Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Biospecimen Collection
2.3. Clinical Data
2.4. Questionnaires
3. Result
3.1. Generated Data
3.2. Key Findings and Publications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearon, E.R. Molecular Genetics of Colorectal Cancer. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 479–507. [Google Scholar] [CrossRef]
- O’Connell, J.B.; Maggard, M.A.; Ko, C.Y. Colon Cancer Survival Rates With the New American Joint Committee on Cancer Sixth Edition Staging. J. Natl. Cancer Inst. 2004, 96, 1420–1425. [Google Scholar] [CrossRef]
- Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic Alterations in Colorectal Cancer. Gastrointest. Cancer Res. 2012, 5, 19–27. [Google Scholar]
- Roselló, S.; Simón, S.; Cervantes, A. Programmed colorectal cancer screening decreases incidence and mortality. Transl. Gastroenterol. Hepatol. 2019, 4, 84. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, B.; Malaspina, M.; Fraser, C.G.; Tintori, B.; Carlani, A.; D’Angelo, V.; Galeazzi, P.; Di Dato, E.; Mariotti, L.; Bulletti, S.; et al. A comparative effectiveness trial of two faecal immunochemical tests for haemoglobin (FIT). Assessment of test performance and adherence in a single round of a population-based screening programme for colorectal cancer. Gut 2018, 67, 485–496. [Google Scholar] [CrossRef]
- Feik, E.; Baierl, A.; Hieger, B.; Fuhrlinger, G.; Pentz, A.; Stattner, S.; Weiss, W.; Pulgram, T.; Leeb, G.; Mach, K.; et al. Association of IGF1 and IGFBP3 polymorphisms with colo-rectal polyps and colorectal cancer risk. Cancer Causes Control 2010, 21, 91–97. [Google Scholar] [CrossRef] [PubMed]
- White, E.; Patterson, R.E.; Kristal, A.; Thornquist, M.; King, I.; Shattuck, A.L.; Evans, I.; Satia-Abouta, J.; Littman, A.J.; Potter, J. VITamins And Lifestyle Cohort Study: Study Design and Characteristics of Supplement Users. Am. J. Epidemiol. 2004, 159, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nothlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Fitting portion sizes in a self-administered food frequency question-naire. J. Nutr. 2007, 137, 2781–2786. [Google Scholar] [CrossRef] [PubMed]
- Hofer, P.; Hagmann, M.; Brezina, S.; Dolejsi, E.; Mach, K.; Leeb, G.; Baierl, A.; Buch, S.; Sutterlüty-Fall, H.; Karner-Hanusch, J.; et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget 2017, 8, 98623–98634. [Google Scholar] [CrossRef] [PubMed]
- Geijsen, A.; Brezina, S.; Keski-Rahkonen, P.; Baierl, A.; Bachleitner-Hofmann, T.; Bergmann, M.M.; Boehm, J.; Brenner, H.; Chang-Claude, J.; van Duijnhoven, F.J.B.; et al. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int. J. Cancer 2019, 145, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Geijsen, A.J.; Van Roekel, E.H.; Van Duijnhoven, F.J.; Achaintre, D.; Bachleitner-Hofmann, T.; Baierl, A.; Bergmann, M.M.; Boehm, J.; Bours, M.J.; Brenner, H.; et al. Plasma metabolites associated with colorectal cancer stage: Findings from an international consortium. Int. J. Cancer 2020, 146, 3256–3266. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.C.; Joshi, A.D.; Tabung, F.K.; Cheng, S.; Henglin, M.; Kim, A.; Lin, T.; Van Roekel, E.H.; Huang, J.; Krumsiek, J.; et al. Metabolomics Analytics Workflow for Epidemiological Research: Perspectives from the Consortium of Metabolomics Studies (COMETS). Metabolites 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, C.M.; Gigic, B.; Böhm, J.; Ose, J.; Viskochil, R.; Schneider, M.; Colditz, G.A.; Figueiredo, J.C.; Grady, W.M.; Li, C.I.; et al. The ColoCare Study: A Paradigm of Transdisciplinary Science in Colorectal Cancer Outcomes. Cancer Epidemiol. Biomark. Prev. 2019, 28, 591–601. [Google Scholar] [CrossRef] [Green Version]
