Nitazoxanide Shows an Immunomodulatory Effect in Vγ9Vδ2 T Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. High-Throughput Virtual Screening
2.2. Donors and PBMC Isolation
2.3. Cell Viability and BTN3A Expression Assays
2.4. Stimulation of PBMCs in the Presence of Drugs and NTZ Dose–Response Curves
2.5. Isolation and Stimulation of Vγ9Vδ2 T Cells and Monocytes via Cell Sorting
2.6. Membrane and Intracellular Staining with Antibodies, Flow Cytometry Acquisition and Analysis
2.7. CD69 and HLA-DR Overexpression in the Presence of NTZ
2.8. Statistical Analysis
3. Results
3.1. Selection of Drugs with High Affinity to the BTN3A1 Domain
3.2. Determination of the Expression of BTN3A in Immune Cells and the Effect of Selected Drugs in the Activation of Vγ9Vδ2 T Cells
3.3. NTZ Promotes the Activation of Vγ9Vδ2 T Cells When Incubated In Vitro
3.4. Co-Incubation of NTZ with HMBPP Dampers the Production of IFN-γ in Vγ9Vδ2 T Cells When Incubated In Vitro
3.5. Total PBMCs Stimulated with NTZ Promote Upregulation of HLA-DR
3.6. NTZ Promotes the Production of IFN-γ in Sorted Vγ9Vδ2 T Cells from Healthy Donors in the Presence of Monocytes
3.7. Molecular Docking Reveals Putative Interactions Between NTZ and Its Competition over HMBPP in the B30.2 Domain of BTN3A1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayassi, T.; Barreiro, L.B.; Rossjohn, J.; Jabri, B. A multilayered immune system through the lens of unconventional T cells. Nature 2021, 595, 501–510. [Google Scholar] [CrossRef]
- Kurioka, A.; Klenerman, P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin. Immunol. 2023, 69, 101816. [Google Scholar] [CrossRef] [PubMed]
- Blazquez, J.L.; Benyamine, A.; Pasero, C.; Olive, D. New insights into the regulation of γδ T cells by BTN3A and other BTN/BTNL in tumor immunity. Front. Immunol. 2018, 9, 1601. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Zhang, J.; Wu, X.; Chen, X. The dual roles of human γδ T cells: Anti-tumor or tumor-promoting. Front. Immunol. 2021, 11, 619954. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Ding, Y.P.; Tanaka, Y.; Shen, L.W.; Wei, C.H.; Minato, N.; Zhang, W. γδ T cells and their potential for immunotherapy. Int. J. Biol. Sci. 2014, 10, 119–135. [Google Scholar] [CrossRef]
- Luoma, A.M.; Castro, C.D.; Mayassi, T.; Bembinster, L.A.; Bai, L.; Picard, D.; Anderson, B.; Scharf, L.; Kung, J.E.; Sibener, L.V.; et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 2013, 39, 1032–1042. [Google Scholar] [CrossRef]
- Uldrich, A.P.; Le Nours, J.; Pellicci, D.G.; Gherardin, N.A.; McPherson, K.G.; Lim, R.T.; Patel, O.; Beddoe, T.; Gras, S.; Rossjohn, J.; et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 2013, 14, 1137–1145. [Google Scholar]
- Le Nours, J.; Gherardin, N.A.; Ramarathinam, S.H.; Awad, W.; Wiede, F.; Gully, B.S.; Khandokar, Y.; Praveena, T.; Wubben, J.M.; Sandow, J.J.; et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 2019, 366, 1522–1527. [Google Scholar] [CrossRef]
- Rice, M.T.; von Borstel, A.; Chevour, P.; Awad, W.; Howson, L.J.; Littler, D.R.; Gherardin, N.A.; Le Nours, J.; Giles, E.M.; Berry, R.; et al. Recognition of the antigen-presenting molecule MR1 by a Vδ3+ γδ T cell receptor. Proc. Natl. Acad. Sci. USA 2021, 118, e2110288118. [Google Scholar]
