z) has a small effect on DL(z), since most of the integral
is unaffected, because Equation (36) gives the standard ΛCDM Hubble parameter for
most of the integral range. Only objects located inside the Ω(z) local variation, i.e the
calibrators, are affected by it. This is different form the step models which have been
studied previously [19]. Another difference is that here we study the geometrical effects
on the luminosity distance, and consequently on H0, while in other studies [20] it was
considered a sudden transition of a different definition of effective gravitational constant,
with no cosmological consequences, only affecting the physics of SNe, in particular their
absolute magnitude.

The low redshift estimation of the Hubble parameter [1] Hloc
0 , is based on a linear fit of

the distance redshift relationship, i.e.,

Hloc(z) =
z c

DL(z)
. (35)

Note that this definition corresponds to the actual method to estimate H0 from low red-
shift SNe distance, and in general can be different from H(z = 0), which is the quantity
considered in other studies of the effects of modified gravity [21]. In Figures 1 and 2
we show the plot of the function Ω(z) and of Hloc

0 (z) for the model corresponding to
λ = −0.43, z0 = 0.001, ∆z = 0.0001, and σ = 0.0001. Inside the shell the value of Hloc

0
of the ΩΛCDM shell model is modified w.r.t. HJ,0, but at higher redshift the effect is
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asymptotically negligible, as shown in Figures 3 and 4, so the rest of the cosmological
parameters Ωi are expected not to be significantly affected by this kind of Ω(z) evolution.

0.002 0.004 0.006 0.008 0.010
z

0.7

0.8

0.9

1.0

Ω(z)/Ω(0)

Figure 1. The function Ω(z)/Ω(0) is plotted as function of redshift. The gravitational coupling is
varying only in a small range of redshift, without any effect on higher redshift observations.

0.02 0.04 0.06 0.08
z

64

66

68

70

72

74

76

z c

DL (z)

Figure 2. The inverse slope of the luminosity distance is plotted as as function of redshift for a ΛCDM
model (black) and and ΩΛCDM shell model (red), in units of HE,0. At low redshift this is giving the
value the Hubble parameter estimated using luminosity distance observations [1]. Inside the shell
the value of Hloc

0 of the ΩΛCDM shell model is modified w.r.t. the ΛCDM model, explaining the
Hubble tension, but at higher redshift the effect is asymptotically negligible.
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0.002 0.004 0.006 0.008
z

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

Δμ

μ

Figure 3. The relative difference between the distance modulus µ of a ΩΛCDM shell model and a
ΛCDM model is plotted as a function of redshift. The difference is asymptotically negligible, so only
objects inside the shell are affected, i.e., anchors such as Cepheids and the megamaser.

0.02 0.04 0.06 0.08
z

-0.08

-0.06

-0.04

-0.02

ΔDL /DL

Figure 4. The relative difference between the luminosity distance of a ΩΛCDM shell model and a
ΛCDM model is plotted as a function of redshift. The difference is asymptotically negligible, so only
objects inside the shell are affected, i.e., anchors such as Cepheids and the megamaser.

7. Effect on SNe Calibration
The variation of the gravity coupling at very low redshift is affecting the distance

redshift relation of the anchors used to calibrate SNe, while their distance is not directly
affected, because at higher redshift the distance is the same as in the ΛCDM mode, as shown
in Figure 4. This effect on calibration is propagating on the SNe distance estimation,
and consequently on the estimation of H0. For a given observed apparent magnitude there
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is a degeneracy between the absolute luminosity M and H0, i.e., the same data is compatible
with different sets of {M, H0} related by [22]

Ma = Mb + 5 log10

(
Ha

Hb

)
, (36)

where the subscripts denote the values of different set of parameters.
This degeneracy is broken by including different observational data sets, such as CMB

or calibrating SNe with independent distance anchors. The Hubble tension is related to
the difference between the values of {M, H0} obtained in joint analysis with cosmic mi-
crowave background (CMB) data or with low redshift anchors. The value of the parameters
corresponding to these different estimations of H0 are reported in Table 1.