- van Roekel, E.H.; Bours, M.J.; de Brouwer, C.P.; Ten Napel, H.; Sanduleanu, S.; Beets, G.L.; Kant, J.I.; Weijenberg, M.P. The applicability of the international classification of functioning, disability, and health to study lifestyle and quality of life of colorectal cancer survivors. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1394–1405. [Google Scholar] [CrossRef] [Green Version]
- Winkels, R.M.; Heine-Bröring, R.C.; van Zutphen, M.; van Harten-Gerritsen, S.; Kok, D.E.; van Duijnhoven, F.J.; Kampman, E. The COLON study: Colorectal cancer: Longitudinal, Observational study on Nutritional and lifestyle factors that may influence colorectal tumour recurrence, survival and quality of life. BMC Cancer 2014, 14, 374. [Google Scholar] [CrossRef] [Green Version]
- Gsur, A.; Bernhart, K.; Baierl, A.; Feik, E.; Führlinger, G.; Höfer, P.; Leeb, G.; Mach, K.; Micksche, M. No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiol. 2011, 35, e38–e41. [Google Scholar] [CrossRef]
- Hofer, P.; Baierl, A.; Feik, E.; Führlinger, G.; Leeb, G.; Mach, K.; Holzmann, K.; Micksche, M.; Gsur, A. MNS16A tandem repeats minisatellite of human telomerase gene: A risk factor for colorectal cancer. Carcinogenesis 2011, 32, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Hofer, P.; Baierl, A.; Bernhart, K.; Leeb, G.; Mach, K.; Micksche, M.; Gsur, A. Association of genetic variants of human telomerase with colorectal polyps and colorectal cancer risk. Mol. Carcinog. 2012, 51, E176–E182. [Google Scholar] [CrossRef]
- Heinzle, C.; Gsur, A.; Hunjadi, M.; Erdem, Z.; Gauglhofer, C.; Stättner, S.; Karner, J.; Klimpfinger, M.; Wrba, F.; Reti, A.; et al. Differential Effects of Polymorphic Alleles of FGF Receptor 4 on Colon Cancer Growth and Metastasis. Cancer Res. 2012, 72, 5767–5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zöchmeister, C.; Brezina, S.; Höfer, P.; Baierl, A.; Bergmann, M.M.; Bachleitner-Hofmann, T.; Karner-Hanusch, J.; Stift, A.; Gerger, A.; Leeb, G.; et al. Leukocyte telomere length throughout the continuum of colorectal carcinogenesis. Oncotarget 2018, 9, 13582–13592. [Google Scholar] [CrossRef] [Green Version]
- Jiraskova, K.; Hughes, D.J.; Brezina, S.; Gumpenberger, T.; Veskrnova, V.; Buchler, T.; Schneiderova, M.; Levy, M.; Liska, V.; Vodenkova, S.; et al. Functional Polymorphisms in DNA Re-pair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int. J. Mol. Sci. 2018, 20, 97. [Google Scholar] [CrossRef] [Green Version]
- Luna Coronell, J.A.; Sergelen, K.; Hofer, P.; Gyurjan, I.; Brezina, S.; Hettegger, P.; Leeb, G.; Mach, K.; Gsur, A.; Weinhäusel, A. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. Genom. Proteom. Bioinform. 2018, 16, 73–84. [Google Scholar] [CrossRef]
- Huyghe, J.R.; Bien, S.A.; Harrison, T.A.; Kang, H.M.; Chen, S.; Schmit, S.L.; Conti, D.V.; Qu, C.; Jeon, J.; Edlund, C.K.; et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019, 51, 76–87. [Google Scholar] [CrossRef]
- Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; Orlando, G.; et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafmayer, C.; Harrison, J.W.; Buch, S.; Lange, C.; Reichert, M.C.; Hofer, P.; Cossais, F.; Kupcinskas, J.; von Schönfels, W.; Schniewind, B.; et al. Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut 2019, 68, 854–865. [Google Scholar] [CrossRef] [Green Version]
- Schmit, S.L.; Edlund, C.K.; Schumacher, F.R.; Gong, J.; Harrison, T.A.; Huyghe, J.R.; Qu, C.; Melas, M.; Van Den Berg, D.J.; Wang, H.; et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J. Natl. Cancer Inst. 2019, 111, 146–157. [Google Scholar] [CrossRef]
