Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the CUR-Loaded NE
2.3. Physicochemical Characterization of NEs
2.3.1. Particle Size and Polydispersity Index Determination
2.3.2. Zeta Potential Evaluation
2.3.3. pH Measurement
2.3.4. Osmolality Measurement
2.4. Quantitative Analysis of CUR in NEs
2.4.1. Spectrophotometric UV–Vis Measurements
2.4.2. High-Performance Liquid Chromatography Measurements
2.4.3. Encapsulation Efficiency (EE) and Retention Rate (RR) of CUR in NEs
2.5. Stability Studies
2.5.1. Mid-Term Stability Studies
2.5.2. Short-Term Stress Tests
2.5.3. Freeze–Thaw Tests
2.6. Compatibility Studies
2.7. Statistical Analysis
3. Results
3.1. Characterization of NEs
3.2. Stability Studies
3.2.1. Mid-Term Stability Study
3.2.2. Short-Term Stress Tests
3.2.3. Freeze–Thaw Tests
3.3. Compatibility Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu. Rev. Food Sci. Technol. 2019, 10, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Đoković, J.B.; Savić, S.M.; Mitrović, J.R.; Nikolic, I.; Marković, B.D.; Randjelović, D.V.; Antic-Stankovic, J.; Božić, D.; Cekić, N.D.; Stevanović, V.; et al. Curcumin Loaded PEGylated Nanoemulsions Designed for Maintained Antioxidant Effects and Improved Bioavailability: A Pilot Study on Rats. Int. J. Mol. Sci. 2021, 22, 7991. [Google Scholar] [CrossRef]
- Lazewski, D.; Kucinska, M.; Potapskiy, E.; Kuzminska, J.; Popenda, L.; Tezyk, A.; Goslinski, T.; Wierzchowski, M.; Murias, M. Enhanced Cytotoxic Activity of PEGylated Curcumin Derivatives: Synthesis, Structure–Activity Evaluation, and Biological Activity. Int. J. Mol. Sci. 2023, 24, 1467. [Google Scholar] [CrossRef]
- Deodhar, S.; Sethi, R.; Srimal, R. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res. 1980, 138, 632–634. [Google Scholar]
- Lal, B.; Kapoor, A.K.; Asthana, O.P.; Agrawal, P.K.; Prasad, R.; Kumar, P.; Srimal, R.C. Efficacy of Curcumin in the Management of Chronic Anterior Uveitis. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 318–322. [Google Scholar] [CrossRef]
- Chainani-Wu, N. Safety and Anti-Inflammatory Activity of Curcumin: A Component of Tumeric (Curcuma longa). J. Altern. Complement. Med. 2003, 9, 161–168. [Google Scholar] [CrossRef]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation Design and Photochemical Studies on Nanocrystal Solid Dispersion of Curcumin with Improved Oral Bioavailability. J. Pharm. Sci. 2010, 99, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-Y.; Lin, L.-C.; Tseng, T.-Y.; Wang, S.-C.; Tsai, T.-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J. Chromatogr. B 2007, 853, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, R.; Quagliariello, V.; Calabria, D.; Calcagno, V.; De Luca, E.; Iaffaioli, R.V.; Netti, P.A. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. J. Control. Release 2016, 233, 88–100. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, X.; Peng, S.; McClements, D.J. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, nanoemulsion droplets, and natural oil bodies. Food Funct. 2019, 10, 4339–4349. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhao, N.; Zhang, J.; Shi, Y.; Hu, Q.; Jiao, Y.; Su, J. Novel Curcumin Intravenous Injection System: Preparation, Characterization, Improved Bioavailability and Safety In Vitro and In Vivo. Res. Rev. Pharm. Pharm. Sci. 2016, 5, 23–30. [Google Scholar]
- Allam, A.N.; Komeil, I.A.; Fouda, M.A.; Abdallah, O.Y. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int. J. Pharm. 2015, 489, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007, 330, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Ghodsi, R.; Kooshki, F.; Karimi, M.; Asghariazar, V.; Tarighat-Esfanjani, A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother. Res. 2019, 33, 2798–2820. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Taghibiglou, C. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 58, 1003–1016. [Google Scholar] [CrossRef]
- Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res. 2017, 115, 133–148. [Google Scholar] [CrossRef]
- Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomed. 2017, 12, 6027–6044. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018, 10, 855. [Google Scholar] [CrossRef]
- Negi, A.S.; Kumar, J.; Luqman, S.; Shanker, K.; Gupta, M.; Khanuja, S. Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Med. Res. Rev. 2008, 28, 746–772. [Google Scholar] [CrossRef]
- Müller, R.; Harden, D.; Keck, C. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery. Drug Dev. Ind. Pharm. 2012, 38, 420–430. [Google Scholar] [CrossRef]
- Czerniel, J.; Gostyńska, A.; Jańczak, J.; Stawny, M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur. J. Pharm. Biopharm. 2023, 191, 36–56. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Su, B.; Luo, Y.; Li, C.; Zhang, Y.; Liu, P.; Chen, H.; Serda, M.; Jiang, C.; Sun, T. Compound Nanoemulsion Combined with Differentiation/Cytotoxicity Drugs for Modulating Breast Cancer Stemness. Mol. Pharm. 2023, 20, 1591–1598. [Google Scholar] [CrossRef]
- Inactive Ingredient Search for Approved Drug Products. Available online: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm (accessed on 14 April 2023).