Table 1. Values of {H0, M} obtained with different datasets. The first row shows the values from [1],
and the second row the value of H0 from [2] and the implied value of M obtained using Equation (36).
The values obtained in previous observational data analysis are underlined, while the value of M for
Planck, is inferred using Equation (36), and is not underlined.

Dataset H0 (km s−1 Mpc−1) M

Riess 73.04 −19.25
Planck 67.4 −19.42

As shown in Figure 2, the luminosity distance of anchors is modified w.r.t. to the
ΛCDM value, affecting the local estimation of H0, and consequently of M, because of
Equation (36).

8. Test with SNe Data
The ΩΛCDM model is introducing a low redshift modification of the distance redshift

relation which could potentially be incompatible with SNe observations. Nevertheless,
due to the fact there are no SNe in that redshift range, it is expected that it should not
affect significantly the goodness of fit, since the effects on the luminosity distance at higher
redshift are negligible, as shown in Figure 4.

For this purpose we test the model with the Pantheon dataset [23], computing the χ2

according to
χ2

SN = ∑
i,j
[mi − mth(zi)]C−1

ij [mj − mth(zj)] . (37)

In the above equation C is the covariance matrix, mi and zi are the observed apparent
magnitude and redshift, and mth is the theoretical apparent magnitude. The local value of
H0 is fitted with this expression for the χ2

χ2
H0

=

(
Hloc

0 − Hloc,obs
0

σHloc,obs
0

)2

. (38)

We show the comparison between different models in Table 2. We fix the cosmological
parameters to the values obtained by analyzing the Planck mission data [2], except for the
value of H0, which we vary to compare different models. We leave to a future work the full
analysis of different cosmological observations, but as discussed in the next section, higher
redshift observations are expected to be negligibly affected by the low redshift variation
of Ω(z), so that the check of the compatibility of SNe data is the most important one. The
results of the SNe data analysis are shown in Figures 5 and 6.
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0.002 0.004 0.006 0.008 0.010 0.012 0.014
z

28

30

32

34

μ

Figure 5. The low redshift SNe [23] distance modulus µ is compared with different theoretical models.
The red line corresponds to the ΛCDM and the green to the ΩΛCDM model, both with Planck
parameters corresponding to the second row of Table 1 . The two models give very similar predictions
for z > 0.009, so that the only objects affected by the variation of the gravity coupling are those
located at z < 0.009, i.e., the anchors, in agreement with Figure 4. The observational data points and
their errors are plotted in blue.

0.5 1.0 1.5 2.0
z

35

40

45

μ

Figure 6. The SNe [23] distance modulus µ is compared with different theoretical models. The red line
corresponds to the ΛCDM and the green to the ΩΛCDM model, both with Planck [2] cosmological
parameters corresponding to the second row of Table 1. The two models give very similar predictions
for all SNe, and the two lines are undistinguishable at the scale of this plot. The only objects affected
by the variation of the gravity coupling are those located at z < 0.009, i.e., the anchors, in agreement
with Figure 4. See Figure 5 for a low redshift plot, where the two curves are distinguishable. The
observational data points and their errors are plotted in blue.
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Table 2. The χ2 for different models is reported for SNe and Hloc
0 , with χ2

SN and χ2
H0

defined
respectively in Equations (37) and (38). We define χ2

Tot = χ2
SN + χ2

H0
and denote with χ2

red the
reduced χ2

Tot. The value of Hloc
0 is obtained evaluating Equation (35) at = 0.001, corresponding to

the anchors used to calibrate SNe. Note that ΛCDM models with different sets of {H0, M}, given
in Table 1, have the same χ2

SN because of the degeneracy given in Equation (36). The difference of
the total χ2 between the first and second row is a manifestation of the Hubble tension, while the
third row shows that a ΩΛCDM can fit well the value of Hloc

0 obtained in [1] with a value of HJ,0

compatible with CMB observations [2], resolving the tension.