- Cornish, A.J.; Law, P.J.; Timofeeva, M.; Palin, K.; Farrington, S.M.; Palles, C.; Jenkins, M.A.; Casey, G.; Brenner, H.; Chang-Claude, J.; et al. Modifiable pathways for colorectal cancer: A mendelian randomisation analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Holowatyj, A.N.; Gigic, B.; Herpel, E.; Scalbert, A.; Schneider, M.; Ulrich, C.M.; MetaboCCC Consortium; ColoCare Study. Distinct Molecular Phenotype of Sporadic Colo-rectal Cancers Among Young Patients Based on Multiomics Analysis. Gastroenterology 2020, 158, 1155–1158.e2. [Google Scholar] [CrossRef]
- Archambault, A.N.; Su, Y.-R.; Jeon, J.; Thomas, M.; Lin, Y.; Conti, D.V.; Win, A.K.; Sakoda, L.C.; Lansdorp-Vogelaar, I.; Peterse, E.F.; et al. Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs. Late-Onset Cancer. Gastroenterology 2020, 158, 1274–1286.e12. [Google Scholar] [CrossRef]
- Lu, Y.; Kweon, S.-S.; Cai, Q.; Tanikawa, C.; Shu, X.-O.; Jia, W.-H.; Xiang, Y.-B.; Huyghe, J.R.; Harrison, T.A.; Kim, J.; et al. Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians. Cancer Epidemiol. Biomark. Prev. 2020, 29, 477–486. [Google Scholar] [CrossRef]
- Murphy, N.; Carreras-Torres, R.; Song, M.; Chan, A.T.; Martin, R.M.; Papadimitriou, N.; Dimou, N.; Tsilidis, K.K.; Banbury, B.; Bradbury, K.E.; et al. Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Sero-logic and Mendelian Randomization Analyses. Gastroenterology 2020, 158, 1300–1312.e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadimitriou, N.; Dimou, N.; Tsilidis, K.K.; Banbury, B.; Martin, R.M.; Lewis, S.J.; Kazmi, N.; Robinson, T.M.; Albanes, D.; Aleksandrova, K.; et al. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis. Nat. Commun. 2020, 11, 597. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.H.; Harrison, T.A.; Phipps, A.I.; Steinfelder, R.; Trinh, Q.M.; Qu, C.; Banbury, B.L.; Georgeson, P.; Grasso, C.S.; Giannakis, M.; et al. Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat. Commun. 2020, 11, 3644. [Google Scholar] [CrossRef]
- Thomas, M.; Sakoda, L.C.; Hoffmeister, M.; Rosenthal, E.A.; Lee, J.K.; van Duijnhoven, F.J.; Platz, E.A.; Wu, A.H.; Dampier, C.H.; de la Chapelle, A.; et al. Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. Am. J. Hum. Genet. 2020, 107, 432–444. [Google Scholar] [CrossRef]
- Koole, J.L.; Bours, M.J.L.; Geijsen, A.J.M.R.; Gigic, B.; Ulvik, A.; Kok, D.E.; Brezina, S.; Ose, J.; Baierl, A.; Böhm, J.; et al. Circulating B-vitamin biomarkers and B-vitamin supplement use in relation to quality of life in patients with colorectal cancer: Results from the FOCUS consortium. Am. J. Clin. Nutr. 2021, 113, 1468–1481. [Google Scholar] [CrossRef]
- Geijsen, A.J.M.R.; Ulvik, A.; Gigic, B.; Kok, D.E.; van Duijnhoven, F.J.B.; Holowatyj, A.N.; Brezina, S.; van Roekel, E.H.; Baierl, A.; Bergmann, M.M.; et al. Circulating Folate and Folic Acid Concentrations: Associations With Colorectal Cancer Recurrence and Survival. JNCI Cancer Spectr. 2020, 4, pkaa051. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, G.P.; Wang, X.; Fontanillas, P.; Kim, E.; Chanprasert, S.; Gordon, A.S.; Bastarache, L.; Kowdley, K.V.; Harrison, T.; Rosenthal, E.A.; et al. Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis. Hum. Genet. Genom. Adv. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Guo, X.; Lin, W.; Wen, W.; Huyghe, J.; Bien, S.; Cai, Q.; Harrison, T.; Chen, Z.; Qu, C.; Bao, J.; et al. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021, 160, 1164–1178.e6. [Google Scholar] [CrossRef] [PubMed]
- Nounu, A.; Greenhough, A.; Heesom, K.J.; Richmond, R.C.; Zheng, J.; Weinstein, S.J.; Albanes, D.; Baron, J.A.; Hopper, J.L.; Figueiredo, J.C.; et al. A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Holowatyj, A.N.; Haffa, M.; Lin, T.; Scherer, D.; Gigic, B.; Ose, J.; Warby, C.A.; Himbert, C.; Abbenhardt-Martin, C.; Achaintre, D.; et al. Multi-omics analysis reveals adipose-tumor crosstalk in colorectal cancer patients. Cancer Prev. Res. 2020, 13, 817–828. [Google Scholar] [CrossRef]
