Effects of Electric Bias on Different Sc-Doped AlN-Based Film Bulk Acoustic Resonators
Abstract
:1. Introduction
2. Device Design, Fabrication and Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, C. Gigahertz-Band electroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature. Appl. Phys. Lett. 2003, 83, 4851–4853. [Google Scholar] [CrossRef]
- Sun, C.; Soon, B.W.; Zhu, Y.; Wang, N.; Loke, S.P.H.; Mu, X.; Gu, A.Y. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators. Appl. Phys. Lett. 2015, 106, 253502. [Google Scholar] [CrossRef]
- Zou, Y.; Nian, L.; Cai, Y.; Liu, Y.; Tovstopyat, A.; Liu, W.; Sun, C. Dual-Mode thin film bulk acoustic wave resonator and filter. J. Appl. Phys. 2020, 128, 194503. [Google Scholar] [CrossRef]
- Zuo, C.; Van der Spiegel, J.; Piazza, G. Dual-Mode Resonator and Switchless Reconfigurable Oscillator Based on Piezoelectric AlN MEMS Technology. IEEE Trans. Electron Devices 2011, 58, 3599–3603. [Google Scholar] [CrossRef]
- Zuo, C.; Sinha, N.; Piazza, G. Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators. Sens. Actuators A Phys. 2010, 160, 132–140. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Song, Y.; Perez, C.; Esteves, G.; Lundh, J.S.; Saltonstall, C.B.; Beechem, T.E.; Choi, S. Thermal Conductivity of Aluminum Scandium Nitride for 5G Mobile Applications and Beyond. ACS Appl. Mater. Interfaces 2021, 13, 19031–19041. [Google Scholar] [CrossRef]
- Moreira, M.; Bjurström, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromech. Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Ruby, R.; Merchant, P. Micromachined thin film bulk acoustic resonators. In Proceedings of the IEEE 48th Annual Symposium on Frequency Control, Boston, MA, USA, 1–3 June 1994; pp. 135–138. [Google Scholar]
- Pang, W.; Zhang, H.; Yu, H.; Lee, C.Y.; Kim, E.S. Electrical Frequency Tuning of Film Bulk Acoustic Resonator. J. Microelectromech. Syst. 2007, 16, 1303–1313. [Google Scholar] [CrossRef]
- Van Hemert, T.; Reimann, K.; Hueting, R.J. Extraction of second order piezoelectric parameters in bulk acoustic wave resonators. Appl. Phys. Lett. 2012, 100, 232901. [Google Scholar] [CrossRef] [Green Version]
- Defay, E.; Hassine, N.B.; Emery, P.; Parat, G.; Abergel, J.; Devos, A. Tunability of Alluminum Nitride Acoustic Resonators: A Phenomenological Approach. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2011, 58, 2516–2520. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Zhang, T.; Wang, Q.M. Frequency-Temperature compensation of piezoelectric resonators by electric DC bias field. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2005, 52, 1627–1631. [Google Scholar] [CrossRef]
- Karabalin, R.B.; Matheny, M.H.; Feng, X.L.; Defaÿ, E.; Le Rhun, G.; Marcoux, C.; Roukes, M.L. Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl. Phys. Lett. 2009, 95, 103111. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Shang, Z.; Gong, J.; Zhang, F.; Zhou, H.; Tang, B.; Mu, X. Electric Field Stiffening Effect in c -Oriented Aluminum Nitride Piezoelectric Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Milyutin, E.; Harada, S.; Martin, D.; Carlin, J.F.; Grandjean, N.; Savu, V.; Muralt, P. Sputtering of (001) AlN thin films: Control of polarity by a seed layer. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Processing Meas. Phenom. 2010, 28, L61–L63. [Google Scholar] [CrossRef]
- Kamohara, T.; Akiyama, M.; Ueno, N.; Nonaka, K.; Tateyama, H. Growth of highly c-axis-oriented aluminum nitride thin films on molybdenum electrodes using aluminum nitride interlayers. J. Cryst. Growth 2005, 275, 383–388. [Google Scholar] [CrossRef]
- Ambacher, O.; Christian, B.; Feil, N.; Urban, D.F.; Elsässer, C.; Prescher, M.; Kirste, L. Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 2021, 130, 045102. [Google Scholar] [CrossRef]
- Defaÿ, E. Integration of Ferroelectric and Piezoelectric Thin Films: Concepts and Applications for Microsystems; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Li, P.; Liao, Q.; Yang, S.; Bai, X.; Huang, Y.; Yan, X.; Zhang, Y. In Situ Transmission Electron Microscopy Investigation on Fatigue Behavior of Single ZnO Wires under High-Cycle Strain. Nano Lett. 2014, 14, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Jamneala, T.; Bradley, P.; Koelle, U.B.; Chien, A. Modified Mason model for bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2008, 55, 2025–2029. [Google Scholar] [CrossRef]
- Wingqvist, G.; Tasnadi, F.; Zukauskaite, A.; Birch, J.; Arwin, H.; Hultman, L. Increased electromechanical coupling in w−ScxAl1−xN. Appl. Phys. Lett. 2010, 97, 112902. [Google Scholar] [CrossRef]
- Tasnadi, F.; Alling, B.; Höglund, C.; Wingqvist, G.; Birch, J.; Hultman, L.; Abrikosov, I.A. Origin of the Anomalous Piezoelectric Response in Wurtzite ScxAl1−xN Alloys. Phys. Rev. Lett. 2010, 104, 137601. [Google Scholar] [CrossRef] [Green Version]
Sc (%) | Top Electrode (nm) | Piezoelectric Material (nm) | Bottom Electrode (nm) | AlN (AlScN) Density (kg/m3) [22] | Area (μm2) |
---|---|---|---|---|---|
/ | 290 | 835 | 308 | 3260 | 12,860 |
20 | 168 | 575 | 167 | 3317 | 3561 |
30 | 108 | 516 | 98 | 3373 | 1046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zou, Y.; Gao, C.; Gu, X.; Ma, Y.; Liu, Y.; Liu, W.; Soon, J.B.W.; Cai, Y.; Sun, C. Effects of Electric Bias on Different Sc-Doped AlN-Based Film Bulk Acoustic Resonators. Electronics 2022, 11, 2167. https://doi.org/10.3390/electronics11142167
Wang Y, Zou Y, Gao C, Gu X, Ma Y, Liu Y, Liu W, Soon JBW, Cai Y, Sun C. Effects of Electric Bias on Different Sc-Doped AlN-Based Film Bulk Acoustic Resonators. Electronics. 2022; 11(14):2167. https://doi.org/10.3390/electronics11142167
Chicago/Turabian StyleWang, Yaxin, Yang Zou, Chao Gao, Xiyu Gu, Ye Ma, Yan Liu, Wenjuan Liu, Jeffrey Bo Woon Soon, Yao Cai, and Chengliang Sun. 2022. "Effects of Electric Bias on Different Sc-Doped AlN-Based Film Bulk Acoustic Resonators" Electronics 11, no. 14: 2167. https://doi.org/10.3390/electronics11142167
APA StyleWang, Y., Zou, Y., Gao, C., Gu, X., Ma, Y., Liu, Y., Liu, W., Soon, J. B. W., Cai, Y., & Sun, C. (2022). Effects of Electric Bias on Different Sc-Doped AlN-Based Film Bulk Acoustic Resonators. Electronics, 11(14), 2167. https://doi.org/10.3390/electronics11142167