- Groo, A.-C.; De Pascale, M.; Voisin-Chiret, A.-S.; Corvaisier, S.; Since, M.; Malzert-Fréon, A. Comparison of 2 strategies to enhance pyridoclax solubility: Nanoemulsion delivery system versus salt synthesis. Eur. J. Pharm. Sci. 2017, 97, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, L. Developing early formulations: Practice and perspective. Int. J. Pharm. 2007, 341, 1–19. [Google Scholar] [CrossRef]
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding Pharmaceutical Quality by Design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, B.; Deng, L.; Gao, B.; Zhang, Y.; Wu, C.; Yu, N.; Zhou, Q.; Yao, J.; Chen, J. An optimized two-vial formulation lipid nanoemulsion of paclitaxel for targeted delivery to tumor. Int. J. Pharm. 2017, 534, 308–315. [Google Scholar] [CrossRef]
- Harun, S.N.; Amin Nordin, S.; Abd Gani, S.S.; Shamsuddin, A.F.; Basri, M.; Bin Basri, H. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. Int. J. Nanomed. 2018, 13, 2571–2584. [Google Scholar] [CrossRef]
- Đoković, J.B.; Demisli, S.; Savić, S.M.; Marković, B.D.; Cekić, N.D.; Randjelovic, D.V.; Mitrović, J.R.; Lunter, D.J.; Papadimitriou, V.; Xenakis, A.; et al. The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions. Pharmaceutics 2022, 14, 1666. [Google Scholar] [CrossRef]
- Jin, H.-H.; Lu, Q.; Jiang, J.-G. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J. Dairy Sci. 2016, 99, 1780–1790. [Google Scholar] [CrossRef]
- Wanten, G.J.; Calder, P.C. Immune modulation by parenteral lipid emulsions. Am. J. Clin. Nutr. 2007, 85, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Miles, J.M. Metabolic Effects of Long-Chain and Medium-Chain Triglyceride Emulsions in Humans. J. Parenter. Enter. Nutr. 1994, 18, 396–397. [Google Scholar] [CrossRef] [PubMed]
- Chuacharoen, T.; Prasongsuk, S.; Sabliov, C.M. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules 2019, 24, 2744. [Google Scholar] [CrossRef]
- Gostyńska, A.; Czerniel, J.; Kuźmińska, J.; Żółnowska, I.; Brzozowski, J.; Krajka-Kuźniak, V.; Stawny, M. The Development of Magnolol-Loaded Intravenous Emulsion with Low Hepatotoxic Potential. Pharmaceuticals 2023, 16, 1262. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.-H.; Yao, G.-L.; Zhang, W.-T.; Zhao, Y. Microemulsion-based anthocyanin systems: Effect of surfactants, cosurfactants, and its stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar] [CrossRef]
- Mulia, K.; Putri, G.A.; Krisanti, E. Encapsulation of Mangosteen Extract in Virgin Coconut Oil Based Nanoemulsions: Preparation and Characterization for Topical Formulation. Mater. Sci. Forum 2018, 929, 234–242. [Google Scholar] [CrossRef]
- USP <729> Globule Size Distribution in Lipid Injectable Emulsions; The United States Pharmacopeia 33/National Formulary 28; United States Pharmacopeial Convention: Rockville, MD, USA, 2009; pp. 314–316.