- Rigau, M.; Ostrouska, S.; Fulford, T.S.; Johnson, D.N.; Woods, K.; Ruan, Z.; McWilliam, H.E.; Hudson, C.; Tutuka, C.; Wheatley, A.K.; et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 2020, 367, eaay5516. [Google Scholar] [CrossRef]
- Qi, C.; Wang, Y.; Li, P.; Zhao, J. Gamma delta T cells and their pathogenic role in psoriasis. Front. Immunol. 2021, 12, 627139. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gao, W.; Zheng, J.; Bai, Y.; Tian, X.; Huang, T.; Lu, Z.; Dong, D.; Zhang, A.; Guo, C.; et al. Phosphoantigen-induced inside-out stabilization of butyrophilin receptor complexes drives dimerization-dependent γδ TCR activation. Immunity 2025, 58, 1646–1659.e5. [Google Scholar] [CrossRef] [PubMed]
- Sugie, T.; Murata-Hirai, K.; Iwasaki, M.; Morita, C.T.; Li, W.; Okamura, H.; Minato, N.; Toi, M.; Tanaka, Y. Zoledronic acid-induced expansion of γδ T cells from early-stage breast cancer patients: Effect of IL-18 on helper NK cells. Cancer Immunol. Immunother. 2013, 62, 677–687. [Google Scholar] [CrossRef]
- Hodgins, N.O.; Wang, J.T.W.; Al-Jamal, K.T. Nanotechnology-based carriers for nitrogen-containing bisphosphonates delivery as sensitizers of γδ T cells for anticancer immunotherapy. Adv. Drug Deliv. Rev. 2017, 114, 143–160. [Google Scholar] [CrossRef]
- Kunzmann, V.; Bauer, E.; Feurle, J.; Weißinger, F.; Wilhelm, M. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000, 96, 384–392. [Google Scholar] [CrossRef]
- Hsiao, C.H.C.; Wiemer, A.J. A power law function describes the time- and dose-dependency of Vγ9Vδ2 T cell activation by phosphoantigens. Biochem. Pharmacol. 2018, 158, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Sharif, M.; James, E.; Dismorr, J.O.; Tucker, J.H.; Willcox, B.E.; Mehellou, Y. Phosphonodiamidate prodrugs of phosphoantigens (ProPAgens) exhibit potent Vγ9/Vδ2 T cell activation and eradication of cancer cells. RSC Med. Chem. 2024, 15, 2399–2411. [Google Scholar] [CrossRef]
- Gómez-Castro, C.Z.; López-Martínez, M.; Hernández-Pineda, J.; Trujillo-Ferrara, J.G.; Padilla-Martínez, I.I. Profiling the interaction of 1-phenylbenzimidazoles to cyclooxygenases. J. Mol. Recognit. 2019, 32, e2801. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Yuan, L.; Zhou, X.; Duan, J.; Xiao, H.; Cai, N.; Han, S.; Ma, X.; Liu, W.; et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vγ9Vδ2 T cell activation. Immunity 2019, 50, 1043–1053.e5. [Google Scholar] [CrossRef]
- Singh, R.; Rani, S.; Jin, Y.; Hsiao, C.C.; Wiemer, A.J. Synthesis and evaluation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate analogs as competitive partial agonists of butyrophilin 3A1. Eur. J. Med. Chem. 2024, 276, 116673. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, L.; Zou, Y.; Wei, H.; Zhou, Y.; Guo, X.; Li, Q.; Ye, Y.; Zhang, L. Antibiotic-induced severe cutaneous adverse reactions: A single-center retrospective study over ten years. Front. Immunol. 2024, 15, 1415830. [Google Scholar]
- Castillo-Salazar, M.; Sánchez-Muñoz, F.; Springall del Villar, R.; Navarrete-Vázquez, G.; Hernández-DiazCouder, A.; Mojica-Cardoso, C.; García-Jiménez, S.; Toledano-Jaimes, C.; Bernal-Fernández, G. Nitazoxanide exerts immunomodulatory effects on peripheral blood mononuclear cells from type 2 diabetes patients. Biomolecules 2021, 11, 1817. [Google Scholar] [CrossRef]
