Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,751)

Search Parameters:
Keywords = alkaline treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6099 KB  
Article
The Effects of Using Shortwave Infrared Lamp-Drying and Alkali Pretreatment on the Color, Texture, and Volatile Compounds of Gongliao Gelidium amansii Seaweed and Its Jelly Qualities
by Hong-Ting Victor Lin, Shang-Ta Wang, Ling-An Chen and Wen-Chieh Sung
Processes 2026, 14(2), 345; https://doi.org/10.3390/pr14020345 (registering DOI) - 19 Jan 2026
Abstract
This study investigated the effects of alkaline pretreatment and drying methods on the physicochemical properties of Gelidium amansii and the quality of the resulting agar jelly. Seaweeds with or without alkaline pretreatment were subjected to either sun-drying or shortwave infrared (SWIR) lamp-drying for [...] Read more.
This study investigated the effects of alkaline pretreatment and drying methods on the physicochemical properties of Gelidium amansii and the quality of the resulting agar jelly. Seaweeds with or without alkaline pretreatment were subjected to either sun-drying or shortwave infrared (SWIR) lamp-drying for three or seven cycles to evaluate whether SWIR drying could replace conventional sun-drying by reducing drying time and whether alkaline pretreatment could enhance gel hardness. The results showed that both drying methods effectively reduced moisture content, while the alkaline pretreatment significantly increased the ash content, likely due to the removal of water-soluble components. Marked color improvement was observed after seven cycles of sun-drying or following alkaline pretreatment, with the appearance changing from purplish red to bright golden yellow, which is closer to traditional quality expectations. Although SWIR lamp-drying was more energy-efficient, it resulted in limited color improvement. Volatile compound analysis revealed that deviations from the fresh control increased with the number of sun-drying cycles, whereas alkaline pretreatment and infrared-drying induced more pronounced changes in volatile profiles. Among all of the treatments, Gelidium subjected to seven sun-drying cycles produced jellies with the most favorable texture, indicating enhanced agar gel formation through repeated washing and drying. In contrast, the combination of alkaline pretreatment and infrared-drying restricted agar extraction, likely due to tissue hardening and insufficient light intensity, resulting in weak or negligible gel formation. Overall, both the drying method and alkaline pretreatment significantly influenced the Gelidium quality and agar gel properties; despite being labor-intensive, traditional washing and sun-drying processes remain critical for achieving desirable product quality. Full article
Show Figures

