A Procedure for Oxytocin Measurement in Hair of Pig: Analytical Validation and a Pilot Application
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oxytocin Assay
2.2. Selection of the Solvent for the Sample Extraction Procedure
2.3. Assay Validation
2.4. Study Animals and Sampling
2.5. Statistical Analysis
3. Results
3.1. Selection of the Solvent for the Extraction Procedure
3.2. Oxytocin Assay Validation
3.3. Hair Oxytocin Concentrations in the Experimental Trial
3.4. Correlation of Oxytocin with Cortisol, Cortisone, and 11β-HSD Type 2 Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bielsky, I.F.; Young, L.J. Oxytocin, Vasopressin, and Social Recognition in Mammals. Peptides 2004, 25, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sato, S. Role of Oxytocin in Improving the Welfare of Farm Animals—A Review. Asian-Australas. J. Anim. Sci. 2016, 30, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Lürzel, S.; Bückendorf, L.; Waiblinger, S.; Rault, J.-L. Salivary Oxytocin in Pigs, Cattle, and Goats during Positive Human-Animal Interactions. Psychoneuroendocrinology 2020, 115, 104636. [Google Scholar] [CrossRef] [PubMed]
- López-Arjona, M.; Mateo, S.V.; Manteca, X.; Escribano, D.; Cerón, J.J.; Martínez-Subiela, S. Oxytocin in Saliva of Pigs: An Assay for Its Measurement and Changes after Farrowing. Domest. Anim. Endocrinol. 2020, 70, 106384. [Google Scholar] [CrossRef]
- López-Arjona, M.; Padilla, L.; Roca, J.; Cerón, J.J.; Martínez-Subiela, S. Ejaculate Collection Influences the Salivary Oxytocin Concentrations in Breeding Male Pigs. Animals 2020, 10, 1268. [Google Scholar] [CrossRef]
- Duran, M.C.; Janz, D.M.; Waldner, C.L.; Campbell, J.R.; Marques, F.J. Hair Cortisol Concentration as a Stress Biomarker in Horses: Associations With Body Location and Surgical Castration. J. Equine Vet. Sci. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- López-Arjona, M.; Tecles, F.; Mateo, S.V.; Contreras-Aguilar, M.D.; Martínez-Miró, S.; Cerón, J.J.; Martínez-Subiela, S. Measurement of Cortisol, Cortisone and 11β-Hydroxysteroid Dehydrogenase Type 2 Activity in Hair of Sows during Different Phases of the Reproductive Cycle. Vet. J. 2020, 259, 105458. [Google Scholar] [CrossRef] [PubMed]
- Bacci, M.L.; Nannoni, E.; Govoni, N.; Scorrano, F.; Zannoni, A.; Forni, M.; Martelli, G.; Sardi, L. Hair Cortisol Determination in Sows in Two Consecutive Reproductive Cycles. Reprod. Biol. 2014, 14, 218–223. [Google Scholar] [CrossRef]
- Heimbürge, S.; Kanitz, E.; Otten, W. The Use of Hair Cortisol for the Assessment of Stress in Animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef]
- Wiechers, D.H.; Brunner, S.; Herbrandt, S.; Kemper, N.; Fels, M. Analysis of Hair Cortisol as an Indicator of Chronic Stress in Pigs in Two Different Farrowing Systems. Front. Vet. Sci. 2021, 8, 605078. [Google Scholar] [CrossRef]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; de Rijke, Y.B.; van den Akker, E.L.T.; van Rossum, E.F.C. Determinants of Hair Cortisol and Hair Cortisone Concentrations in Adults. Psychoneuroendocrinology 2015, 60, 182–194. [Google Scholar] [CrossRef]
- Marshall-Pescini, S.; Schaebs, F.S.; Gaugg, A.; Meinert, A.; Deschner, T.; Range, F. The Role of Oxytocin in the Dog–Owner Relationship. Animals 2019, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of Endogenous Cortisol Concentrations in the Hair of Rhesus Macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Madry, M.M.; Kraemer, T.; Baumgartner, M.R. Systematic Assessment of Different Solvents for the Extraction of Drugs of Abuse and Pharmaceuticals from an Authentic Hair Pool. Forensic Sci. Int. 2018, 282, 137–143. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003; ISBN 978-0-618-12405-3. [Google Scholar]
- Belec, L.; Blankenship, J.W.; Lubell, W.D. Examination of Structural Characteristics of the Potent Oxytocin Antagonists [DPen1,Pen6]-OT and [DPen1,Pen6, 5-TBuPro7]-OT by NMR, Raman, CD Spectroscopy and Molecular Modeling. J. Pept. Sci. 2005, 11, 365–378. [Google Scholar] [CrossRef]
- Mishra, M.; Ali, S.; Das, M. A New Extraction Method for the Determination of Oxytocin in Milk by Enzyme Immune Assay or High-Performance Liquid Chromatography: Validation by Liquid Chromatography–Mass Spectrometry. Food Anal. Methods 2013, 6, 1308–1319. [Google Scholar] [CrossRef]
- Dreiling, C.E.; Carman, F.S.; Brown, D.E. Maternal Endocrine and Fetal Metabolic Responses to Heat Stress. J. Dairy Sci. 1991, 74, 312–327. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Bruzelius, G.; Alster, P.; Lundeberg, T. The Antinociceptive Effect of Non-Noxious Sensory Stimulation Is Mediated Partly through Oxytocinergic Mechanisms. Acta Physiol. Scand. 1993, 149, 199–204. [Google Scholar] [CrossRef]
