Cockle Population Dynamics in a Complex Ecological Aquatic System
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Area and Sampling Strategy
2.2. Environmental Characterisation
2.3. Data Analysis
2.3.1. Cockle Density Distribution According to Environmental Variables
2.3.2. Descriptive Analysis of Cockle Population Dynamics
3. Results
3.1. Environmental Characterisation
3.2. Population Dynamics
3.2.1. Cockle Density Distribution According to Environmental Variables
3.2.2. Cohort Analysis
3.2.3. Growth
3.2.4. Recruitment, Mortality, Stock Size and Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahony, K.E.; Lynch, S.A.; Egerton, S.; Cabral, S.; de Montaudouin, X.; Fitch, A.; Magalhães, L.; Rocroy, M.; Culloty, S.C. Mobilisation of Data to Stakeholder Communities. Bridging the Research-Practice Gap Using a Commercial Shellfish Species Model. PLoS ONE 2020, 15, e0238446. [Google Scholar] [CrossRef] [PubMed]
- Braga, H.O.; Azeiteiro, U.M.; Magalhães, L. A Case Study of Local Ecological Knowledge of Shellfishers about Edible Cockle (Cerastoderma edule) in the Ria de Aveiro Lagoon, Western Iberia. J. Ethnobiol. Ethnomed. 2022, 18, 11. [Google Scholar] [CrossRef]
- Maia, F.; Barroso, C.M.; Gaspar, M.B. Biology of the Common Cockle Cerastoderma edule (Linnaeus, 1758) in Ria de Aveiro (NW Portugal): Implications for Fisheries Management. J. Sea. Res. 2021, 171, 102024. [Google Scholar] [CrossRef]
- Callaway, R. 50 Years of Estuarine Cockles (Cerastoderma edule L.): Shifting Cohorts, Dwindling Sizes and the Impact of Improved Wastewater Treatment. Estuar. Coast. Shelf Sci. 2022, 270, 107834. [Google Scholar] [CrossRef]
- FAO. FishStatJ—Software for Fishery and Aquaculture Statistical Time Series. In FAO Fisheries and Aquaculture Division [Online]; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/fishery/en/statistics/software/FishStatJ (accessed on 20 September 2025).
- INE Fisheries Statistics Reports; INE—Instituto Nacional de Estatística: Lisboa, Portugal, 2023. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=439542305&PUBLICACOESmodo=2 (accessed on 22 December 2023).
- Lillebø, A.I.; Teixeira, H.; Morgado, M.; Martínez-López, J.; Marhubi, A.; Delacámara, G.; Strosser, P.; Nogueira, A.J.A. Ecosystem-Based Management Planning across Aquatic Realms at the Ria de Aveiro Natura 2000 Territory. Sci. Total Environ. 2019, 650, 1898–1912. [Google Scholar] [CrossRef]
- Ashja Ardalan, A.; Correia, S.; Soares, A.M.V.M.; Freitas, R.; Magalhães, L. Effects of Cockle Density and Environmental Background in the Structure of Free-Living and Parasitic Communities. Estuar. Coast. Shelf Sci. 2023, 283, 108251. [Google Scholar] [CrossRef]
- Rakotomalala, C.; Grangeré, K.; Ubertini, M.; Forêt, M.; Orvain, F. Modelling the Effect of Cerastoderma edule Bioturbation on Microphytobenthos Resuspension towards the Planktonic Food Web of Estuarine Ecosystem. Ecol. Modell. 2015, 316, 155–167. [Google Scholar] [CrossRef]
- Horn, S.; de la Vega, C.; Asmus, R.; Schwemmer, P.; Enners, L.; Garthe, S.; Haslob, H.; Binder, K.; Asmus, H. Impact of Birds on Intertidal Food Webs Assessed with Ecological Network Analysis. Estuar. Coast. Shelf Sci. 2019, 219, 107–119. [Google Scholar] [CrossRef]
- Carss, D.N.; Brito, A.C.; Chainho, P.; Ciutat, A.; de Montaudouin, X.; Fernández Otero, R.M.; Filgueira, M.I.; Garbutt, A.; Goedknegt, M.A.; Lynch, S.A.; et al. Ecosystem Services Provided by a Non-Cultured Shellfish Species: The Common Cockle Cerastoderma edule. Mar. Environ. Res. 2020, 158, 104931. [Google Scholar] [CrossRef]