Figure 1

25 pages, 2357 KB  
Article
Impact of Extraction Methods of Wine Lees β-Glucan on the Rheological Properties of Low-Fat Yogurt
by Aurica Chirsanova, Alina Boiștean, Ana Chioru, Adriana Dabija and Ionuț Avrămia
Sustainability 2026, 18(2), 989; https://doi.org/10.3390/su18020989 (registering DOI) - 18 Jan 2026
Abstract
Wine lees, a byproduct of winemaking, represent an underutilized source of β-glucans with potential functional applications in food. This study aimed to extract β-glucans using two methods—acid–alkaline treatment and autolysis assisted by ultrasound—and evaluate their effects when incorporated into low-fat stirred yogurt. The [...] Read more.
Wine lees, a byproduct of winemaking, represent an underutilized source of β-glucans with potential functional applications in food. This study aimed to extract β-glucans using two methods—acid–alkaline treatment and autolysis assisted by ultrasound—and evaluate their effects when incorporated into low-fat stirred yogurt. The extracted β-glucans were added at a concentration of 0.3% (w/w), and rheological measurements were conducted over 20 days of storage. All yogurt samples showed shear-thinning behavior, with apparent viscosity decreasing from 105 mPa·s at low shear rates (0.1 s−1) to 103 mPa·s at 100 s−1. Yogurt with β-glucans from autolysis retained higher viscosity and viscoelastic moduli (G′ and G″), indicating better structural integrity. Time-dependent tests showed up to 45% decrease in shear stress over 10 min of continuous shearing in the sample with chemically extracted β-glucans, compared to only 28% for autolysis-derived ones. Oscillatory tests confirmed that all samples behaved as weak gels (G′ > G″). These findings suggest that β-glucans obtained via autolysis can improve the textural stability of yogurt, offering potential for functional dairy development and valorization of wine industry byproducts. Full article
(This article belongs to the Section Sustainable Food)
14 pages, 3162 KB  
Article
Novel Ultrafast Synthesis of Perovskites via Commercial Laser Engraving
by Pedro Piza-Ruiz, Griselda Mendoza-Gómez, Maria Luisa Camacho-Rios, Guillermo Manuel Herrera-Perez, Luis Carlos Rodriguez Pacheco, Kevin Isaac Contreras-Vargas, Daniel Lardizábal-Gutiérrez, Antonio Ramírez-DelaCruz and Caleb Carreno-Gallardo
Processes 2026, 14(2), 327; https://doi.org/10.3390/pr14020327 - 16 Jan 2026
Viewed by 24
Abstract
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves [...] Read more.
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves direct laser irradiation of compacted pellets composed of low-cost, abundant, and non-toxic precursors: TiO2 and alkaline earth carbonates (CaCO3, SrCO3, BaCO3). CaTiO3 and BaTiO3 were synthesized with phase purities exceeding 97%, eliminating the need for conventional high-temperature furnaces or prolonged thermal treatments. X-ray diffraction (XRD) coupled with Rietveld refinement confirmed the formation of orthorhombic CaTiO3 (Pbnm), cubic SrTiO3 (Pm3m), and tetragonal BaTiO3 (P4mm). Raman spectroscopy independently corroborated the perovskite structures, revealing vibrational fingerprints consistent with the expected crystal symmetries and Ti–O bonding environments. All samples contained only small amounts of unreacted anatase TiO2, while BaTiO3 exhibited a partially amorphous fraction, attributed to the sluggish crystallization kinetics of the Ba–Ti system and the rapid quenching inherent to laser processing. Transmission electron microscopy (TEM) revealed nanoparticles with average sizes of 50–150 nm, indicative of localized melting followed by ultrafast solidification. This solvent-free, low-energy, and highly accessible approach, enabled by widely available desktop laser systems, demonstrates exceptional simplicity, scalability, and sustainability. It offers a compelling alternative to conventional ceramic processing, with broad potential for the fabrication of functional oxides in applications ranging from electronics to photocatalysis. Full article
28 pages, 837 KB  
Article
Development of Functional Performance, Bone Mineral Density, and Back Pain Under Specific Pharmacological Osteoporosis Therapy in an Elderly, Multimorbid Cohort
by Aria Sallakhi, Julian Ramin Andresen, Guido Schröder and Hans-Christof Schober
Diagnostics 2026, 16(2), 297; https://doi.org/10.3390/diagnostics16020297 - 16 Jan 2026
Viewed by 28
Abstract
Background/Objectives: Specific pharmacological osteoporosis therapy (SPOT) is regarded as a key intervention to reduce fracture risk and improve musculoskeletal function. Real-life data, particularly regarding functional muscular outcomes and pain trajectories, remain limited. This study aimed to longitudinally analyze bone mineral density, laboratory parameters, [...] Read more.
Background/Objectives: Specific pharmacological osteoporosis therapy (SPOT) is regarded as a key intervention to reduce fracture risk and improve musculoskeletal function. Real-life data, particularly regarding functional muscular outcomes and pain trajectories, remain limited. This study aimed to longitudinally analyze bone mineral density, laboratory parameters, handgrip strength, functional performance, and pain symptoms under guideline-based SPOT. Methods: In this monocentric prospective real-life observational study, 178 patients (80.9% women; median age 82 years) with confirmed osteoporosis were followed for a median of four years. All patients received guideline-recommended antiresorptive or osteoanabolic therapy. Analyses included T-scores, 25(OH)D, calcium, handgrip strength, Chair Rise Test (CRT), tandem stance (TS), pain parameters, alkaline phosphatase (AP), HbA1c, fractures, comorbidities, and body mass index (BMI). Time-dependent changes were evaluated using linear mixed-effects models. Results: Bone mineral density improved highly significantly (ΔT-score ≈ +0.45 SD; p < 0.001), with no differences between therapy groups (antiresorptive vs. osteoanabolic) or BMI categories. Serum 25(OH)D levels increased markedly (Δ ≈ +20 nmol/L; p < 0.001), while calcium levels showed a small but highly significant decrease (Δ ≈ −0.047 mmol/L; p < 0.001), particularly under antiresorptive treatment. Dominant (Δ ≈ −1.95 kg; p < 0.001) and non-dominant handgrip strength (Δ ≈ −0.83 kg; p = 0.046) decreased