- Behringer, V.; Deschner, T. Non-Invasive Monitoring of Physiological Markers in Primates. Horm. Behav. 2017, 91, 3–18. [Google Scholar] [CrossRef]
- Bisschop, P.H.; Dekker, M.J.H.J.; Osterthun, W.; Kwakkel, J.; Anink, J.J.; Boelen, A.; Unmehopa, U.A.; Koper, J.W.; Lamberts, S.W.J.; Stewart, P.M.; et al. Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 in the Human Hypothalamus. J. Neuroendocrinol. 2013, 25, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.-L. Oxytocin as an Indicator of Psychological and Social Well-Being in Domesticated Animals: A Critical Review. Front. Psychol. 2017, 8, 1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.E.; Saphire-Bernstein, S.; Seeman, T.E. Are Plasma Oxytocin in Women and Plasma Vasopressin in Men Biomarkers of Distressed Pair-Bond Relationships? Psychol. Sci. 2010, 21, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Hoge, E.A.; Pollack, M.H.; Kaufman, R.E.; Zak, P.J.; Simon, N.M. Oxytocin Levels in Social Anxiety Disorder. CNS Neurosci. Ther. 2008, 14, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.A.; Tops, M. Possible Involvement of Oxytocin in Modulating the Stress Response in Lactating Dairy Cows. Front. Psychol. 2014, 5, 951. [Google Scholar] [CrossRef] [Green Version]
- Quintana, D.S.; Guastella, A.J. An Allostatic Theory of Oxytocin. Trends Cogn. Sci. 2020, 24, 515–528. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.L.; Wilson, S.R.; Martin, W.L.; Davis, J.M.; Nazarloo, H.P.; Carter, C.S. Challenges for Measuring Oxytocin: The Blind Men and the Elephant? Psychoneuroendocrinology 2019, 107, 225–231. [Google Scholar] [CrossRef]
- Prims, S.; Vanden Hole, C.; Van Cruchten, S.; Van Ginneken, C.; Van Ostade, X.; Casteleyn, C. Hair or Salivary Cortisol Analysis to Identify Chronic Stress in Piglets? Vet. J. 2019, 252, 105357. [Google Scholar] [CrossRef] [PubMed]
- López-Arjona, M.; Mateo, S.V.; Escribano, D.; Tecles, F.; Cerón, J.J.; Martínez-Subiela, S. Effect of Reduction and Alkylation Treatment in Three Different Assays Used for the Measurement of Oxytocin in Saliva of Pigs. Domest. Anim. Endocrinol. 2021, 74, 106498. [Google Scholar] [CrossRef]
Sample | Extractor | Internal Standard | Internal Standard (pg/mL) | Sample Concentration (pg/mL) | Expected Value (pg/mL) | Obtained Value (pg/mL) | Extraction Efficiencies (%) | Recovery Average ± Standard Deviation (%) |
---|---|---|---|---|---|---|---|---|
Sample 1 | Methanol | Oxytocin–BSA | 1000 | 417.4 | 708.7 | 657.4 | 92.7 | 103.4 ± 19.9 |
Sample 2 | Methanol | Oxytocin–BSA | 1000 | 293.9 | 646.9 | 778.8 | 120.4 | |
Sample 3 | Methanol | Oxytocin–BSA | 1000 | 159.0 | 579.5 | 695.1 | 119.9 | |
Sample 4 | Methanol | Oxytocin–BSA | 1000 | 44.1 | 522.1 | 421.5 | 80.7 | |
Sample 1 | Acetonitrile | Oxytocin–BSA | 1000 | 370.0 | 685.0 | 520.6 | 76.0 | 57.3 ± 19.7 |
Sample 2 | Acetonitrile | Oxytocin–BSA | 1000 | 225.6 | 612.8 | 417.9 | 68.2 | |
Sample 3 | Acetonitrile | Oxytocin–BSA | 1000 | 42.3 | 521.2 | 163.2 | 31.3 | |
Sample 4 | Acetonitrile | Oxytocin–BSA | 1000 | 77.9 | 538.9 | 288.5 | 53.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Arjona, M.; Tecles, F.; Mateo, S.V.; Contreras-Aguilar, M.D.; Martínez-Miró, S.; Cerón, J.J.; Martínez-Subiela, S. A Procedure for Oxytocin Measurement in Hair of Pig: Analytical Validation and a Pilot Application. Biology 2021, 10, 527. https://doi.org/10.3390/biology10060527
López-Arjona M, Tecles F, Mateo SV, Contreras-Aguilar MD, Martínez-Miró S, Cerón JJ, Martínez-Subiela S. A Procedure for Oxytocin Measurement in Hair of Pig: Analytical Validation and a Pilot Application. Biology. 2021; 10(6):527. https://doi.org/10.3390/biology10060527
Chicago/Turabian StyleLópez-Arjona, Marina, Fernando Tecles, Sandra V. Mateo, María Dolores Contreras-Aguilar, Silvia Martínez-Miró, José Joaquín Cerón, and Silvia Martínez-Subiela. 2021. "A Procedure for Oxytocin Measurement in Hair of Pig: Analytical Validation and a Pilot Application" Biology 10, no. 6: 527. https://doi.org/10.3390/biology10060527
APA StyleLópez-Arjona, M., Tecles, F., Mateo, S. V., Contreras-Aguilar, M. D., Martínez-Miró, S., Cerón, J. J., & Martínez-Subiela, S. (2021). A Procedure for Oxytocin Measurement in Hair of Pig: Analytical Validation and a Pilot Application. Biology, 10(6), 527. https://doi.org/10.3390/biology10060527