- Bull, C.J.; Bell, J.A.; Murphy, N.; Sanderson, E.; Smith, G.D.; Timpson, N.J.; Banbury, B.L.; Albanes, D.; Berndt, S.I.; Bézieau, S.; et al. Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Papadimitriou, N.; Dimou, N.; Gill, D.; Lewis, S.J.; Martin, R.M.; Murphy, N.; Markozannes, G.; Zuber, V.; Cross, A.J.; et al. Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: A Mendelian randomization study. Am. J. Clin. Nutr. 2021, 113, 1490–1502. [Google Scholar] [CrossRef]
- Huyghe, R.J.; Harrison, A.T.; Bien, A.S.; Hampel, H.; Figueiredo, C.J.; Schmit, L.S.; Conti, D.V.; Chen, S.; Qi, C.; Lin, Y.; et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021. [Google Scholar] [CrossRef] [PubMed]
- Geijsen, A.J.M.R.; Kok, D.E.; van Zutphen, M.; Keski-Rahkonen, P.; Achaintre, D.; Gicquiau, A.; Gsur, A.; Kruyt, F.M.; Ulrich, C.M.; Weijenberg, M.P.; et al. Diet quality indices and dietary patterns are associated with plasma metabolites in colorectal cancer patients. Eur. J. Nutr. 2021, 1–14. [Google Scholar] [CrossRef]
- Gumpenberger, T.; Brezina, S.; Keski-Rahkonen, P.; Baierl, A.; Robinot, N.; Leeb, G.; Habermann, N.; Kok, D.; Scalbert, A.; Ueland, P.-M.; et al. Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colorectal Adenomas. Metabolites 2021, 11, 119. [Google Scholar] [CrossRef]
- Ose, J.; Gigic, B.; Brezina, S.; Lin, T.; Baierl, A.; Geijsen, A.; van Roekel, E.; Robinot, N.; Gicquiau, A.; Achaintre, D.; et al. Targeted plasma metabolic profiles and risk of recurrence in stage II and III colorectal cancer patients: Results from an international cohort consortium Polymorphisms within autophagy-related genes influence the risk of developing colorectal cancer: A meta-analysis of four large cohorts. Metabolites 2021, 11, 129. [Google Scholar] [CrossRef]
- Sainz, J.; García-Verdejo, F.; Martínez-Bueno, M.; Kumar, A.; Sánchez-Maldonado, J.; Díez-Villanueva, A.; Vodičková, L.; Vymetálková, V.; Sánchez, V.M.; Filho, M.D.S.; et al. Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts. Cancers 2021, 13, 1258. [Google Scholar] [CrossRef]
- Zheng, T.; Ellinghaus, D.; Juzenas, S.; Cossais, F.; Burmeister, G.; Mayr, G.; Jørgensen, I.F.; Teder-Laving, M.; Skogholt, A.H.; Chen, S.; et al. Genome-wide analysis of 944 133 individuals provides insights into the etiology of haemorrhoidal disease. Gut 2021. [Google Scholar] [CrossRef]
- Culliford, R.; Cornish, A.J.; Law, P.J.; Farrington, S.M.; Palin, K.; Jenkins, M.A.; Casey, G.; Hoffmeister, M.; Brenner, H.; Chang-Claude, J.; et al. Lack of an association between gallstone disease and bilirubin levels with risk of colorectal cancer: A Mendelian randomisation analysis. Br. J. Cancer 2021, 124, 1169–1174. [Google Scholar] [CrossRef]
- Papadimitriou, N.; Gunter, M.J.; Murphy, N.; Gicquiau, A.; Achaintre, D.; Brezina, S.; Gumpenberger, T.; Baierl, A.; Ose, J.; Geijsen, A.J.; et al. Circulating tryptophan metabolites and risk of colon cancer: Results from case-control and prospective cohort studies. Int. J. Cancer 2021. [Google Scholar] [CrossRef] [PubMed]
Colorectal Cancer Study of Austria (n = 13,573) | ||||
---|---|---|---|---|
CRC | HR a | LR b | Controls c | |
1551 | 2132 | 3745 | 6145 | |
Gender n (%) | ||||
Male | 947 (61.1) | 1468 (68.9) | 2254 (60.2) | 2660 (43.3) |
Age n (%) | ||||
<50 | 157 (10.1) | 189 (8.9) | 485 (13.0) | 1738 (28.3) |
50–59 | 259 (16.7) | 451 (21.1) | 926 (24.7) | 1583 (25.8) |
60–69 | 429 (27.7) | 741 (34.8) | 1253 (33.4) | 1546 (25.1) |
≥70 | 706 (45.5) | 751 (35.2) | 1081 (28.9) | 1278 (20.8) |
Stage n (%) d | ||||
I | 423 (27.3) | – | – | – |
II | 395 (25.5) | – | – | – |
III | 410 (26.4) | – | – | – |