- Boullata, J.I.; Mirtallo, J.M.; Sacks, G.S.; Salman, G.; Gura, K.; Canada, T.; Maguire, A.; the ASPEN Parenteral Nutrition Safety Committee. Parenteral nutrition compatibility and stability: A comprehensive review. J. Parenter. Enter. Nutr. 2022, 46, 273–299. [Google Scholar] [CrossRef]
- Hörmann, K.; Zimmer, A. Drug delivery and drug targeting with parenteral lipid nanoemulsions—A review. J. Control. Release 2016, 223, 85–98. [Google Scholar] [CrossRef]
- Klang, V.; Valenta, C. Lecithin-based nanoemulsions. J. Drug Deliv. Sci. Technol. 2011, 21, 55–76. [Google Scholar] [CrossRef]
- van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 2014, 116, 1088–1107. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, X.; Li, H.Y.; Liu, X.L. A lipid microsphere vehicle for vinorelbine: Stability, safety and pharmacokinetics. Int. J. Pharm. 2008, 348, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Buszello, K.; Harnisch, S.; Müller, R.; Müller, B. The influence of alkali fatty acids on the properties and the stability of parenteral O/W emulsions modified with Solutol HS 15®. Eur. J. Pharm. Biopharm. 2000, 49, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Kuehl, G.; Barnes, K.; VanderWaerdt, G. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: Effects of sodium chloride, sucrose and urea. Biochim. Biophys. Acta-(BBA) Biomembr. 2000, 1508, 20–33. [Google Scholar] [CrossRef]
- Busmann, E.F.; Martínez, D.G.; Lucas, H.; Mäder, K. Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications. Beilstein J. Nanotechnol. 2020, 11, 213–224. [Google Scholar] [CrossRef]
- Anuchapreeda, S.; Fukumori, Y.; Okonogi, S.; Ichikawa, H. Preparation of Lipid Nanoemulsions Incorporating Curcumin for Cancer Therapy. J. Nanotechnol. 2011, 2012, e270383. [Google Scholar] [CrossRef]
- Douglas, W.F. Electrokinetic phenomens in flotation-related systems. Physicochem. Probl Min. Process 1980, 12, 3–21. [Google Scholar]
- Jumaa, M.; Müller, B.W. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect. Eur. J. Pharm. Sci. 1999, 9, 285–290. [Google Scholar] [CrossRef]
- Chuacharoen, T.; Sabliov, C.M. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016, 503, 11–18. [Google Scholar] [CrossRef]
- Roethlisberger, D.; Mahler, H.-C.; Altenburger, U.; Pappenberger, A. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms? J. Pharm. Sci. 2016, 106, 446–456. [Google Scholar] [CrossRef]