significantly. In contrast, functional performance improved significantly: CRT time decreased by ~1 s (p = 0.004), and TS time increased by ~1 s (p = 0.007). Back pain decreased highly significantly (Δ ≈ −1.5 NRS; p < 0.001), while pain-free walking time (Δ ≈ +38 min; p = 0.031) and pain-free standing time (Δ ≈ +31 min; p = 0.038) both increased significantly. AP levels decreased significantly (p = 0.003), particularly among normal-weight patients. HbA1c changes were not significant. Overall, 73% of patients had at least one major osteoporotic fracture. Conclusions: In this real-life cohort, guideline-based specific pharmacological osteoporosis therapy was associated with significant improvements in bone mineral density, vitamin D status, functional performance, and pain-related outcomes. Despite a moderate decline in handgrip strength, balance- and mobility-related functional parameters improved, suggesting preserved or even enhanced functional capacity in daily life. These findings provide real-world evidence on the associations between SPOT, laboratory parameters, functional performance, and pain outcomes in a very elderly and multimorbid population. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
20 pages, 2088 KB  
Article
Alkaline Mycoremediation: Penicillium rubens and Aspergillus fumigatus Efficiently Decolorize and Detoxify Key Textile Dye Classes
by Magda A. El-Bendary, Shimaa R. Hamed and Sayeda Abdelrazek Abdelhamid
Sustainability 2026, 18(2), 921; https://doi.org/10.3390/su18020921 - 16 Jan 2026
Viewed by 32
Abstract
Industrial synthetic dyes are among the most common and hazardous pollutants in manufacturing wastewater. In this study, effective dye-decolorizing fungi were isolated from industrial discharge and evaluated for their decolorization efficiency for various dyes, including a triphenylmethane (malachite green, MG), an anthraquinone (reactive [...] Read more.
Industrial synthetic dyes are among the most common and hazardous pollutants in manufacturing wastewater. In this study, effective dye-decolorizing fungi were isolated from industrial discharge and evaluated for their decolorization efficiency for various dyes, including a triphenylmethane (malachite green, MG), an anthraquinone (reactive blue 19, RB19), and an azo dye (reactive black 5, RB5). The fungus with the highest potential for MG decolorization was identified as Penicillium rubens, whereas Aspergillus fumigatus proved to be the most effective for RB19 and RB5 decolorization. Maximum decolorization for all dyes occurred at pH 9 and 30 °C after 6–7 days of shaking in the dark. Enzyme activity assays revealed that both P. rubens and A. fumigatus produced multiple oxidative and reductive enzymes, including laccase, azoreductase, anthraquinone reductase, triphenylmethane reductase, lignin peroxidase, manganese peroxidase, and tyrosinase. The decolorized filtrates of MG, RB19, and RB5 exhibited very low phytotoxicity for RB5 and no phytotoxicity for MG and RB19. Furthermore, these filtrates demonstrated significant reductions in chemical oxygen demand (46%, 63%, and 50%) and biological oxygen demand (37%, 60%, and 40%) for MG, RB19, and RB5, respectively, compared to untreated dyes. Given their efficient biological removal of dyes under alkaline conditions, these fungal isolates are promising candidates for sustainable wastewater treatment. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 3706 KB  
Article
Carbonation of Calcined Clay Dolomite for the Removal of Co(II): Performance and Mechanism
by Can Wang, Jingxian Xu, Tingting Gao, Xiaomei Hong, Fakang Pan, Fuwei Sun, Kai Huang, Dejian Wang, Tianhu Chen and Ping Zhang
J. Xenobiot. 2026, 16(1), 13; https://doi.org/10.3390/jox16010013 - 13 Jan 2026
Viewed by 128
Abstract
The rising levels of Co(II) in aquatic environments present considerable risks, thereby necessitating the development of effective remediation strategies. This study introduces an innovative pre-hydration method for synthesizing carbonated calcined clay dolomite (CCCD) to efficiently remove Co(II) from contaminated water. This pre-hydration treatment [...] Read more.
The rising levels of Co(II) in aquatic environments present considerable risks, thereby necessitating the development of effective remediation strategies. This study introduces an innovative pre-hydration method for synthesizing carbonated calcined clay dolomite (CCCD) to efficiently remove Co(II) from contaminated water. This pre-hydration treatment successfully reduced the complete carbonation temperature of the material from 500 °C to 400 °C, significantly enhancing energy efficiency. The Co(II) removal performance was systematically investigated by varying key parameters such as contact time, initial Co(II) concentration, pH, and solid/liquid ratio. Optimal removal was achieved at 318 K with pH of 4 and a solid/liquid ratio of 0.5 g·L−1. Continuous flow column experiments confirmed the excellent long-term stability of CCCD, maintaining a consistent Co(II) removal efficiency of 99.0% and a stable effluent pH of 8.5 over one month. Isotherm and kinetic models were used to empirically describe concentration-dependent and time-dependent uptake behavior. The equilibrium data were best described by the Langmuir model, while kinetics followed a pseudo-second-order model. An apparent maximum removal capacity of 621.1 mg g−1 was obtained from Langmuir fitting of equilibrium uptake data. Mechanistic insights from Visual MINTEQ calculations and solid phase characterizations (XRD, XPS, and TEM) indicate that Co(II) removal is dominated by mineral water interface precipitation. The gradual hydration of periclase (MgO) forms Mg(OH)2, which creates localized alkaline microenvironments at particle surfaces and drives Co(OH)2 formation. Carbonate availability further favors CoCO3 formation and retention on CCCD. Importantly, this localized precipitation pathway maintains a stable, mildly alkaline effluent pH (around 8.5), reducing downstream pH adjustment demand and improving operational compatibility. Overall, CCCD combines high Co(II) immobilization efficiency, strong long-term stability, and an energy-efficient preparation route, supporting its potential for scalable remediation of Co(II) contaminated water. Full article
Show Figures