- Ciutat, A.; Widdows, J.; Readman, J.W. Influence of Cockle Cerastoderma edule Bioturbation and Tidal-Current Cycles on Resuspension of Sediment and Polycyclic Aromatic Hydrocarbons. Mar. Ecol. Prog. Ser. 2006, 328, 51–64. [Google Scholar] [CrossRef]
- Cozzoli, F.; Shokri, M.; Gomes da Conceição, T.; Herman, P.M.J.; Hu, Z.; Soissons, L.M.; Van Dalen, J.; Ysebaert, T.; Bouma, T.J. Modelling Spatial and Temporal Patterns in Bioturbator Effects on Sediment Resuspension: A Biophysical Metabolic Approach. Sci. Total Environ. 2021, 792, 148215. [Google Scholar] [CrossRef]
- Ricardo, F.; Génio, L.; Costa Leal, M.; Albuquerque, R.; Queiroga, H.; Rosa, R.; Calado, R. Trace Element Fingerprinting of Cockle (Cerastoderma edule) Shells Can Reveal Harvesting Location in Adjacent Areas. Sci. Rep. 2015, 5, srep11932. [Google Scholar] [CrossRef]
- Gonçalves, A.M.M.; Mesquita, A.F.; Verdelhos, T.; Coutinho, J.A.P.; Marques, J.C.; Gonçalves, F. Fatty Acids’ Profiles as Indicators of Stress Induced by of a Common Herbicide on Two Marine Bivalves Species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (Da Costa, 1778). Ecol. Indic. 2016, 63, 209–218. [Google Scholar] [CrossRef]
- Richard, A.; Orvain, F.; Dairain, A.; Morelle, J.; Romero-Ramirez, A.; Rodolfo-Damiano, T.; de Montaudouin, X.; Maire, O. Influence of Cockle Bioturbation on Microphytobenthic Primary Producers: Habitat and Density-Dependent Effects. Mar. Biol. 2025, 172, 70. [Google Scholar] [CrossRef]
- Clara, I.; Dyack, B.; Rolfe, J.; Newton, A.; Borg, D.; Povilanskas, R.; Brito, A.C. The Value of Coastal Lagoons: Case Study of Recreation at the Ria de Aveiro, Portugal in Comparison to the Coorong, Australia. J. Nat. Conserv. 2018, 43, 190–200. [Google Scholar] [CrossRef]
- Sousa, A.I.; Santos, D.B.; da Silva, E.F.; Sousa, L.P.; Cleary, D.F.R.; Soares, A.M.V.M.; Lillebø, A.I. “Blue Carbon” and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal). Sci. Rep. 2017, 7, srep41225. [Google Scholar] [CrossRef]
- Sousa, L.P.; Alves, F.L. A Model to Integrate Ecosystem Services into Spatial Planning: Ria de Aveiro Coastal Lagoon Study. Ocean Coast. Manag. 2020, 195, 105280. [Google Scholar] [CrossRef]
- European Commission Regulation (EC). Regulation (EC) No 178/2002 of the European Parliament and of the Council. Off. J. Eur. Union L 2009, 342, 59. [Google Scholar]
- de Montaudouin, X.; Arzul, I.; Cao, A.; Carballal, M.J.; Chollet, B.; Correia, S.; Cuesta, J.; Culloty, S.; Daffe, G.; Darriba, S.; et al. Parasites and Diseases of The Common Cockle Cerastoderma edule COCKLES Project Title: Catalogue of Parasites and Diseases of the Common Cockle Cerastoderma edule DESIGN: Anabela Marques. 2021. Available online: https://ria.ua.pt/handle/10773/30732 (accessed on 22 December 2023).
- Darriba, S.; Iglesias, D.; Carballal, M.J. Marteilia cochillia Is Released into Seawater via Cockle Cerastoderma edule Faeces. J. Invertebr. Pathol. 2020, 172, 107364. [Google Scholar] [CrossRef] [PubMed]
- Thieltges, D.W. Parasite Induced Summer Mortality in the Cockle Cerastoderma edule by the Trematode Gymnophallus choledochus. Hydrobiologia 2006, 559, 455–461. [Google Scholar] [CrossRef]
- Concepcion, R.; Guillermo, M.; Tanner, S.E.; Fonseca, V.; Duarte, B. BivalveNet: A Hybrid Deep Neural Network for Common Cockle (Cerastoderma edule) Geographical Traceability Based on Shell Image Analysis. Ecol. Inform. 2023, 78, 102344. [Google Scholar] [CrossRef]
- Ricardo, F.; Pimentel, T.; Génio, L.; Calado, R. Spatio-Temporal Variability of Trace Elements Fingerprints in Cockle (Cerastoderma edule) Shells and Its Relevance for Tracing Geographic Origin. Sci. Rep. 2017, 7, 3475. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Ricardo, F.; Domingues, M.R.M.; Patinha, C.; Calado, R. Current Trends in the Traceability of Geographic Origin and Detection of Species-Mislabeling in Marine Bivalves. Food Control 2023, 152, 109840. [Google Scholar] [CrossRef]