Model HJ,0 Hloc
0 χ2

SN χ2
H0

χ2
Tot χ2

red

ΛCDM 73.04 73.04 1073.6 0 1073.6 1.0264
ΛCDM 67.4 67.4 1073.6 29.9 1103.5 1.055

ΩΛCDM 67.4 72.9 1070.8 0.02 1070.82 1.0257

9. Compatibility with Other Observations
The variation of the gravity coupling we have studied is affecting a narrow low redshift

range, as shown in Figures 1 and 4, so that early Universe observations such as Big Bang
Nucleosynthesis (BBN) and Cosmic Microwave Background (CMB) are not affected by it.

In fact at high redshift Ω(z) = Ω(0), so that the modified Friedman equation reduces
to the ΛCDM Friedman equation. Since at high redshift the luminosity distance is the
same of a ΛCDM model, as shown in Figure 4, the distance to the last scattering surface is
not affected by the low redshift variation of Ω(z), and the fit of CMB data should be very
closed to that of a ΛCDM model with the same cosmological parameters. In regard to BBN,
in the early Universe Ω(z) = Ω(0), so that the late time variation of Ω(z) has no effect on
the early Universe formation of nuclei.

Other studies [20] have shown that a variation of the effective gravitational constant
can alleviate the growth tension, and in the future it will be important to investigate the
effects of a local variation of Ω on cosmological perturbations, in particular on the matter
power spectrum, but due to its narrow redshift range these effects are not expected to be
very important.

10. Large Scale Structure Constraints on the Effective
Gravitational Coupling

The function Ω(z) is related to the effective gravitational constant measured by large
scale structure (LSS), and can be computed using the EFT of dark energy. These observations
can hence provide important independent constraints on Ω(z), to check if the parameters
solving the Hubble tension are compatible with LSS.

The modification of gravity induces a modification of the Poisson’s equations [24]

∇2Ψ = 4πa2GΨ
effρm δm , (39)

∇2Φ = 4πa2GΦ
effρm δm , (40)

∇2(Ψ + Φ) = 8πa2GΨ+Φ
eff ρm δm , (41)

with the effective gravitational constant given by [24]

GΦ
eff

GN
=

2M2
p

M2
⋆

[αB(1 + αT) + 2(αM − αT)] + α′B
(2 − αB)[αB(1 + αT) + 2(αM − αT)] + 2α′B

. (42)
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The theories defined in Equation (1) correspond to αT = αB = 0, giving

GΨ
eff

GN
=

2 − η̄

η̄

1
Ω2 (43)

where

η̄ =
2Ψ

Ψ + Φ
=

GΨ
eff

GΨ+Φ
eff

. (44)

The quantities GΨ
eff and GΨ+Φ

eff can be constrained by LSS and lensing observations respec-
tively [25], but the parameterizations adopted therein are designed to study deviations
from general relativity on cosmological scales, and are hence quite different from the local
narrow variation in Equation (34). It is hence difficult to compare those constraints to the
values of the parameters which can solve the Hubble tension using the parametrization in
Equation (34), and a new analysis is required. Since the variation of GΨ

eff is actively investi-
gated, it is still important to study its effects on the luminosity distance, and hence on Hloc

0 ,
even if these effects may not be large enough to solve the Hubble tension, because of LSS
constraints on GΨ

eff.
For the purpose of testing the compatibility of LSS data with a local variation of

the type we have shown to be able to solve the Hubble tension, a redshift bins analysis
of LSS and lensing observations would be required, with particular attention to data
around z ≈ 0.001, and we leave this to a future work. The scope of this paper is indeed
to investigate the effects of the variation of the gravitational coupling on the luminosity
distance, and determine what form of Ω(z) would be necessary to solve the Hubble tension,
while at the same time fitting well SNe and other background observations such as the
distance to the last scattering surface measured by the CMB, which is unaffected, as shown
in Figure 4.

