# Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Statement

## 3. Methods

#### 3.1. The Pearson Distribution Family

#### 3.2. The Metalog Distribution Family

#### 3.3. Comparison of the Distributions

#### 3.4. Goodness-of-Fit Statistics

#### 3.5. WID Maximum Critical Path Delay Distribution

## 4. Simulations and Results

#### 4.1. Origins of the Data

- Dataset 1 (DS 1) = Hold SS 0.51 V ${\mathrm{RC}}_{\mathrm{worst}}$;
- Dataset 2 (DS 2) = ${\mathrm{Setup}}_{\mathrm{win}}$ SS 0.51 V ${\mathrm{RC}}_{\mathrm{worst}}$;
- Dataset 3 (DS 3) = ${\mathrm{Setup}}_{\mathrm{critical}\phantom{\rule{4.pt}{0ex}}\mathrm{path}}$ SS 0.51 V ${\mathrm{RC}}_{\mathrm{worst}}$.

#### 4.2. Goodness-of-Fit Statistics of the Data

#### 4.3. Singular Path Delay Confidence Intervals

#### 4.4. Multiple Critical Path Delay Distributions

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. The Pearson Type IV Distribution

## References

- Turnquist, M.; Hiienkari, M.; Mäkipää, J.; Jevtic, R.; Pohjalainen, E.; Kallio, T.; Koskinen, L. Fully integrated DC-DC converter and a 0.4 V 32-bit CPU with timing-error prevention supplied from a prototype 1.55 V Li-ion battery. In Proceedings of the 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 17–19 June 2015; pp. C320–C321. [Google Scholar]
- Koskinen, L.; Hiienkari, M.; Mäkipää, J.; Turnquist, M. Implementing minimum-energy-point systems with adaptive logic. IEEE Trans. Very Large Scale Integr. VLSI Syst.
**2015**, 24, 1247–1256. [Google Scholar] [CrossRef] [Green Version] - Bowman, K.A.; Duvall, S.G.; Meindl, J.D. Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid-State Circuits
**2002**, 37, 183–190. [Google Scholar] [CrossRef] - Rithe, R.; Chou, S.; Gu, J.; Wang, A.; Datla, S.; Gammie, G.; Buss, D.; Chandrakasan, A. The effect of random dopant fluctuations on logic timing at low voltage. IEEE Trans. Very Large Scale Integr. VLSI Syst.
**2011**, 20, 911–924. [Google Scholar] [CrossRef] - Hand, D.; Huang, H.H.; Cheng, B.; Zhang, Y.; Moreira, M.T.; Breuer, M.; Calazans, N.L.V.; Beerel, P.A. Performance optimization and analysis of Blade designs under delay variability. In Proceedings of the 2015 21st IEEE International Symposium on Asynchronous Circuits and Systems, Mountain View, CA, USA, 4–6 May 2015; pp. 61–68. [Google Scholar]
- Salvador, R.; Sanchez, A.; Fan, X.; Gemmeke, T. A Cortex-M3 based MCU featuring AVS with 34 nW static power, 15.3 pJ/inst. active energy, and 16% power variation across process and temperature. In Proceedings of the ESSCIRC 2018—IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 18 October 2018; pp. 278–281. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: New York, NY, USA, 1994. [Google Scholar]
- Pearson, K. Contributions to the mathematical theory of evolution, II. Skew variation in homogeneous material. Philos. Trans. R. Soc. A