- Heres, P.; Troncoso, J.; Paredes, E. Exploring the Feasibility of Cryopreserving Larvae of the Common Cockle (Cerastoderma edule) for Hatchery Production. Cryobiology 2023, 113, 104582. [Google Scholar] [CrossRef] [PubMed]
- Bruzos, A.L.; Santamarina, M.; García-Souto, D.; Díaz, S.; Rocha, S.; Zamora, J.; Lee, Y.; Viña-Feás, A.; Quail, M.A.; Otero, I.; et al. Somatic Evolution of Marine Transmissible Leukemias in the Common Cockle, Cerastoderma edule. Nat. Cancer 2023, 4, 1575–1591. [Google Scholar] [CrossRef]
- Villalba, A.; Coimbra, R.M.; Pampín, M.; Iglesias, D.; Costas, D.; Mariño, C.; Blanco, A.; Vera, M.; Domínguez, M.; Cacabelos, E.; et al. A Common Garden Experiment Supports a Genetic Component Underlying the Increased Resilience of Common Cockle (Cerastoderma edule) to the Parasite Marteilia cochillia. Evol. Appl. 2023, 16, 1789–1804. [Google Scholar] [CrossRef]
- Matos, F.L.; Vaz, N.; Picado, A.; Dias, J.M.; Maia, F.; Gaspar, M.B.; Magalhães, L. Assessment of Habitat Suitability for Common Cockles in the Ria the Aveiro Lagoon Under Average and Projected Environmental Conditions. Estuaries Coasts 2023, 46, 512–525. [Google Scholar] [CrossRef]
- Braga, H.O.; Azeiteiro, U.M.; Schiavetti, A.; Magalhães, L. Checking the Changes over Time and the Impacts of COVID-19 on Cockle (Cerastoderma edule) Small-Scale Fisheries in Ria de Aveiro Coastal Lagoon, Portugal. Mar. Policy 2022, 135, 104843. [Google Scholar] [CrossRef]
- Magalhães, L.; Correia, S.; de Montaudouin, X.; Freitas, R. Spatio-Temporal Variation of Trematode Parasites Community in Cerastoderma edule Cockles from Ria de Aveiro (Portugal). Environ. Res. 2018, 164, 114–123. [Google Scholar] [CrossRef]
- Jesus, F.; Mesquita, F.; Virumbrales Aldama, E.; Marques, A.; Gonçalves, A.M.M.; Magalhães, L.; Nogueira, A.J.A.; Ré, A.; Campos, I.; Pereira, J.L.; et al. Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden. Int. J. Environ. Res. Public Health 2023, 20, 1326. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Hydrological Characterisation of Ria de Aveiro, Portugal, in Early Summer. Oceanol. Acta 1999, 22, 473–485. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Tidal Propagation in Ria de Aveiro Lagoon, Portugal. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 369–374. [Google Scholar] [CrossRef]
- Xenarios, S.; Queiroga, H.; Lillebø, A.I.; Aleixo, A. Introducing a Regulatory Policy Framework of Bait Fishing in European Coastal Lagoons: The Case of Ria de Aveiro in Portugal. Fishes 2018, 3, 2. [Google Scholar] [CrossRef]
- Reamon, M.; Marcussen, J.B.; Laugen, A.T.; Korslund, L.M. Efficient and Reliable Methods for Estimating the Abundance of Keystone Coastal Macrofauna over Large Spatial Scales. Ecol. Evol. 2024, 14, e70088. [Google Scholar] [CrossRef]
- Picado, A.; Pereira, H.; Vaz, N.; Dias, J.M. Assessing Present and Future Ecological Status of Ria de Aveiro: A Modeling Study. J. Mar. Sci. Eng. 2024, 12, 1768. [Google Scholar] [CrossRef]
- Quintino, V.; Rodrigues, A.M.; Gentil, F. Assessment of Macrozoobenthic Communities in the Lagoon of Óbidos, Western Coast of Portugal. Sci. Mar. 1989, 53, 645–654. [Google Scholar]
- Doeglas, D.J. Grain-Size Indces, Classification and Environment. Sedimentology 1968, 10, 83–100. [Google Scholar]
- Larsonneur, C. La Cartographie Des Depots Meubles Sur Le Plateau Continental Français: Méthode Mise Au Point et Utilisée En Manche. J. Recherché Océanographique 1977, 2, 33–39. [Google Scholar]