11. Implications for the Apparent Hubble Tension
The effect of the Ω shell is to change Hloc w.r.t. HJ,0, while asymptotically the luminos-

ity distance is unaffected, and consequently high redshift observations such as the CMB
will give a value of the Hubble parameter equal to HJ,0. In a ΛCDM model at low redshift
Hloc ≈ HJ,0, and the well known tension arises. A small time variation of Ω explains natu-
rally the apparent Hubble tension within the framework of the ΩΛCDM model. Ignoring
the redshift dependence of Ω(z) and fitting observational data with the ΛCDM model can
lead to the apparent discrepancy between low and high redshift estimations of H0.

Note that the local estimation of H0 is crucially dependent on geometrical distance
anchors [26], such as the megamaser NGC 4258, which are located at a redshift zan ≈ 0.001.
This implies that the Hubble tension can be resolved by a ΩΛCDM model with parameters
values such that the shell includes the anchors, i.e., for example z0 ≈ zan.

12. Conclusions
We have shown that the time variation of the gravity coupling can provide a natural

explanation to the apparent tension between the values of cosmological parameters esti-
mated from observations corresponding to different epochs of the Universe history. We
have given an example of a Ω shell model, with strong variation of the matter-gravity
coupling in a very narrow redshift range centered at z ≈ 0.001, which can explain the
difference between the local estimation of H0 based on luminosity distance observations,
and high redshift estimations, due to the effects on the SNe distance anchors. Since the
variation of the gravity coupling is assumed to occur only at very low redshift, high redshift
observations such as BBN and CMB are not affected by it. The model can fit well SNe
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data, since they are located at higher redshift, so that the variation of Ω has an appeciable
effect only on the distance anchors used to calibrate SNe, and consequently on the value
of Hloc

0 . While the local variation of Ω is expected to have only negligible effects on high
redshift observations, the full analysis of all available observational data sets is important
to confirm the results obtained in this paper analyzing SNe data. We leave this task to a
future upcoming work.

While in this paper we have focused on the effects on the background evolution,
in order to estimate the effects on other cosmological observables, it will also be necessary
to compute the effects on the evolution of cosmological perturbations, and to investigate
its effects on the growth tension [20]. In this paper, inspired by the EFT, we have adopted
a phenomenological approach in modeling the observational effects of Ω(z), but in the
future it will be important to investigate the fundamental origin of its variation, considering
specific modified gravity theories.
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Appendix A. Einstein Frame Cosmological Constant Model
Alternatively we could also consider the case of an Einstein frame cosmological

constant given by

L =
√

gE

[
RE − 2ΛE + Lmatter

E (Ω−2gE)
]

, (A1)

which corresponds to the special case of Equation (2) in which LDE
E = −2ΛE. In this case

the non minimal coupling only affects the matter part of the energy-momentum tensor,
not the dark energy part, since the cosmological constant term is the same as in general
relativity, and the modified Friedman equation takes the form

HE(z)2 = H2
E,0

[(
Ω(0)
Ω(z)

)4

ΩM(1 + z)3 + Ωλ

]
. (A2)

Note that the dark energy term in Equation (A2) apparently differs from the w = −1
limit of Equation (29), but the two equations are actually consistent. Accounting for the
metric determinant transformation

√
−g̃ = Ω−4√−g under a conformal transformation

g̃ = Ω2g, the Einstein frame cosmological constant Lagrangian
√−gEΛE corresponds to

√−gJΩ4ΛE in the Jordan frame (since gJ = Ω−2gE), i.e., ρΛE
J ∝ Ω4 is not a constant, so that

Equation (25) gives
ρΛE

E (z) ∝ (1 + z)3(1+w)Ω−4Ω4 , (A3)

which in the w = −1 limit gives ρΛE
E (z) = const ∝ H2

E,0ΩΛ, due to the cancellation
of the Ω factors. This is consistent with Equation (A2) and is expected from the fact
that the cosmological constant part of the Lagrangian in Equation (A1) is the same as in
general relativity.

https://github.com/dscolnic/Pantheon
https://github.com/dscolnic/Pantheon
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At low redshift the effects of the cosmological constant are negligible, so that obser-
vationally it may not be possible to distinguish between Equations (32) and (A2), but at
at higher redshift the difference can become important. We leave to a future work the
comparison with data to determine which dark energy model is in better agreement with
high redshift observational data.
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