**1895**, 186, 343–414. [Google Scholar] - Pearson, K. Mathematical contributions to the theory of evolution, X. Supplement to a memoir on skew variation. Philos. Trans. R. Soc. A
**1901**, 197, 443–459. [Google Scholar] - Pearson, K. Mathematical contributions to the theory of evolution, XIX. Second supplement to a memoir on skew variation. Philos. Trans. R. Soc. A
**1916**, 216, 429–457. [Google Scholar] - Lahcene, B. On Pearson families of distributions and its applications. Afr. J. Math. Comput. Sci. Res.
**2013**, 6, 108–117. [Google Scholar] - Keelin, T.W.; Powley, B.W. Quantile-parameterized distributions. Decis. Anal.
**2011**, 8, 206–219. [Google Scholar] [CrossRef] - Keelin, T.W. The metalog distributions. Decis. Anal.
**2016**, 13, 243–277. [Google Scholar] [CrossRef] - Reinhardt, J.C.; Chen, X.; Liu, W.; Manchev, P.; Paté-Cornell, M.E. Asteroid risk assessment: A probabilistic approach. Risk Anal.
**2016**, 36, 244–261. [Google Scholar] [CrossRef] [PubMed] - Wang, J.; Neil, M.; Fenton, N. A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Comput. Secur.
**2020**, 89, 101659. [Google Scholar] [CrossRef] - Kolmogorov, A.N. Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari. Giorn.
**1933**, 4, 83–91. [Google Scholar] - Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat.
**1948**, 19, 279–281. [Google Scholar] [CrossRef] - Cramér, H. On the composition of elementary errors. Scand. Actuar. J.
**1928**, 1928, 13–74. [Google Scholar] [CrossRef] - von Mises, R.E. Wahrscheinlichkeit Statistik und Wahrheit; Springer: Berlin, Germany, 1928. [Google Scholar]
- Anderson, T.W. On the distribution of the two-sample Cramér-von Mises criterion. Ann. Math. Stat.
**1962**, 33, 1148–1159. [Google Scholar] [CrossRef] - Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat.
**1952**, 23, 193–212. [Google Scholar] [CrossRef] - Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Am. Stat. Assoc.
**1954**, 49, 765–769. [Google Scholar] [CrossRef] - Hiienkari, M.; Gupta, N.; Teittinen, J.; Simonsson, J.; Turnquist, M.; Eriksson, J.; Anttila, R.; Myllynen, O.; Rämäkkö, H.; Mäkikyrö, S.; et al. A 0.4–0.9 V, 2.87 pJ/cycle near-threshold ARM Cortex-M3 CPU with in situ monitoring and adaptive-logic scan. In Proceedings of the 2020 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), Kokubunji, Japan, 15–17 April 2020; pp. 1–3. [Google Scholar]
- Morán-Vásquez, R.A.; Ferrari, S.L.P. Box–Cox elliptical distributions with application. Metrika
**2019**, 82, 547–571. [Google Scholar] [CrossRef] [Green Version] - Mazucheli, J.; Alves, B.; Menezes, A.F.B.; Leiva, V. An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data. Comput. Methods Programs Biomed.
**2022**, 221, 106816. [Google Scholar] [CrossRef] [PubMed] - Nagahara, Y. The PDF and CF of Pearson type IV distributions and the ML estimation of the parameters. Stat. Probab. Lett.
**1999**, 43, 251–264. [Google Scholar] [CrossRef]