Graphical abstract

21 pages, 3874 KB  
Article
Polystyrene Nanoplastic Exposure Causes Reprogramming of Anti-Oxidative Genes Hmox1 and Sod3 by Inhibiting Nuclear Receptor RORγ in the Mouse Liver
by Pingyun Ding, Madesh Muniyappan, Chuyang Zhu, Chenhui Li, Saber Y. Adam, Yu Wang, Thobela Louis Tyasi, Peng Yuan, Ping Hu, Haoyu Liu and Demin Cai
Biology 2026, 15(2), 135; https://doi.org/10.3390/biology15020135 - 13 Jan 2026
Viewed by 153
Abstract
Plastic pollution is acknowledged as a serious problem for ecosystems. Among these plastics, polystyrene nanoplastics (PS-NPs) are emerging environmental pollutants, and their biological effects on hepatotoxicity are the least explored. Therefore, the present work examined the effect of PS-NPs on the hepatic transcription [...] Read more.
Plastic pollution is acknowledged as a serious problem for ecosystems. Among these plastics, polystyrene nanoplastics (PS-NPs) are emerging environmental pollutants, and their biological effects on hepatotoxicity are the least explored. Therefore, the present work examined the effect of PS-NPs on the hepatic transcription of the antioxidant genes Hmox1 and Sod3 in mice (n = 6, treatment (PS-NPs) vs. vehicle group (Veh)), mediated by RORγ and epigenetic modifications. The results show that PS-NP mice had significantly reduced body weight; increased activity of adenosine triphosphate (ATP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH), and Complexes I, III, and V in the liver; and increased Alanine Transaminase (ALT), Aspartate Transaminase (ASP), Alkaline Phosphatase (ALP), malondialdehyde (MDA) and reactive oxygen species (ROS) compared to the Veh group. Furthermore, PS-NPs resulted in considerably lower relative mRNA expression of Hmox1, Sod3, and RORγ in the liver than the Veh group. Likewise, when compared to Veh, PS-NPs significantly reduced the enrichment of RORγ, as well as the occupancies of the key components of the transcriptional activation pathway (P300, SRC1, Pol II, Ser5-Pol II, and Ser2-Pol II) at the loci of Hmox1 and Sod3. In comparison to Veh, PS-NPs showed downregulated occupancies of the histone active marks H3K9ac and H3K18ac, while H3K4me3 and H3K27me3 were higher at the target loci of Hmox1 and Sod3. In conclusion, the present study highlights that PS-NPs induce oxidative stress by modifying Hmox1 and Sod3 in mice’s livers through histone changes and nuclear receptor RORγ modulation. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