- Kristensen, E.; Andersen, F.O. Determination of Organiccarbon in Marine Sediments—A Comparison of 2 CHN-Analyzer Methods. J. Exp. Mar. Biol. Ecol. 1987, 109, 15–23. [Google Scholar] [CrossRef]
- Hyland, J.; Balthis, L.; Karakassis, I.; Magni, P.; Petrov, A.; Shine, J.; Vestergaard, O.; Warwick, R. Organic Carbon Content of Sediments as an Indicator of Stress in the Marine Benthos. Mar. Ecol. Prog. Ser. 2005, 295, 91–103. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Mildenberger, T.K.; Taylor, M.H.; Wolff, M. TropFishR: An R Package for Fisheries Analysis with Length-Frequency Data. Methods Ecol. Evol. 2017, 8, 1520–1527. [Google Scholar] [CrossRef]
- Bhattacharya, C.G. A Simple Method of Resolution of a Distribution into Gaussian Components. Biometrics 1967, 23, 115–135. [Google Scholar] [CrossRef]
- Magalhães, L.; Freitas, R.; de Montaudouin, X. Cockle Population Dynamics: Recruitment Predicts Adult Biomass, Not the Inverse. Mar. Biol. 2016, 163, 16. [Google Scholar] [CrossRef]
- Pauly, D. On the Interrelationships between Natural Mortality, Growth Parameters, and Mean Environmental Temperature in 175 Fish Stocks. J. Cons. Int. Explor. Mer. 1980, 39, 175–192. [Google Scholar] [CrossRef]
- Quenouille, M.H. Notes on Bias in Estimation. Biometrika 1956, 43, 353–360. [Google Scholar] [CrossRef]
- Pauly, D.; Munro, J.L. Once More on the Comparison of Growth in Fish and Invertebrates. Fishbyte Newsl. Netw. Trop. Fish. Sci. 1984, 2, 21. [Google Scholar]
- Jones, R. Assessing the Effects of Changes in Exploitation Pattern Using Length Composition Data (with Notes on VPA and Cohort Analysis); FAO: Rome, Italy, 1984. [Google Scholar]
- Cerdeira-Arias, J.D.; Otero, J.; Barceló, E.; del Río, G.; Freire, A.; García, M.; Portilla, G.; Santiago, J.A.; Rodríguez, A.M.; Nombela, M.Á.; et al. Environmental Effects on Abundance and Size of Harvested Bivalve Populations in Intertidal Shellfish Grounds. Mar. Environ. Res. 2024, 202, 106808. [Google Scholar] [CrossRef]
- Telesh, I.V.; Khlebovich, V.V. Principal Processes within the Estuarine Salinity Gradient: A Review. Mar. Pollut. Bull. 2010, 61, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Verdelhos, T.; Marques, J.C.; Anastácio, P. The Impact of Estuarine Salinity Changes on the Bivalves Scrobicularia plana and Cerastoderma edule, Illustrated by Behavioral and Mortality Responses on a Laboratory Assay. Ecol. Indic. 2015, 52, 96–104. [Google Scholar] [CrossRef]
- Domínguez, R.; Vázquez, E.; Woodin, S.A.; Wethey, D.S.; Peteiro, L.G.; Macho, G.; Olabarria, C. Sublethal Responses of Four Commercially Important Bivalves to Low Salinity. Ecol. Indic. 2020, 111, 106031. [Google Scholar] [CrossRef]
- Peteiro, L.G.; Woodin, S.A.; Wethey, D.S.; Costas-Costas, D.; Martínez-Casal, A.; Olabarria, C.; Vázquez, E. Responses to Salinity Stress in Bivalves: Evidence of Ontogenetic Changes in Energetic Physiology on Cerastoderma edule. Sci. Rep. 2018, 8, 8329. [Google Scholar] [CrossRef] [PubMed]
- Malham, S.K.; Hutchinson, T.H.; Longshaw, M. A Review of the Biology of European Cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 2012, 92, 1563–1577. [Google Scholar] [CrossRef]
- Dias, J.M.; Pereira, F.; Picado, A.; Lopes, C.L.; Pinheiro, J.P.; Lopes, S.M.; Pinho, P.G. A Comprehensive Estuarine Hydrodynamics-Salinity Study: Impact of Morphologic Changes on Ria de Aveiro (Atlantic Coast of Portugal). J. Mar. Sci. Eng. 2021, 9, 234. [Google Scholar] [CrossRef]
- Vaz, N.; Dias, J.M.; Leitão, P.; Martins, I. Horizontal Patterns of Water Temperature and Salinity in an Estuarine Tidal Channel: Ria de Aveiro. Ocean Dyn. 2005, 55, 416–429. [Google Scholar] [CrossRef]