- Blum, V.F.; Cimerman, S.; Hunter, J.R.; Tierno, P.; Lacerda, A.; Soeiro, A.; Cardoso, F.; Bellei, N.C.; Maricato, J.; Mantovani, N.; et al. Nitazoxanide superiority to placebo to treat moderate COVID-19—A pilot proof of concept randomized double-blind clinical trial. EClinicalMedicine 2021, 37, 100981. [Google Scholar] [CrossRef]
- Amorosa, V.K.; Luetkemeyer, A.; Kang, M.; Johnson, V.A.; Umbleja, T.; Haas, D.W.; Yesmin, S.; Bardin, M.C.; Chung, R.T.; Alston-Smith, B.; et al. Addition of nitazoxanide to PEG-IFN and ribavirin to improve HCV treatment response in HIV-1 and HCV genotype 1 coinfected persons naïve to HCV therapy: Results of the ACTG A5269 trial. HIV Clin. Trials 2013, 14, 274–282. [Google Scholar] [CrossRef]
- Haffizulla, J.; Hartman, A.; Hoppers, M.; Resnick, H.; Samudrala, S.; Ginocchio, C.; Bardin, M.; Rossignol, J.F. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 2014, 14, 609–618. [Google Scholar]
- Rossignol, J.F.; Kabil, S.M.; El-Gohary, Y.; Elfert, A.; Keeffe, E.B. Randomized, double-blind, placebo-controlled study of nitazoxanide monotherapy for the treatment of patients with chronic hepatitis C genotype 4. Aliment. Pharmacol. Ther. 2008, 28, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.M.; Geudtner, G.; Alvarez-Ibarra, A.; Calaminici, P.; Casida, M.E.; Carmona-Espíndola, J.; Domínguez, V.D.; Flores-Moreno, R.; Gamboa, G.U.; Goursot, A.; et al. deMon2k, Version 5; The deMon Developers, Cinvestav: Mexico City, Mexico, 2018. [Google Scholar]
- Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.; Belew, R.; Olson, A. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Juárez, Á.D.; Rodríguez-Cortes, O.; Garcia-Nuñez, A.A.; Rodríguez-Cadena, M.A.; Cortés-Serrano, J.B.; Gómez-Castro, C.Z.; Torres-Avila, I.P.; Romero-Rodríguez, D.P.; Benítez-Arvizu, G.; Naisbitt, D.J.; et al. Nitazoxanide Shows an Immunomodulatory Effect in Vγ9Vδ2 T Cells. Sci. Pharm. 2025, 93, 53. https://doi.org/10.3390/scipharm93040053
Campos-Juárez ÁD, Rodríguez-Cortes O, Garcia-Nuñez AA, Rodríguez-Cadena MA, Cortés-Serrano JB, Gómez-Castro CZ, Torres-Avila IP, Romero-Rodríguez DP, Benítez-Arvizu G, Naisbitt DJ, et al. Nitazoxanide Shows an Immunomodulatory Effect in Vγ9Vδ2 T Cells. Scientia Pharmaceutica. 2025; 93(4):53. https://doi.org/10.3390/scipharm93040053
Chicago/Turabian StyleCampos-Juárez, Ángel Daniel, Octavio Rodríguez-Cortes, Andrés Ademar Garcia-Nuñez, Mónica Adriana Rodríguez-Cadena, Jonathan B. Cortés-Serrano, Carlos Zepactonal Gómez-Castro, Itzel Pamela Torres-Avila, Damaris Priscila Romero-Rodríguez, Gamaliel Benítez-Arvizu, Dean J. Naisbitt, and et al. 2025. "Nitazoxanide Shows an Immunomodulatory Effect in Vγ9Vδ2 T Cells" Scientia Pharmaceutica 93, no. 4: 53. https://doi.org/10.3390/scipharm93040053
APA StyleCampos-Juárez, Á. D., Rodríguez-Cortes, O., Garcia-Nuñez, A. A., Rodríguez-Cadena, M. A., Cortés-Serrano, J. B., Gómez-Castro, C. Z., Torres-Avila, I. P., Romero-Rodríguez, D. P., Benítez-Arvizu, G., Naisbitt, D. J., Moreno-Eutimio, M. A., & Castrejón-Flores, J. L. (2025). Nitazoxanide Shows an Immunomodulatory Effect in Vγ9Vδ2 T Cells. Scientia Pharmaceutica, 93(4), 53. https://doi.org/10.3390/scipharm93040053