- Gostyńska, A.; Czerniel, J.; Kuźmińska, J.; Brzozowski, J.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V.; Stawny, M. Honokiol-Loaded Nanoemulsion for Glioblastoma Treatment: Statistical Optimization, Physicochemical Characterization, and an In Vitro Toxicity Assay. Pharmaceutics 2023, 15, 448. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Baric, T.; Roudaut, G.; Cayot, P.; Lacaille-Dubois, M.-A.; Mitaine-Offer, A.-C.; Chambin, O. Microencapsulation of curcumin by ionotropic gelation with surfactants: Characterization, release profile and antioxidant activity. J. Drug Deliv. Sci. Technol. 2022, 76, 103812. [Google Scholar] [CrossRef]
- Grit, M.; Underberg, W.J.; Crommelin, D.J. Hydrolysis of Saturated Soybean Phosphatidylcholine in Aqueous Liposome Dispersions. J. Pharm. Sci. 1993, 82, 362–366. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. J. Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef]
- Wu, M.-H.; Yan, H.H.; Chen, Z.-Q.; He, M. Effects of emulsifier type and environmental stress on the stability of curcumin emulsion. J. Dispers. Sci. Technol. 2017, 38, 1375–1380. [Google Scholar] [CrossRef]
- Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll. 2013, 30, 589–596. [Google Scholar] [CrossRef]
- Chuah, A.M.; Kuroiwa, T.; Kobayashi, I.; Nakajima, M. Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocoll. 2009, 23, 600–610. [Google Scholar] [CrossRef]
Component (% w/w) | NE-1 | NE-2 | NE-3 | NE-4 | NE-5 |
---|---|---|---|---|---|
Soybean oil | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Phosal CUR | 0.715 | 0.715 | 0.715 | 0.715 | 0.715 |
Lipoid® E80 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Kolliphor HS15 | - | 0.25 | 1.0 | 2.5 | 5.0 |
Glycerol | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 |
Sodium oleate | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Water | 85.785 | 85.535 | 84.785 | 83.285 | 80.785 |
NE-1 | NE-2 | NE-3 | NE-4 | NE-5 | |
---|---|---|---|---|---|
CKOL [%] | - | 0.25 | 1.0 | 2.5 | 5 |
MDD [nm] | 154.5 ± 5.1 | 142.9 ± 2.6 | 114.2 ± 1.3 | 94.9 ± 5.1 | 85.2 ± 2.0 |
PDI | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.18 ± 0.04 |
ZP [mV] | −27.6 ± 3.4 | −24.4 ± 1.4 | −22.6 ± 0.7 | −18.4 ± 1.7 | −15.6 ± 0.7 |
EE [%] | 44.98 ± 0.97 | 45.66 ± 0.53 | 50.36 ± 1.83 | 53.16 ± 1.44 | 58.42 ± 1.27 |
pH | 7.47 | 7.78 | 7.75 | 7.62 | 7.51 |
OSM [mOsm/kg] | 348 | 325 | 333 | 361 | 390 |
Sample | Environment | (t = 0 → t = 7 Day) | ||||
---|---|---|---|---|---|---|
MDD [nm] | PDI | ZP [mV] | Osmolality [mOsm/kg] | pH | ||
NE-1 | 25 ± 1 °C | 165.2 → 169.1 | 0.11 → 0.15 | −25.8 → −28.2 | 314 → 314 | 6.9 → 6.3 |
65 ± 1 °C | 165.2 → 163.5 | 0.11 → 0.01 | −25.8 → −32.4 | 316 → 313 | 6.9 → 6.3 | |
0.5 M NaOH | 193.7 → 173.8 | 0.11 → 0.02 | −5.0 → −32.1 | 605 → 503 | 12.7 → 12.6 | |