- Queiroga, H.; Machado, M.M.; Cunha, M.R. Environmental Gradients in A Southern Europe Estuarine System: Ria De Aveiro, Portugal Implications for Soft Bottom Macrofauna Colonization. Neth. J. Aquat. Ecol. 1993, 27, 465–482. [Google Scholar]
- Domínguez, R.; Olabarria, C.; Vázquez, E. Assessment of Risks Associated with Extreme Climate Events in Small-Scale Bivalve Fisheries: Conceptual Maps for Decision-Making Based on a Review of Recent Studies. J. Mar. Sci. Eng. 2023, 11, 1216. [Google Scholar] [CrossRef]
- McKeon, C.S.; Tunberg, B.G.; Johnston, C.A.; Barshis, D.J. Ecological Drivers and Habitat Associations of Estuarine Bivalves. PeerJ 2015, 2015, e1348. [Google Scholar] [CrossRef]
- Santos, C.; Cabral, S.; Carvalho, F.; Sousa, A.; Goulding, T.; Ramajal, J.; Medeiros, J.P.; Silva, G.; Angélico, M.M.; Gaspar, M.B.; et al. Spatial and Temporal Variations of Cockle (Cerastoderma spp.) Populations in Two Portuguese Estuarine Systems with Low Directed Fishing Pressure. Front. Mar. Sci. 2022, 9, 699622. [Google Scholar] [CrossRef]
- Ramón, M. Population Dynamics and Secondary Production of the Cockle Cerastoderma edule (L.) in a Backbarrier Tidal Flat of the Wadden Sea. Sci. Mar. 2003, 67, 429–443. [Google Scholar] [CrossRef]
- Vera, M.; Maroso, F.; Wilmes, S.B.; Hermida, M.; Blanco, A.; Fernández, C.; Groves, E.; Malham, S.K.; Bouza, C.; Robins, P.E.; et al. Genomic Survey of Edible Cockle (Cerastoderma edule) in the Northeast Atlantic: A Baseline for Sustainable Management of Its Wild Resources. Evol. Appl. 2022, 15, 262–285. [Google Scholar] [CrossRef]
- Des, M.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, J.L.; Sousa, M.C.; Gómez-Gesteira, M. Modeling Salinity Drop in Estuarine Areas under Extreme Precipitation Events within a Context of Climate Change: Effect on Bivalve Mortality in Galician Rías Baixas. Sci. Total Environ. 2021, 790, 148147. [Google Scholar] [CrossRef]
- Parada, J.M.; Molares, J.; Otero, X. Multispecies Mortality Patterns of Commercial Bivalves in Relation to Estuarine Salinity Fluctuation. Estuaries Coasts 2012, 35, 132–142. [Google Scholar] [CrossRef]
- Parada, J.M.; Molares, J. Natural Mortality of the Cockle Cerastoderma Edule (L.) from the Ria of Arousa (NW Spain) Intertidal Zone. Rev. Biol. Mar. Ocean. 2008, 43, 501–511. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Vargas, C.I.C.; Vaz, N.; Dias, J.M. An Evaluation of Climate Change Effects in Estuarine Salinity Patterns: Application to Ria de Aveiro Shallow Water System. Estuar. Coast. Shelf Sci. 2017, 189, 33–45. [Google Scholar] [CrossRef]
- Krug, P.J.; Shimer, E.; Rodriguez, V.A. Differential Tolerance and Seasonal Adaptation to Temperature and Salinity Stress at a Dynamic Range Boundary between Estuarine Gastropods. Biol. Bull. 2021, 241, 105–122. [Google Scholar] [CrossRef]
- Compton, T.J.; Rijkenberg, M.J.A.; Drent, J.; Piersma, T. Thermal Tolerance Ranges and Climate Variability: A Comparison between Bivalves from Differing Climates. J. Exp. Mar. Biol. Ecol. 2007, 352, 200–211. [Google Scholar] [CrossRef]
- Zhou, Z.; Bouma, T.J.; Fivash, G.S.; Ysebaert, T.; van IJzerloo, L.; van Dalen, J.; van Dam, B.; Walles, B. Thermal Stress Affects Bioturbators’ Burrowing Behavior: A Mesocosm Experiment on Common Cockles (Cerastoderma edule). Sci. Total Environ. 2022, 824, 153621. [Google Scholar] [CrossRef]
- Pronker, A.E.; Peene, F.; Donner, S.; Wijnhoven, S.; Geijsen, P.; Bossier, P.; Nevejan, N.M. Hatchery Cultivation of the Common Cockle (Cerastoderma edule L.): From Conditioning to Grow-Out. Aquac. Res. 2015, 46, 302–312. [Google Scholar] [CrossRef]
- Morgan, E.; O’ Riordan, R.M.; Culloty, S.C. Climate Change Impacts on Potential Recruitment in an Ecosystem Engineer. Ecol. Evol. 2013, 3, 581–594. [Google Scholar] [CrossRef]