**Figure 1.**Probability distributions fitted to simulated path delay data and their respective $(1-p)$-quantiles.

**Figure 2.**Histogram of the normalized average path delays of $5\times {10}^{4}$ setup paths from STA.

**Figure 3.**Heat map of the path correlation of ${10}^{4}$ setup paths from STA showing large sparsity and therefore small correlation between the paths.

**Figure 4.**Maximum critical path delay densities for different values of N in DS 3, when each path has one of the three distributions. (

**a**) Normal distribution. (

**b**) Pearson type IV distribution. (

**c**) Six-term metalog distribution.

KS | CM | AD | ||

Normal | 0.039 | 0.585 | 4.395 | |

DS 1 | Pearson IV | 0.027 | 0.096 | 0.586 |

Metalog 6 | 0.020 | 0.055 | 0.460 | |

Normal | 0.061 | 0.992 | 6.016 | |

DS 2 | Pearson IV | 0.016 | 0.028 | 0.198 |

Metalog 6 | 0.011 | 0.014 | 0.102 | |

Normal | 0.022 | 0.107 | 0.918 | |

DS 3 | Pearson IV | 0.017 | 0.051 | 0.370 |

Metalog 6 | 0.016 | 0.025 | 0.211 |

**Table 2.**99.7% confidence intervals of the $(1-p)$-quantiles (p-quantiles) for DS 2–3 (DS 1), in nanoseconds.

$p=1.35\times {10}^{-3}$ | $p=3.17\times {10}^{-5}$ | ||

Normal | (5.77, 6.06) | (5.04, 5.43) | |

DS 1 | Pearson IV | (6.02, 6.52) | (5.04, 6.23) |

Metalog 6 | (5.90, 6.61) | (4.71, 6.36) | |

Normal | (77.16, 79.48) | (81.07, 84.01) | |

DS 2 | Pearson IV | (80.48, 89.28) | (87.63, 115.41) |

Metalog 6 | (78.62, 85.13) | (82.96, 96.79) | |

Normal | (91.85, 93.57) | (94.91, 97.13) | |

DS 3 | Pearson IV | (92.37, 97.15) | (95.82, 107.94) |

Metalog 6 | (92.43, 98.09) | (96.12, 108.12) |

**Table 3.**The maximum (minimum) path delays of $N={10}^{2}$-independent critical paths corresponding to the $(1-p)$-quantile (p-quantile) for DS 2–3 (DS 1), in nanoseconds.

$p=1.35\times {10}^{-3}$ | $p=3.17\times {10}^{-5}$ | ||

Normal | 8.98 | 8.82 | |

DS 1 | Pearson IV | 9.04 | 8.83 |

Metalog 6 | 9.00 | 8.81 | |

Normal | 83.41 | 86.72 | |

DS 2 | Pearson IV | 100.77 | 118.30 |

Metalog 6 | 92.60 | 101.04 | |

Normal | 96.65 | 99.24 | |

DS 3 | Pearson IV | 101.99 | 108.37 |

Metalog 6 | 103.28 | 109.87 |

**Table 4.**The maximum (minimum) path delays of $N={10}^{3}$-independent critical paths corresponding to the $(1-p)$-quantile (p-quantile) for DS 2–3 (DS 1), in nanoseconds.

$p=1.35\times {10}^{-3}$ | $p=3.17\times {10}^{-5}$ | ||

Normal | 9.63 | 9.52 | |

DS 1 | Pearson IV | 10.04 | 9.85 |

Metalog 6 | 9.97 | 9.78 | |

Normal | 85.50 | 88.53 | |

DS 2 | Pearson IV | 111.00 | 131.49 |

Metalog 6 | 97.78 | 106.17 | |

Normal | 98.29 | 100.65 | |

DS 3 | Pearson IV | 105.84 | 112.60 |

Metalog 6 | 107.32 | 113.87 |

**Table 5.**The maximum (minimum) path delays of $N={10}^{4}$-independent critical paths corresponding to the $(1-p)$-quantile (p-quantile) for DS 2–3 (DS 1), in nanoseconds.

$p=1.35\times {10}^{-3}$ | $p=3.17\times {10}^{-5}$ | ||

Normal | 10.12 | 10.03 | |

DS 1 | Pearson IV | 11.05 | 10.85 |

Metalog 6 | 10.91 | 10.73 | |

Normal | 87.40 | 90.21 | |

DS 2 | Pearson IV | 122.94 | 147.00 |

Metalog 6 | 102.96 | 110.87 | |

Normal | 99.77 | 101.96 | |

DS 3 | Pearson IV | 109.90 | 117.11 |

Metalog 6 | 111.36 | 117.55 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Runolinna, M.; Turnquist, M.; Teittinen, J.; Ilmonen, P.; Koskinen, L.
Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions. *J. Low Power Electron. Appl.* **2023**, *13*, 22.
https://doi.org/10.3390/jlpea13010022

**AMA Style**

Runolinna M, Turnquist M, Teittinen J, Ilmonen P, Koskinen L.
Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions. *Journal of Low Power Electronics and Applications*. 2023; 13(1):22.
https://doi.org/10.3390/jlpea13010022

**Chicago/Turabian Style**

Runolinna, Miikka, Matthew Turnquist, Jukka Teittinen, Pauliina Ilmonen, and Lauri Koskinen.
2023. "Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions" *Journal of Low Power Electronics and Applications* 13, no. 1: 22.
https://doi.org/10.3390/jlpea13010022