Towards a More Reliable Identification of Isomeric Metabolites Using Pattern Guided Retention Validation
Abstract
:1. Introduction
2. Results
2.1. The Majority of Metabolites Are Isobars
2.2. Derivatisation and Fragmentation Add Discriminatory Elements to Separate Isomeric Metabolites
2.3. Enantiomers Can Be Separated by Chromatographic Means
2.4. The Retention of Multiple Metabolites Can Be Simultaneously Validated with Appropriately Designed Mixtures
2.5. With the Help of These Mixtures It Possible to Transfer Compound Identifications between Different Setups
3. Discussion
4. Materials and Methods
4.1. Extracting Information from the KEGG Database
4.2. Extracting Information from the HMDB Database
4.3. Comparisons of Spectra and Retention Time Similarities in the GMD
4.4. Preparation of the Ident-Mix
4.5. GC–MS Measurements
4.5.1. Derivatisation for GC–MS
4.5.2. Setup for GC–MS
4.5.3. Peak Picking and Compound Annotation
4.5.4. Column Type Comparison in GC–MS
4.6. LC–MS Measurements and Analysis
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CE–MS | Capillary electrophoresis mass-spectrometry |
Da | Dalton |
GC–MS | Gas chromatography coupled to mass-spectrometry |
GMD | Golm Metabolome Database |
HMDB | Human Metabolome Database |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LC–MS | Liquid chromatography coupled to mass spectrometry |
MeOX | Methoxyamine |
MSTFA | N-Methyl-N-(trimethylsilyl) trifluoroacetamide |
m/z | Mass to charge ratio |
RI | Retention index |
References
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metab. Off. J. Metab. Soc. 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Creek, D.J.; Dunn, W.B.; Fiehn, O.; Griffin, J.L.; Hall, R.D.; Lei, Z.; Mistrik, R.; Neumann, S.; Schymanski, E.L.; Sumner, L.W.; et al. Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics 2014, 10, 350–353. [Google Scholar] [CrossRef]
- Strehmel, N.; Hummel, J.; Erban, A.; Strassburg, K.; Kopka, J. Retention index thresholds for compound matching in GC–MS metabolite profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Reese, C.E.; Huang, L.; Hsu, S.H.; Tripathi, S.; Lochmüller, C. Universal Retention Indices and Their Prediction in Reversed-Phase Liquid Chromatography Based On Principal Component Analysis and Target Testing. J. Chromatogr. Sci. 1996, 34, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.M.; Hill, D.W.; Bugden, K.; Cawley, S.; Hall, L.H.; Chen, M.H.; Grant, D.F. Development of a Reverse Phase HPLC Retention Index Model for Nontargeted Metabolomics Using Synthetic Compounds. J. Chem. Inf. Model. 2018, 58, 591–604. [Google Scholar] [CrossRef]
- Rigano, F.; Oteri, M.; Russo, M.; Dugo, P.; Mondello, L. Proposal of a Linear Retention Index System for Improving Identification Reliability of Triacylglycerol Profiles in Lipid Samples by Liquid Chromatography Methods. Anal. Chem. 2018, 90, 3313–3320. [Google Scholar] [CrossRef]
- Zheng, S.J.; Liu, S.J.; Zhu, Q.F.; Guo, N.; Wang, Y.L.; Yuan, B.F.; Feng, Y.Q. Establishment of Liquid Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Anal. Chem. 2018, 90, 8412–8420. [Google Scholar] [CrossRef]
- Samaraweera, M.A.; Hall, L.M.; Hill, D.W.; Grant, D.F. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics. Anal. Chem. 2018, 90, 12752–12760. [Google Scholar] [CrossRef]
- Zhu, Q.F.; Zhang, T.Y.; Qin, L.L.; Li, X.M.; Zheng, S.J.; Feng, Y.Q. Method to Calculate the Retention Index in Hydrophilic Interaction Liquid Chromatography Using Normal Fatty Acid Derivatives as Calibrants. Anal. Chem. 2019, 91, 6057–6063. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Halket, J.M.; Waterman, D.; Przyborowska, A.M.; Patel, R.K.P.; Fraser, P.D.; Bramley, P.M. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 2005, 56, 219–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmuller, E.; Dormann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; et al. [email protected]: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberacher, H. Applying Tandem Mass Spectral Libraries for Solving the Critical Assessment of Small Molecule Identification (CASMI) LC/MS Challenge 2012. Metabolites 2013, 3, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Ilisz, I.; Aranyi, A.; Pataj, Z.; Peter, A. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. J. Pharm. Biomed. Anal. 2012, 69, 28–41. [Google Scholar] [CrossRef]
- Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H., Jr. Ion mobility–mass spectrometry. J. Mass Spectrom. 2008, 43, 1–22. [Google Scholar] [CrossRef]
- Gertsman, I.; Barshop, B.A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 2018, 41, 355–366. [Google Scholar] [CrossRef]
- Guida, M.; Salvatore, M.M.; Salvatore, F. A Strategy for GC/MS Quantification of Polar Compounds via their Silylated Surrogates: Silylation and Quantification of Biological Amino Acids. J. Anal. Bioanal. Tech. 2015, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Rocca-Serra, P.; Salek, R.M.; Arita, M.; Correa, E.; Dayalan, S.; Gonzalez-Beltran, A.; Ebbels, T.; Goodacre, R.; Hastings, J.; Haug, K.; et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metab. Off. J. Metab. Soc. 2016, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum, D. KEGGREST: Client-Side REST Access to KEGG; R package version 1.26.1. 2019. Available online: https://bioconductor.org/packages/release/bioc/html/KEGGREST.html (accessed on 4 November 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pietzke, M.; Zasada, C.; Mudrich, S.; Kempa, S. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics. Cancer Metab. 2014, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Kuich, P.H.J.L.; Hoffmann, N.; Kempa, S. Maui-VIA: A User-Friendly Software for Visual Identification, Alignment, Correction, and Quantification of Gas Chromatography–Mass Spectrometry Data. Front. Bioeng. Biotechnol. 2015, 2, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, G.M.; Zheng, L.; van den Broek, N.J.F.; Gottlieb, E. Analysis of Cell Metabolism Using LC–MS and Isotope Tracers. Methods Enzymol. 2015, 561, 171–196. [Google Scholar] [CrossRef] [PubMed]
Processing Step | GC-EI–ToF-MS | LC–Orbitrap-MS |
---|---|---|
Derivatisation | essential to mask polar groups | not essential but can be used selectively to target specific compound classes |
Chromatographic resolution | narrower peaks (ca. 4–5 s) | wider peaks (ca. 20–30 s) |
MS-resolution | typically unit-resolution | high resolution |
Chromatographic identification | typically by retention index system | typically reliant on retention time |
Compound identification | based on fragmentation | based on (exact) mass |
Potential misident- ifications | metabolites with chemical similarity | metabolites with identical sum formula |
Class | Compound | Expected RI | Ident Mix Occurrence | |||
---|---|---|---|---|---|---|
Pentoses | Xylose | 1651 | A | C | ||
Ribose | 1672 | B | D | |||
Arabitol | 1711 | C | D | |||
Ribitol | 1716 | A | B | |||
Hexoses | Fructose | 1862 and 1872 | B | C | ||
Mannose | 1876 | A | D | |||
Galactose | 1880 | A | C | |||
Glucose | 1886 | B | D | |||
Sugar Derivatives | Sorbitol | 1926 | A | D | ||
Glucuronic acid | 1927 | A | C | |||
Glucosamine | 1932 | A | B | |||
Galacturonic acid | 1935 | B | D | |||
Gluconic acid | 1996 | B | C | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opialla, T.; Kempa, S.; Pietzke, M. Towards a More Reliable Identification of Isomeric Metabolites Using Pattern Guided Retention Validation. Metabolites 2020, 10, 457. https://doi.org/10.3390/metabo10110457
Opialla T, Kempa S, Pietzke M. Towards a More Reliable Identification of Isomeric Metabolites Using Pattern Guided Retention Validation. Metabolites. 2020; 10(11):457. https://doi.org/10.3390/metabo10110457
Chicago/Turabian StyleOpialla, Tobias, Stefan Kempa, and Matthias Pietzke. 2020. "Towards a More Reliable Identification of Isomeric Metabolites Using Pattern Guided Retention Validation" Metabolites 10, no. 11: 457. https://doi.org/10.3390/metabo10110457
APA StyleOpialla, T., Kempa, S., & Pietzke, M. (2020). Towards a More Reliable Identification of Isomeric Metabolites Using Pattern Guided Retention Validation. Metabolites, 10(11), 457. https://doi.org/10.3390/metabo10110457