0.5 M HCl | 327.0 →1791.0 | 0.44 → 1.00 | −5.0 → −40.1 | 716 → 709 | 0.9 → 0.8 | |
30% H2O2 | 163.4 → 163.0 | 0.12 → 011 | −26.7 → −24.6 | - | 4.9 → 4.2 | |
NE-2 | 25 ± 1 °C | 146.8 → 147.9 | 0.08 → 0.10 | −24.9 → −25.7 | 330 → 332 | 7.2 → 6.2 |
65 ± 1 °C | 146.8 → 145.4 | 0.08 → 0.01 | −24.9 → −31.8 | 330 → 336 | 7.2 → 6.5 | |
0.5 M NaOH | 167.0 → 686.2 | 0.10 → 0.66 | −6.3 → −32.0 | 599 → 528 | 12.8 → 12.6 | |
0.5 M HCl | 172.4 → 435.2 | 0.13 → 0.49 | −5.4 → −39.5 | 712 → 735 | 0.9 →0.8 | |
30% H2O2 | 145.0 → 149.0 | 0.10 → 0.10 | −22.0 → −21.5 | - | 4.9 → 3.9 | |
NE-3 | 25 ± 1 °C | 113.3 → 112.3 | 0.11 → 0.09 | −19.3 → 19.9 | 271 → 269 | 6.9 → 6.3 |
65 ± 1 °C | 113.3 → 112.4 | 0.11 → 0.02 | −19.3 → −25.2 | 271 → 271 | 6.9 → 6.6 | |
0.5 M NaOH | 111.2 → 247.6 | 0.09 → 0.40 | −5.2 → −25.8 | 583 → 482 | 13.0 → 12.3 | |
0.5 M HCl | 111.4 → 233.4 | 0.09 → 0.40 | −4.5 → −27.9 | 677 → 694 | 0.9 → 0.8 | |
30% H2O2 | 113.4 → 111.9 | 0.09 → 0.11 | −21.6 → −23.8 | - | 5.2 → 4.3 | |
NE-4 | 25 ± 1 °C | 98.7 → 97.8 | 0.11 → 0.11 | −16.7 → −21.3 | 365 → 368 | 7.1 → 6.4 |
65 ± 1 °C | 98.7 → 97.2 | 0.11 → 0.11 | −16.7 → −23.6 | 365 → 377 | 7.1 → 6.8 | |
0.5 M NaOH | 97.6 → 268.6 | 0.09 → 0.35 | −3.7 → −85.2 | 616 → 506 | 13.0 → 12.5 | |
0.5 M HCl | 97.9 → 174.4 | 0.10 → 0.21 | −6.1 → −27.6 | 726 → 740 | 0.8 → 0.9 | |
30% H2O2 | 98.0 → 97.4 | 0.11 → 0.10 | −17.9 → −21.3 | - | 5.5 → 4.4 | |
NE-5 | 25 ± 1 °C | 84.0 → 83.4 | 0.13 → 0.15 | −12.2 → −15.1 | 400 → 407 | 7.0 → 6.4 |
65 ± 1 °C | 84.0 → 88.0 | 0.13 → 0.12 | −12.2 → −23.1 | 400 → 424 | 7.0 → 6.7 | |
0.5 M NaOH | 83.2 → 822.0 | 0.12 → 0.75 | −2.4 → −26.9 | 638 → 632 | 12.9 → 12.3 | |
0.5 M HCl | 82.8 → 120.3 | 0.12 → 0.13 | −5.7 → −23.4 | 747 → 769 | 0.8 → 1.0 | |
30% H2O2 | 82.9 → 82.3 | 013 → 0.14 | −15.0 → −19.5 | - | 5.4 → 4.3 |
Sample | Ratio | MDD [nm] | PDI | ZP [mV] | |||
---|---|---|---|---|---|---|---|
t = 0 h | t = 3 h | t = 0 h | t = 3 h | t = 0 h | t = 3 h | ||
NE-1 | 1:1 | 152.5 ± 1.1 | 155.8 ± 2.0 | 0.09 ± 0.02 | 0.13 ± 0.02 | −28.5 ± 1.4 | −25.7 ± 0.4 |
1:10 | 162.2 ± 2.4 | 189.7 * ± 2.5 | 0.13 ± 0.02 | 0.25 ± 0.01 | −29.0 ± 2.0 | −29.7 ± 1.3 | |
1:100 | 148.4 ± 2.5 | 280.9 ± 6.9 | 0.13 ± 0.02 | 0.24 ± 0.01 | −25.1 ± 0.3 | −27.6 ± 1.7 | |
NE-2 | 1:1 | 143.3 ± 1.0 | 142.7 ± 2.1 | 0.09 ± 0.01 | 0.11 ± 0.00 | −23.4 ± 0.1 | −25.8 ± 0.3 |
1:10 | 143.6 ± 0.7 | 146.6 ± 2.6 | 0.11 ± 0.03 | 0.12 ± 0.02 | −23.9 ± 2.0 | −22.6 ± 0.3 | |
1:100 | 148.6 * ± 8.2 | - | 0.19 ± 0.05 | - | −24.3 ± 1.0 | - | |
NE-3 | 1:1 | 114.4 ± 1.0 | 119.2 ± 2.4 | 0.11 ± 0.02 | 0.16 ± 0.03 | −21.2 ± 0.6 | −22.8 ± 1.7 |