- Beukema, J.J.; Dekker, R. Winters Not Too Cold, Summers Not Too Warm: Long-Term Effects of Climate Change on the Dynamics of a Dominant Species in the Wadden Sea: The Cockle Cerastoderma edule L. Mar. Biol. 2020, 167, 44. [Google Scholar] [CrossRef]
- Lopes, J.F.; Lopes, C.L.; Dias, J.M. Climate Change Impact in the Ria de Aveiro Lagoon Ecosystem: A Case Study. J. Mar. Sci. Eng. 2019, 7, 352. [Google Scholar] [CrossRef]
- Joaquim, S.; Matias, A.M.; Moura, P.; Trindade, B.; Gaspar, M.B.; Baptista, T.; Matias, D. Dynamics of the Reproductive Cycle of Two Cerastoderma edule Populations (Óbidos and Ria Formosa Lagoons) along with Their Nutrient Storage and Utilization Strategy. Fishes 2023, 8, 353. [Google Scholar] [CrossRef]
- Kater, B.J.; Geurts van Kessel, A.J.M.; Baars, J.J.M.D. Distribution of Cockles Cerastoderma edule in the Eastern Scheldt: Habitat Mapping with Abiotic Variables. Mar. Ecol. Prog. Ser. 2006, 318, 221–227. [Google Scholar] [CrossRef]
- Lehuen, A.; Dancie, C.; Grasso, F.; Orvain, F. A Quantile Regression Approach to Define Optimal Ecological Niche 2 (Habitat Suitability) of Cockle Populations (Cerastoderma edule). HAL Open Sci. 2024, 5, 04438267. [Google Scholar] [CrossRef]
- Elliott, M.; Marine SACs Project, U.; Manager, T.; Wilson, A. Intertidal Sand and Mudflats & Subtidal Mobile Sandbanks an Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs; Institute of Estuarine and Coastal Studies: Kingston upon Hull, UK, 1998. [Google Scholar]
- Tillin, H.; Marshall, C. Cirratulids and Cerastoderma edule in Littoral Mixed Sediment; Marine Biological Association of the United Kingdom: Plymouth, UK, 2016. [Google Scholar] [CrossRef]
- Lemoine, M.; Desprez, M.; Ducrotoy, J.-P. Exploitation des Ressources en Bivalves de la Baie de Somme; MMF: New York, NY, USA, 1988. [Google Scholar]
- Beukema, J.J.; Dekker, R. Decline of Recruitment Success in Cockles and Other in the Wadden Sea: Possible Role of Climate, Predation on Postlarvae and Fisheries. Mar. Ecol. Prog. Ser. 2005, 287, 149–167. [Google Scholar] [CrossRef]
- Huxham, M.; Richards, M. Can Postlarval Bivalves Select Sediment Type during Settlement? A Field Test with Macoma balthica (L.) and Cerastoderma edule (L.). J. Exp. Mar. Biol. Ecol. 2003, 288, 279–293. [Google Scholar] [CrossRef]
- Martins, M.V.A.; Laut, L.; Duleba, W.; Zaaboub, N.; Aleya, L.; Terroso, D.L.; Sequeira, C.; Pena, A.; Rodrigues, M.A.; Rocha, F. Sediment Quality and Possible Uses of Dredged Materials: The Ria De Aveiro Lagoon Mouth Area (Portugal). J. Sediment. Environ. 2017, 2, 149–166. [Google Scholar] [CrossRef]
- Meysick, L.; Infantes, E.; Rugiu, L.; Gagnon, K.; Boström, C. Coastal Ecosystem Engineers and Their Impact on Sediment Dynamics: Eelgrass–Bivalve Interactions under Wave Exposure. Limnol. Oceanogr. 2022, 67, 621–633. [Google Scholar] [CrossRef]
- Powers, S.P.; Grabowski, J.H. Changes in Water Flow Alter Community Dynamics in Oyster Reefs. Ecosphere 2023, 14, e4405. [Google Scholar] [CrossRef]
- de Montaudouin, X.; Bachelet, G. Experimental Evidence of Complex Interactions between Biotic and Abiotic Factors in the Dynamics of an Intertidal Population of the Bivalve Cerastoderma edule. Oceanol. Acta 1995, 19, 449–463. [Google Scholar]
- André, C.; Rosenberg, R. Adult-Larval Interactions in the Suspension-Feeding Bivalves Cerastoderma edule and Mya arenaria. Mar. Ecol. Prog. Ser. 1991, 71, 227–234. [Google Scholar] [CrossRef]
- Portaria No 27/2001 de 15 de Janeiro do Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. 2001. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/27-2001-337580 (accessed on 2 September 2025).
