Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Tensile Properties
3.2. Flexural Properties
3.3. Impact Strength
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrão, P.; Amaral, J. Assessing the economics of auto recycling activities in relation to European Union Directive on end of life vehicles. Technol. Forecast. Soc. Chang. 2006, 73, 277–289. [Google Scholar] [CrossRef]
- Akçaözoğlu, S. Evaluation of waste plastics as recycled plastic composite materials. Edorium J. Waste Manag. 2015, 1, 16–19. [Google Scholar] [CrossRef]
- Kengkhetkit, N.; Amornsakchai, T. A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater. Des. 2014, 55, 292–299. [Google Scholar] [CrossRef]
- Leao, A.L.; Fouza, S.F.; Cherian, B.M.; Frollini, E.; Thomas, S.; Pothan, L.A.; Kottaisamy, M. Agro-based biocomposites for industrial applications. Mol. Cryst. Liq. Cryst. 2010, 522, 318–327. [Google Scholar] [CrossRef]
- Uma Devi, L.; Joseph, K.; Munikandan Nair, K.C.; Thomas, S. Ageing studies of pineapple leaf fiber-reinforced polyester composites. J. Appl. Polym. Sci. 2004, 94, 503–510. [Google Scholar] [CrossRef]
- Nega, A.; Worku, A. Composite manufacturing from recycled medical gloves reinforced with jute fiber. J. Text. Sci. Eng. 2018, 8, 369–371. [Google Scholar] [CrossRef]
- Yang, Y.; Ota, T.; Morii, T.; Hamada, H. Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J. Mater. Sci. 2010, 46, 2678–2684. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, M.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr. Build. Mater. 2015, 76, 87–96. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Abdullah, W.N.W.; Leh, C.P. The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potentialpretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 2016, 60, 155–172. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C.; Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 1993, 47, 1731–1739. [Google Scholar] [CrossRef]
- Shibata, M.; Takachiyo, K.I.; Ozawa, K.; Yosomiya, R.; Takeishi, H. Biodegradable polyester composites reinforced with short abaca fiber. J. Appl. Polym. Sci. 2002, 85, 129–138. [Google Scholar] [CrossRef]
- Paul, S.A.; Boudenne, A.; Ibos, L.; Candau, Y.; Joseph, K.; Thomas, S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1582–1588. [Google Scholar] [CrossRef]
- Sapuan, S.; Mohamed, A.; Siregar, J.; Ishak, M. Pineapple Leaf Fibers and PALF-reinforced Polymer Composites. In Cellulose Fibers: Bio-and Nano-Polymer Composites; Kalia, S., Kaith, B., Kaur, I., Eds.; Springer: Berlin, Germany, 2011; pp. 325–343. ISBN 978-3-642-17370-7. [Google Scholar]
- Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 2012, 88, 772–779. [Google Scholar] [CrossRef]
- Piah, M.R.M.; Baharum, A.; Abdullah, I. Mechanical properties of bio-composite natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK). Polym. Polym. Compos. 2016, 24, 767–774. [Google Scholar] [CrossRef]
- Fauzi, F.A.; Ghazalli, A.; Siregar, J.P.; Tezara, C. Investigation of thermal behaviour for natural fibres reinforced epoxy using thermogravimetric and differential scanning calorimetric analysis. MATEC Web Conf. 2016, 78, 1042. [Google Scholar] [CrossRef]
- Hashim, F.; Ismail, H.; Rusli, A. Properties and characterization of ([mengkuang leaf fiber]-filled ethylene vinyl acetate)/(natural rubber) blend: Effects of blending sequences and mengkuang leaf fiber loading. J. Vinyl Addit. Technol. 2018, 24, 109–115. [Google Scholar] [CrossRef]
- Halim, N.A.; Siregar, J.P.; Mathivanan, D.; Bachtiar, D.; Ghazali, Z.; Rejab, M.R.M.; Tezara, C. The performance of mengkuang leaf fiber reinforced low density polyethylene composites. J. Mech. Eng. Sci. 2018, 12, 3645–3655. [Google Scholar] [CrossRef]
- Das, G.; Biswas, S. Physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. IOP Conf. Ser. Mater. Sci. Eng. 2016, 115, 12012. [Google Scholar] [CrossRef]
- Hamizol, M.S.; Megat-Yusoff, P.S.M. Tensile strength of single continuous fiber extracted from mengkuang leaves. J. Teknol. 2015, 76, 101–107. [Google Scholar] [CrossRef]
- Liu, M.; Meyer, A.S.; Fernando, D.; Silva, D.A.S.; Daniel, G.; Thygesen, A. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 724–735. [Google Scholar] [CrossRef]
- Zulkifli, N.I.; Samat, N. Mechanical Properties of Green Recycled Polypropylene Composites: Effect of Maleic Anhydride Grafted Polypropylene (MAPP) Coupling Agent. Adv. Mater. Res. 2013, 812, 187–191. [Google Scholar] [CrossRef]
- Zulkifli, N.I.; Samat, N.; Anuar, H.; Zainuddin, N. Mechanical Properties and failure modes of recycled polypropylene/microcrytalline cellulose composites. Mater. Des. 2015, 69, 114–123. [Google Scholar] [CrossRef]
- Hamdan, M.H.M.; Siregar, J.P.; Bachtiar, D.; Bachtiar, D.; Rejab, M.R.M.; Tezara, C. Mechanical properties of mengkuang leave fiber reinforced low density polyethylene composites. In Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites; Sapuan, S.M., Ismail, H., Zainudin, E.S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 181–196. [Google Scholar]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]






© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, M.Z.; Che Aslan, N.H. Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources 2019, 8, 97. https://doi.org/10.3390/resources8020097
Abdullah MZ, Che Aslan NH. Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources. 2019; 8(2):97. https://doi.org/10.3390/resources8020097
Chicago/Turabian StyleAbdullah, Mohamad Zaki, and Nasrul Haziq Che Aslan. 2019. "Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber" Resources 8, no. 2: 97. https://doi.org/10.3390/resources8020097
APA StyleAbdullah, M. Z., & Che Aslan, N. H. (2019). Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources, 8(2), 97. https://doi.org/10.3390/resources8020097