1:10 | 120.1 ± 0.6 | 122.5 * ± 2.6 | 0.15 ± 0.01 | 0.18 ± 0.03 | −24.6 ± 0.4 | −22.7 ± 0.4 | |
1:100 | 181.4 * ± 19.1 | - | 0.27 ± 0.02 | - | −22.8 ± 1.0 | - | |
NE-4 | 1:1 | 101.4 * ± 1.7 | - | 0.16 ± 0.01 | - | −23.8 ± 0.7 | - |
1:10 | 111.2 * ± 3.0 | - | 0.21 ± 0.01 | - | −30.9 ± 1.6 | - | |
1:100 | 124.1 * ± 1.8 | - | 0.24 ± 0.01 | - | −24.8 ± 0.9 | - | |
NE-5 | 1:1 | 82.1 ± 1.2 | 88.9 * ± 0.5 | 0.14 ± 0.01 | 0.21 ± 0.01 | −16.7 ± 0.6 | −17.9 ± 0.8 |
1:10 | 91.4 * ± 1.7 | - | 0.22 ± 0.01 | - | −19.4 ± 0.5 | - | |
1:100 | 98.5 * ± 1.8 | - | 0.24 ± 0.00 | - | −18.5 ± 0.2 | - |
Sample | Ratio | MDD [nm] | PDI | ZP [mV] | |||
---|---|---|---|---|---|---|---|
t = 0 h | t = 3 h | t = 0 h | t = 3 h | t = 0h | t = 3 h | ||
NE-1 | 1:1 | 158.5 ± 1.2 | 169.0 ± 1.8 | 0.12 ± 0.01 | 0.14 ± 0.01 | −29.1 ± 1.2 | −23.9 ± 1.1 |
1:10 | 163.7 * ± 3.5 | - | 0.17 ± 0.01 | - | −28.6 ± 2.0 | - | |
1:100 | 179.2 * ± 2.9 | - | 0.19 ± 0.01 | - | −32.3 ± 0.8 | - | |
NE-2 | 1:1 | 142.5 ± 2.6 | 144.1 ± 1.5 | 0.10 ± 0.00 | 0.11 ± 0.01 | −22.2 ± 0.7 | −22.6 ± 1.2 |
1:10 | 158.7 * ± 3.8 | - | 0.17 ± 0.00 | - | −26.1 ± 0.8 | - | |
1:100 | 262.9 ± 4.7 | 186.5 * ± 4.1 | 0.18 ± 0.02 | 0.24 ± 0.01 | −30.7 ± 0.4 | −32.8 ± 0.7 | |
NE-3 | 1:1 | 113.3 ± 2.4 | 112.5 ± 0.9 | 0.11 ± 0.01 | 0.11 ± 0.01 | −17.6 ± 0.9 | −18.8 ± 0.6 |
1:10 | 115.2 ± 2.1 | 116.9 * ± 1.6 | 0.12 ± 0.02 | 0.16 ± 0.01 | −15.5 ± 0.6 | −26.8 ± 0.5 | |
1:100 | 143.6 * ± 6.3 | - | 0.24 ± 0.01 | - | −18.6 ± 0.3 | - | |
NE-4 | 1:1 | 96.7 ± 1.5 | 96.7 ± 0.6 | 0.10 ± 0.02 | 0.10 ± 0.01 | −12.7 ± 1.3 | −12.1 ± 0.4 |
1:10 | 128.9 * ± 6.2 | - | 0.26 ± 0.03 | - | −12.1 ± 0.4 | - | |
1:100 | 157.8 ± 3.5 | 152.0 * ± 1.2 | 0.24 ± 0.01 | 0.25 ± 0.01 | −20.5 ± 2.9 | −22.5 ± 0.5 | |
NE-5 | 1:1 | 84.5 ± 1.3 | 80.6 ± 0.6 | 0.01 ± 0.02 | 0.12 ± 0.02 | −10.8 ± 1.5 | −9.0 ± 1.1 |
1:10 | 105.7 * ± 0.2 | - | 0.27 ± 0.02 | - | −7.8 ± 1.1 | - | |
1:100 | 149.1 ± 0.9 | 134.9 * ± 1.2 | 0.22 ± 0.02 | 0.27 ± 0.02 | −11.6 ± 0.4 | −24.8 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerniel, J.; Gostyńska, A.; Przybylski, T.; Stawny, M. Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties. Sci. Pharm. 2024, 92, 48. https://doi.org/10.3390/scipharm92030048
Czerniel J, Gostyńska A, Przybylski T, Stawny M. Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties. Scientia Pharmaceutica. 2024; 92(3):48. https://doi.org/10.3390/scipharm92030048
Chicago/Turabian StyleCzerniel, Joanna, Aleksandra Gostyńska, Tomasz Przybylski, and Maciej Stawny. 2024. "Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties" Scientia Pharmaceutica 92, no. 3: 48. https://doi.org/10.3390/scipharm92030048