- Deutsch, C.; Penn, J.L.; Verberk, W.C.E.P.; Inomura, K.; Endress, M.-G.; Payne, J.L. Impact of Warming on Aquatic Body Sizes Explained by Metabolic Scaling from Microbes to Macrofauna. Proc. Natl. Acad. Sci. USA 2024, 119, e2201345119. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Martins, P.; Correia, S.; Magalhães, L. Assessing the Genetic Variability of Cerastoderma edule in Ria de Aveiro: Implications for Sustainable Management and Conservation. Eurolag 2023, 10, 102024. [Google Scholar]
Sampling Location | Salinity | Temperature | Current Velocity | Chlorophyll-a | Submersion Time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | sd | Mean | ± | sd | Mean | ± | sd | Mean | ± | sd | Mean | ± | sd | |
SL1 | 31.5 | ± | 2.8 | 16.1 | ± | 2.5 | 0.26 | ± | 0.00 | 1.5 | ± | 1.2 | 730.0 | ± | 21.6 |
SL2 | 30.6 | ± | 3.4 | 16.3 | ± | 2.9 | 0.43 | ± | 0.01 | 1.6 | ± | 1.3 | 730.0 | ± | 21.6 |
SL3 | 30.8 | ± | 3.4 | 16.5 | ± | 3.1 | 0.18 | ± | 0.01 | 1.5 | ± | 1.3 | 469.6 | ± | 13.4 |
SL4 | 30.0 | ± | 3.8 | 16.5 | ± | 3.1 | 0.72 | ± | 0.01 | 1.6 | ± | 1.3 | 730.0 | ± | 21.6 |
SL5 | 29.0 | ± | 4.4 | 16.8 | ± | 3.5 | 0.68 | ± | 0.01 | 1.6 | ± | 1.4 | 730.0 | ± | 21.6 |
EL6 | 24.8 | ± | 6.2 | 17.1 | ± | 4.1 | 0.16 | ± | 0.00 | 2.1 | ± | 1.7 | 730.0 | ± | 21.6 |
SL7 | 28.2 | ± | 4.9 | 17.3 | ± | 4.0 | 0.50 | ± | 0.01 | 1.7 | ± | 1.5 | 730.0 | ± | 21.6 |
SL8 | 27.7 | ± | 5.2 | 17.7 | ± | 4.5 | 0.45 | ± | 0.00 | 1.7 | ± | 1.5 | 730.0 | ± | 21.6 |
SL9 | 27.0 | ± | 5.6 | 18.1 | ± | 5.0 | 0.86 | ± | 0.01 | 1.8 | ± | 1.6 | 730.0 | ± | 21.6 |
EL10 | 27.2 | ± | 5.1 | 16.6 | ± | 3.4 | 0.45 | ± | 0.01 | 1.9 | ± | 1.5 | 730.0 | ± | 21.6 |
EL11 | 30.1 | ± | 3.7 | 16.1 | ± | 2.7 | 0.97 | ± | 0.01 | 1.7 | ± | 1.3 | 730.0 | ± | 21.6 |
IL12 | 31.2 | ± | 3.1 | 16.0 | ± | 2.5 | 0.61 | ± | 0.01 | 1.5 | ± | 1.2 | 730.0 | ± | 21.6 |
IL13 | 30.7 | ± | 3.5 | 16.3 | ± | 2.9 | 0.49 | ± | 0.01 | 1.5 | ± | 1.3 | 730.0 | ± | 21.6 |
IL14 | 28.6 | ± | 5.4 | 16.8 | ± | 3.5 | 0.25 | ± | 0.00 | 1.8 | ± | 1.3 | 730.0 | ± | 21.6 |
ML15 | 30.5 | ± | 4.5 | 16.3 | ± | 2.8 | 0.09 | ± | 0.00 | 1.7 | ± | 1.2 | 557.2 | ± | 15.9 |
ML16 | 25.0 | ± | 9.7 | 17.4 | ± | 4.1 | 0.39 | ± | 0.00 | 3.0 | ± | 2.6 | 730.0 | ± | 21.6 |
ML17 | 22.5 | ± | 11.4 | 17.9 | ± | 4.6 | 0.47 | ± | 0.00 | 3.9 | ± | 3.5 | 730.0 | ± | 21.6 |
ML18 | 20.0 | ± | 12.7 | 18.2 | ± | 4.9 | 0.47 | ± | 0.00 | 5.3 | ± | 4.8 | 730.0 | ± | 21.6 |
Sampling Location | MGS | TOM | ||||||
---|---|---|---|---|---|---|---|---|
Mean | ± | sd | Classification | Mean | ± | sd | Classification | |
SL1 | 2.6 | ± | 0.1 | fine sand | 2.2 | ± | 0.6 | medium |
SL2 | 2.5 | ± | 0.1 | fine sand | 1.9 | ± | 0.7 | low |
SL3 | 1.9 | ± | 0.2 | medium sand | 1.1 | ± | 0.2 | low |
SL4 | 2.5 | ± | 0.1 | fine sand | 2.6 | ± | 1.3 | medium |
SL5 | 2.9 | ± | 0.4 | fine sand | 3.4 | ± | 1.4 | medium |
EL6 | 2.7 | ± | 0.1 | fine sand | 2.3 | ± | 0.5 | medium |
SL7 | 1.9 | ± | 0.2 | medium sand | 1.9 | ± | 0.5 | low |
SL8 | 1.5 | ± | 0.2 | medium sand | 1.1 | ± | 0.6 | low |
SL9 | 2.5 | ± | 0.0 | fine sand | 1.0 | ± | 0.5 | low |