IV | 213 (13.7) | – | – | – |
Missing | 110 (7.1) | – | – | – |
Site n (%) e | ||||
Colon-distal | 404 (26.0) | – | – | – |
Colon-proximal | 441 (28.5) | – | – | – |
Rectum | 686 (44.2) | – | – | – |
Unknown | 20 (1.3) | – | – | – |
CORSA Questionnaire | |
---|---|
Category | Assessed Variable |
Demographics | Name, gender, date of birth |
Height | Height in cm |
Weight | Weight in kg |
BMI | Defined as kg/m2 |
Family status | Single, married, divorced, widowed, life partnership |
Education status | Elementary school, secondary school, matriculation, university |
Employment | Employed, retired, unemployed, home keeping |
Smoking | Current or former smoker (age at start/stop, cigarettes per day) |
Never smoker | |
Alcohol consumption | Abstainer, former consumer, consumer (self-assessment) |
Diet | Self-assessment of food frequency intake |
Diabetes | Diabetes status, treatment (dietary restriction, insulin, medication name), year of diagnosis |
HbA1c level | |
CORSA Databank: Abstracted Clinical Data | |
Category | Assessed Variable |
Family history of CRC | First- or second-degree relatives |
Colonoscopy | Date and site of diagnostic colonoscopy (resident physician, hospital) |
Surgery | Date and type of curative surgery |
Histological findings | Invasive carcinoma |
Histology, amount, and size of polyps | |
Mutation status | KRAS, NRAS, BRAF, PIK3CA, MSI |
Inflammatory Bowel Disease (IBD) | Crohn’s disease, ulcerative colitis, e.g., (pathologically confirmed) |
Localization | Appendix, caecum, valvula, colon ascendens, flexura coli dextra, colon transversum, flexura coli sinistra, colon descendens, sigmoid colon, rectosigmoid junction, rectum, anus |
Grading | Cell differentiation and growth rate, G1–G4 |
TNM staging (UICC system) | Progression and spread in the body |
Extent (size) of tumor (T): Tis, T0–T4 | |
Spread to nearby lymph nodes (N): N0–N2 | |
amount of positive and resected nodes | |
Spread (metastasis) to distant sites (M): M0, M1 | |
Cancer stage (UICC system) | Stage 0–IV |
Neoadjuvant treatment | Neoadjuvant radiation, chemotherapy, radio-chemotherapy |
Adjuvant radiation, chemotherapy, radio-chemotherapy | |
Palliative radiation, chemotherapy, radio-chemotherapy, and amount of administered therapy cycles | |
Second primary CRC | Synchronous, metachronous CRC |
Secondary malignancies | Any carcinoma other than CRC |
Local CRC recurrence | Pathologically confirmed CRC recurrence at the anastomosis or nearby the primary tumor |
Distant CRC metastasis | Distant recurrence or spread to distant sites (first three sites of metastases assessed) |
Survival data | Date of death, date of last contact, CRC-related cause of death |
CORSA | ||||
---|---|---|---|---|
Available Data | CRC | HR a | LR b | Controls c |
GWAS data | 1060 | 689 | – | 928 |
Untargeted metabolomics data | 88 | 200 | 200 | 400 |
Targeted metabolomics data | 88 | 200 | 200 | 400 |
Folate-related biomarker status | 245 | – | – | – |
Leukocyte telomere length | 384 | 544 | 537 | 546 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gsur, A.; Baierl, A.; Brezina, S. Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. Biology 2021, 10, 722. https://doi.org/10.3390/biology10080722
Gsur A, Baierl A, Brezina S. Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. Biology. 2021; 10(8):722. https://doi.org/10.3390/biology10080722
Chicago/Turabian StyleGsur, Andrea, Andreas Baierl, and Stefanie Brezina. 2021. "Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study" Biology 10, no. 8: 722. https://doi.org/10.3390/biology10080722
APA StyleGsur, A., Baierl, A., & Brezina, S. (2021). Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. Biology, 10(8), 722. https://doi.org/10.3390/biology10080722