25 pages, 5615 KB  
Article
The Difference in the Mechanisms of the TCA Cycle, Organic Acid Metabolism and Secretion of Rapeseed Roots Responding to Saline and Alkaline Stresses
by Chenhao Zhang, Lupeng Sun, Dianjun Chen, Xiaowei Zhu and Fenghua Zhang
Agronomy 2026, 16(2), 189; https://doi.org/10.3390/agronomy16020189 - 13 Jan 2026
Viewed by 215
Abstract
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) [...] Read more.
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) and 40 (HA) mmol/L Na2CO3) treatments were applied to rapeseed. Then, targeted metabolomics was used to quantitatively analyze the changes in organic acid metabolism in the root system. The results showed that compared with the control group without stress (CK), 21, 18, 27, and 20 differentially accumulated organic acid metabolites were detected in the rapeseed roots under LS, HS, LA, and HA, respectively. In addition, 26, 6, 34, and 14 differentially accumulated organic acids were detected in the rapeseed root exudates under LS, HS, LA, and HA, respectively. Based on the activities of key enzymes related to the tricarboxylic acid cycle (TCA), antioxidant enzyme activities, organic acid metabolism, and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis in rapeseed roots, rapeseed mainly resisted saline and alkaline stresses by increasing organic acid synthesis and scavenging reactive oxygen species. Specifically, rapeseed resisted saline stress mainly by increasing the secretion of TCA cycle-related organic acids such as succinic acid, L-malic acid, fumaric acid, and cis-aconitic acid. In addition to secreting organic acids, rapeseed also resisted alkaline stress by increasing the secretion of phenolic acids such as 4-hydroxybenzoic acid, ferulic acid, and 4-coumaric acid. Notably, the number of secreted organic acid types and the increase in organic acid content under alkaline stress were higher than those under saline stress. The results of this study provide an important basis for the breeding of saline and alkaline stress-tolerant rapeseed varieties. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 4106 KB  
Article
Study on Mechanical Properties of Natural Rubber Composites Reinforced with Agave lechuguilla Fibers
by J. A. Maldonado-Torres, E. Rocha-Rangel, C. A. Calles-Arriaga, W. Pech-Rodriguez, J. López-Hernández, U. A. Macías-Castillo, M. C. Kantún-Uicab, A. Jiménez-Rosales, L. F. Martínez-Mosso and J. A. Castillo-Robles
Macromol 2026, 6(1), 4; https://doi.org/10.3390/macromol6010004 - 12 Jan 2026
Viewed by 210
Abstract
Agave lechuguilla fibers exhibit high tensile strength, low density and durability, but their use in natural rubber composites is underexplored. This study investigates alkaline-treated fibers (149–180 µm) as reinforcements for natural latex. Fibers were pretreated with a methanol–acetone mixture, followed by immersion in [...] Read more.
Agave lechuguilla fibers exhibit high tensile strength, low density and durability, but their use in natural rubber composites is underexplored. This study investigates alkaline-treated fibers (149–180 µm) as reinforcements for natural latex. Fibers were pretreated with a methanol–acetone mixture, followed by immersion in 10% NaOH at 70 °C for 1 h, removing lignin and hemicellulose as confirmed by FTIR and SEM. Thermogravimetric analysis showed three weight-loss stages: moisture/volatiles (9.4%), hemicellulose (peak at 341 °C), and cellulose/lignin (peak at 482 °C), with <3% residue above 500 °C. Treated composites exhibited enhanced tensile strength (4.68 ± 1.2 MPa vs. 1.3 ± 0.8 MPa for untreated) and elongation at break (530 ± 51% vs. 452 ± 32%). Hardness increased from 21.8 (neat latex) to 30.3, and compression resistance was improved. Optical microscopy revealed strong fiber–matrix adhesion with uniform dispersion. Alkaline treatment enhances interfacial bonding and mechanical performance, making A. lechuguilla fibers a sustainable reinforcement for eco-friendly composites in automotive, construction, and packaging sectors. Full article
(This article belongs to the Special Issue Advances in Starch and Lignocellulosic-Based Materials)
Show Figures