EL10 | 2.6 | ± | 0.2 | fine sand | 1.9 | ± | 0.8 | low |
EL11 | 3.2 | ± | 0.2 | very fine sand | 3.4 | ± | 0.7 | medium |
IL12 | 2.3 | ± | 0.1 | fine sand | 1.2 | ± | 0.4 | low |
IL13 | 1.8 | ± | 0.1 | medium sand | 1.2 | ± | 0.6 | low |
IL14 | 3.0 | ± | 0.3 | fine sand | 2.8 | ± | 0.6 | medium |
ML15 | 1.5 | ± | 0.1 | medium sand | 1.0 | ± | 0.4 | low |
ML16 | 1.5 | ± | 0.0 | medium sand | 0.9 | ± | 0.5 | very low |
ML17 | 2.8 | ± | 0.5 | fine sand | 3.0 | ± | 1.0 | medium |
ML18 | 1.7 | ± | 0.2 | medium sand | 1.5 | ± | 0.6 | low |
Predictor | Estimate | Std. Error | p-Value | Life Stage |
---|---|---|---|---|
Salinity | 0.068 | 0.017 | <0.001 | Total |
Temperature | 0.072 | 0.028 | 0.013 | Total |
Salinity | 0.070 | 0.032 | 0.032 | Recruit |
Temperature | 0.280 | 0.046 | <0.001 | Recruit |
MGS | 0.742 | 0.405 | 0.073 | Recruit |
Current velocity | –2.384 | 1.200 | 0.063 | Recruit |
Month | 0.154 | 0.044 | <0.001 | Recruit |
Salinity | 0.061 | 0.019 | 0.002 | Adult |
Temperature | –0.102 | 0.032 | 0.002 | Adult |
TOM | 0.343 | 0.116 | 0.003 | Adult |
L | L∞ | K | ɸ’ |
---|---|---|---|
SL1 | 24.6 | 0.5 | 2.5 |
SL2 | 30.3 | 0.6 | 2.8 |
SL3 | 28.1 | 0.7 | 2.7 |
SL4 | 30.0 | 0.6 | 2.7 |
SL5 | 24.9 | 0.5 | 2.5 |
EL6 | 24.3 | 0.6 | 2.5 |
SL7 | NA | NA | NA |
SL8 | 26.3 | 0.5 | 2.6 |
SL9 | NA | NA | NA |
EL10 | 26.4 | 0.6 | 2.6 |
EL11 | 28.6 | 0.6 | 2.7 |
IL12 | 29.4 | 0.6 | 2.7 |
IL13 | 31.1 | 0.6 | 2.7 |
IL14 | 47.9 | 0.6 | 3.1 |
ML15 | 26.8 | 0.5 | 2.6 |
ML16 | 30.3 | 0.5 | 2.7 |
ML17 | NA | NA | NA |
ML18 | NA | NA | NA |
L | Mortality | Stock Size | Stock Biomass |
---|---|---|---|
SL1 | 1.10 | 23.06 | 6.79 |
SL2 | 1.03 | 79.25 | 18.82 |
SL3 | 1.15 | 21.77 | 5.64 |
SL4 | 1.84 | 288.12 | 106.63 |
SL5 | 1.21 | 116.64 | 35.32 |
EL6 | 1.17 | 66.54 | 19.32 |
SL7 | NA | NA | NA |
SL8 | 1.32 | 14.12 | 4.33 |
SL9 | NA | NA | NA |
EL10 | 1.10 | 63.33 | 15.96 |
EL11 | 0.94 | 41.51 | 9.48 |
IL12 | 0.92 | 61.06 | 13.66 |
IL13 | 1.10 | 22.42 | 6.24 |
IL14 | 1.07 | 2.73 | 1.11 |
ML15 | 0.93 | 79.18 | 18.81 |
ML16 | 1.20 | 5.37 | 2.19 |
ML17 | 1.01 | 0.59 | 0.85 |
ML18 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, S.; Lopes, M.L.; Picado, A.; Dias, J.M.; Vaz, N.; Freitas, R.; Magalhães, L. Cockle Population Dynamics in a Complex Ecological Aquatic System. Biology 2025, 14, 1427. https://doi.org/10.3390/biology14101427
Correia S, Lopes ML, Picado A, Dias JM, Vaz N, Freitas R, Magalhães L. Cockle Population Dynamics in a Complex Ecological Aquatic System. Biology. 2025; 14(10):1427. https://doi.org/10.3390/biology14101427
Chicago/Turabian StyleCorreia, Simão, Marta Lobão Lopes, Ana Picado, João M. Dias, Nuno Vaz, Rosa Freitas, and Luísa Magalhães. 2025. "Cockle Population Dynamics in a Complex Ecological Aquatic System" Biology 14, no. 10: 1427. https://doi.org/10.3390/biology14101427
APA StyleCorreia, S., Lopes, M. L., Picado, A., Dias, J. M., Vaz, N., Freitas, R., & Magalhães, L. (2025). Cockle Population Dynamics in a Complex Ecological Aquatic System. Biology, 14(10), 1427. https://doi.org/10.3390/biology14101427