Figure 1

17 pages, 5806 KB  
Article
Novel TiO2 Nanotube-Based Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Medium
by Bogdan-Ovidiu Taranu, Radu Banica and Florina Stefania Rus
Nanoenergy Adv. 2026, 6(1), 5; https://doi.org/10.3390/nanoenergyadv6010005 - 12 Jan 2026
Viewed by 101
Abstract
The increasing global energy demand and its negative environmental impact created the need for substantial changes in the energy infrastructure. A hydrogen-based infrastructure appears to be the most promising way to secure a clean and safe energy future. Water electrolysis is a method [...] Read more.
The increasing global energy demand and its negative environmental impact created the need for substantial changes in the energy infrastructure. A hydrogen-based infrastructure appears to be the most promising way to secure a clean and safe energy future. Water electrolysis is a method that can be used to generate green hydrogen, but suitable electrocatalysts are required for large-scale applications. This work investigates the electrocatalytic activity of electrodes modified with novel TiO2 nanotube-based electrocatalysts for water electrolysis. The focus was on the hydrogen evolution reaction (HER), and the electrodes that displayed the highest activity were the ones obtained with the procedure consisting of the growth of TiO2 nanotubes on a Ti plate by anodization, the subsequent deposition of MoO2 and Ni(OH)2, and a thermal treatment performed under different conditions. The results of the HER experiments performed in a strong alkaline environment showed that the electrode obtained via vacuum heat treatment exhibited the lowest overpotential value, of 238 mV at i = −10 mA/cm2. Furthermore, the electrode was electrochemically stable, and inter-electrode reproducibility tests revealed only a small variation of the HER overpotential. Full article
Show Figures

Figure 1

21 pages, 2856 KB  
Article
Influence of pH and Heat Treatment on the Physicochemical, Interfacial, and Emulsifying Properties of Hemp Seed Protein Dispersions
by Davide Odelli, Lingxin You, Jennyfer Fortuin, Jérôme Bour, Marcus Iken, Axel Archaimbault and Christos Soukoulis
Foods 2026, 15(2), 257; https://doi.org/10.3390/foods15020257 - 10 Jan 2026
Viewed by 165
Abstract
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions [...] Read more.
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions were evaluated. HPI dispersions at pH 10 exhibited the highest water solubility (60%), the greatest net charge (−27 mV), and the lowest hydrophobicity (~5 a.u.), promoting o/w interfacial pressure (π) and interfacial viscoelasticity. Strong interfacial viscoelastic protein layers (E* = 25 mN/m) were also observed under acidic conditions (pH 2), where proteins exhibited high solubility (40%), a high positive net charge (21 mV), and increased hydrophobicity (46 a.u.). HPI dispersions in their neutral state (pH 7) were not able to form stable o/w emulsions due to their poor physicochemical properties such as low solubility (18%), low surface charge (−18 mV), and hydrophobicity (~5 a.u.). Heat treatment significantly increased the charge and hydrophobicity of both neutral and alkaline proteins (~30 mV and ~10 a.u., respectively), increasing their particle size distribution and ultimately reducing their interfacial protein layer elasticity (E* = 20 and 13 nM/m, respectively). While particles at acidic conditions showed high thermal resistance, heat treatment improved the emulsifying stability in alkaline conditions while further reducing it in the neutral state. Overall, HPI dispersions demonstrated the ability to form stable emulsions at both alkaline and acid pHs, with those formed at pH 2 exhibiting a lower droplet size and superior stability. Full article
(This article belongs to the Special Issue Research Trends in Plant-Based Foods)
Show Figures

Figure 1

22 pages, 3798 KB  
Article
Deciphering Phosphorus Recovery from Wastewater via Machine Learning: Comparative Insights Among Al3+, Fe3+ and Ca2+ Systems
by Yanyu Liu and Baichuan Jiang
Water 2026, 18(2), 182; https://doi.org/10.3390/w18020182 - 9 Jan 2026
Viewed by 179
Abstract
Efficient phosphorus recovery is of great significance for sustainable wastewater management and resource recycling. While chemical precipitation is widely used, its effectiveness under complex multi-factor conditions remains challenging to predict and optimize. This study compiled a multidimensional dataset from recent experimental literature, encompassing [...] Read more.
Efficient phosphorus recovery is of great significance for sustainable wastewater management and resource recycling. While chemical precipitation is widely used, its effectiveness under complex multi-factor conditions remains challenging to predict and optimize. This study compiled a multidimensional dataset from recent experimental literature, encompassing key operational parameters (reaction time, temperature, pH, stirring speed) and dosages of three metal precipitants (Al3+, Ca2+, Fe3+) to systematically evaluate and benchmark phosphorus recovery performance across these distinct systems, six machine learning algorithms—Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Gaussian Process Regression (GPR), Elastic Net, Artificial Neural Network (ANN), and Partial Least Squares Regression (PLSR)—were developed and cross-validated. Among them, the GPR model exhibited superior predictive accuracy and robustness. (R2 = 0.69, RMSE = 0.54). Beyond achieving high-fidelity predictions, this study advances the field by integrating interpretability analysis with Shapley Additive Explanations (SHAP) and Partial Dependence Plots (PDP). These analyses identified distinct controlling factors across systems: reaction time and pH for aluminum, Ca2+ dosage and alkalinity for calcium, and phosphorus loading with stirring speed for iron. The revealed factor-specific mechanisms and synergistic interactions (e.g., among pH, metal dose, and mixing intensity) provide actionable insights that transcend black-box prediction. This work presents an interpretable Machine Learning (ML) framework that offers both theoretical insights and practical guidance for optimizing phosphorus recovery in multi-metal systems and enabling precise control in wastewater treatment operations. Full article
Show Figures

Figure 1

12 pages, 1129 KB  
Article
Development of a High-Hydrostatic-Pressure-Treated Recombinant Vaccine Targeting the Major Capsid Protein of Red Sea Bream Iridovirus
by Yuta Sawasaki, Shogo Harakawa, Shin-Ichi Kitamura, Naomi Terawaki, Zhangliang Zhu, Kohdai Yamada, Hinako Fujisaki, Suzuno Hirano, Mana Hamada, Takuya Miyakawa, Tomomasa Matsuyama, Yuta Matsuura, Tatsuhiko Ozawa, Tomokazu Itano, Tatsuya Sawasaki and Akira Nozawa
Int. J. Mol. Sci. 2026, 27(2), 675; https://doi.org/10.3390/ijms27020675 - 9 Jan 2026
Viewed by 101
Abstract
Red sea bream (Pagrus major) aquaculture represents one of the most economically important marine aquaculture industries in Japan and East Asia. However, viral diseases, particularly those caused by red sea bream iridovirus (RSIV), pose a serious threat to aquaculture production in [...] Read more.
Red sea bream (Pagrus major) aquaculture represents one of the most economically important marine aquaculture industries in Japan and East Asia. However, viral diseases, particularly those caused by red sea bream iridovirus (RSIV), pose a serious threat to aquaculture production in this region. In this study, we applied high-hydrostatic-pressure (HHP) refolding technology to develop a recombinant vaccine targeting the RSIV major capsid protein (MCP). The recombinant MCP (RSIV-rMCP) expressed in Escherichia coli was insoluble; however, HHP treatment under alkaline (pH 10) conditions in the presence of arginine successfully solubilised the protein while preserving its structural integrity. The solubilised protein (HHP–RSIV-rMCP) induced strong RSIV-specific IgM responses and enhanced disease resistance in red sea bream. In contrast, sera from fish immunised with a commercial formalin-inactivated vaccine exhibited minimal reactivity to HHP–RSIV-rMCP but reacted significantly to formalin-treated HHP–RSIV-rMCP. These results indicate that the HHP–RSIV-rMCP vaccine induces conformation-specific IgM antibodies and that structural preservation is crucial for maintaining antigenicity. Collectively, our findings demonstrate that HHP refolding technology is an effective strategy for preparing structurally preserved antigens. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

20 pages, 3327 KB  
Article
Three-Dimensional Electrolysis Reactor Using Automotive Scrap Metals for the Treatment of Water-Soluble Cutting Fluid Solution
by Go-eun Kim, Seong-ho Jang, Hyung-kyu Lee, Ho-min Kim, Young-chae Song, Won-ki Lee and Han-seok Kim
Eng 2026, 7(1), 34; https://doi.org/10.3390/eng7010034 - 9 Jan 2026
Viewed by 116
Abstract
This study investigated the efficacy of electrochemical treatment of a water-soluble cutting fluid (SCF) solution using Al, Fe, and stainless steel (SUS304) scraps as three-dimensional (3D) electrode packing materials. The SCF solution had an initial CODCr of approximately 109,000 mg·L−1, [...] Read more.
This study investigated the efficacy of electrochemical treatment of a water-soluble cutting fluid (SCF) solution using Al, Fe, and stainless steel (SUS304) scraps as three-dimensional (3D) electrode packing materials. The SCF solution had an initial CODCr of approximately 109,000 mg·L−1, a TOC of approximately 25,000 mg·L−1, and an initial pH of 9.65. During treatment, the pH remained in the alkaline range (9.99–10.67), and the solution conductivity was approximately 1000 μS·cm−1. Using a conventional two-dimensional (2D) configuration, Al exhibited the highest removal efficiencies (TOC: 58.55%; CODCr: 57.12%). An applied current of 0.8 A, corresponding to a current density of 5.00 mA·cm−2 based on the geometric electrode area, and an inter-electrode distance of 40 mm provided an optimal balance between treatment performance and energy consumption. Under these optimized conditions, the introduction of metal scraps as 3D packing media significantly enhanced treatment efficiency. Al scrap (20 g) achieved the highest TOC removal (69.55%), while Fe scrap showed superior CODCr removal (87.42% at 40 g) with the lowest specific energy consumption (0.27 kWh·kg−1 CODremoved). The energy consumption of the baseline D system was 0.46 kWh·kg−1 CODremoved(cage O) and 0.72 kWh·kg−1 CODremoved(cage X). Overall, scrap-based 3D electrodes effectively improved organic removal and energy performance, demonstrating their potential as low-cost and sustainable electrode materials for the electrochemical pre-treatment of high-strength oily wastewater. Full article
Show Figures

Figure 1

13 pages, 5141 KB  
Article
Chemical Composition and Antifungal Activity of Artemisia sieversiana Essential Oil Growing in Jilin Against Black Spot on Yanbian Pingguoli Pear in China
by Rong Zhang, Ti-Yan Zheng and Yu Fu
Plants 2026, 15(2), 207; https://doi.org/10.3390/plants15020207 - 9 Jan 2026
Viewed by 235
Abstract
Black spot disease substantially impairs both the aesthetic quality and commercial viability of affected Pingguoli pears. Previous studies have shown that Alternaria alternata and A. tenuissima are the pathogens that cause black spot disease. Essential oils represent novel alternatives to synthetic fungicides to [...] Read more.
Black spot disease substantially impairs both the aesthetic quality and commercial viability of affected Pingguoli pears. Previous studies have shown that Alternaria alternata and A. tenuissima are the pathogens that cause black spot disease. Essential oils represent novel alternatives to synthetic fungicides to control these pathogens. This study extracted Artemisia sieversiana essential oil (AsEO) by hydro-distillation using a crystal tower pure dew essential oil machine. The chemical compositions of AsEO were analyzed via gas chromatography–mass spectrometry (GC–MS). A total of 42 compounds were detected. 1,8-cineole, trans-caryophyllene, (1R,4S)-1,7,7-trimethylbicyclo [2.2.1] heptan-2-yl acetate, (±)-camphor, and β-myrcene were identified as the five main constituents. Moreover, the antifungal activity of AsEO was assessed against black spot on Yanbian Pingguoli pear in China. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were determined as 0.10% (v/v) and 0.12% (v/v), respectively. Scanning electron microscopy (SEM) analysis revealed that treatment with AsEO induced significant morphological aberrations in A. alternata and A. tenuissima mycelia, including surface roughening, hyphal collapse, and loss of structural integrity. Concurrently, a marked increase in alkaline phosphatase (AKP) enzyme activity and electrical conductivity was observed, a key indicator of cell wall and plasma membrane permeabilization and damage. When the concentration of AsEO was less than 120 µg/mL, there was no toxicity to keratinocytes (HaCaTs) and skin fibroblasts (NHSFs). In summary, this study provides a theoretical basis for the development of AsEO as a fungicide against black spot disease on Pingguoli pear in China. Full article
(This article belongs to the Special Issue Natural Compounds for Controlling Plant Pathogens)
Show Figures

Figure 1

Back to TopTop