Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Water Ozonation
2.2. Standardization and Quantification of O3 in Water Using the Spectrophotometric Method
2.3. Assessment of O3 Stability in Water Following Ozonation
2.3.1. First Step: O3 Stability in Ultrapure Water after Physicochemical Feature Changes
2.3.2. Second Step: Checking Best Physicochemical Conditions for O3 Stability in Tap Water
2.4. Determining the Biocidal Activity of Ozonized Water in Pathogenic Microorganisms
2.5. Analysis of Microbials’ Morpho-Structural Changes Using Scanning Electron Microscopy
2.6. Cytotoxicity Assay
3. Results and discussion
3.1. O3 stability in Water
3.2. Biocidal Effect of Ozonized Tap Water
3.3. Microbials’ Morpho-Structural Changes Upon Incubation of Ozonized Tap Water
3.4. Cytotoxicity of Ozonized Tap Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cicerone, R.J. Changes in Stratospheric Ozone. Science 1987, 237, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
- Scott, D.B.; Lesher, E.C. Effect of Ozone on Survival and Permeability of Escherichia Coli. J. Bacteriol. 1963, 85, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baysan, A.; Beighton, D. Assessment of the Ozone-Mediated Killing of Bacteria in Infected Dentine Associated with Non-Cavitated Occlusal Carious Lesions. Caries Res. 2007, 41, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Breidablik, H.; Lysebo, D.; Johannessen, L.; Skare, Å.; Andersen, J.; Kleiven, O. Ozonized water as an alternative to alcohol-based hand disinfection. J. Hosp. Infect. 2019, 102, 419–424. [Google Scholar] [CrossRef] [PubMed]
- De Alba, A.M.; Rubio, M.; Morán-Diez, M.; Bernabéu, C.; Hermosa, R.; Monte, E. Microbiological Evaluation of the Disinfecting Potential of UV-C and UV-C Plus Ozone Generating Robots. Microorganisms 2021, 9, 172. [Google Scholar] [CrossRef]
- Maurya, D.; Gohil, M.K.; Sonawane, U.; Kumar, D.; Awasthi, A.; Prajapati, A.K.; Kishnani, K.; Srivastava, J.; Age, A.; Pol, R.; et al. Development of Autonomous Advanced Disinfection Tunnel to Tackle External Surface Disinfection of Covid-19 Virus in Public Places. Transact. Indian Natl. Acad. Eng. 2020, 5, 281–287. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Grace, K.; Shukla, M.; Dasgupta, A.; Chopra, S. Alternative Therapies to Antibiotics to Combat Drug-Resistant Bacterial Pathogens. In Antibacterial Drug Discovery to Combat Mdr: Natural Compounds, Nanotechnology and Novel Synthetic Sources; Iqbal, A., Shamim, A., Rumbaugh, K.P., Eds.; Springer: Singapore, 2019; pp. 193–212. [Google Scholar]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascarenhas, L.A.; Oliveira, F.O.; da Silva, E.S.; dos Santos, L.M.; de Alencar Pereira Rodrigues, L.; Neves, P.R.; Santos, A.Á.; Moreira, G.A.; Lobato, G.M.; Nascimento, C.; et al. Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices. Appl. Sci. 2021, 11, 3081. [Google Scholar] [CrossRef]
- Wood, J.P.; Wendling, M.; Richter, W.; Rogers, J. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS ONE 2020, 15, e0233291. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zeng, Q.; Xiang, Y.; Gao, L.; Huang, J.; Huang, J.; Wu, K.; Lu, J. The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Mol. Med. Rep. 2017, 17, 2449–2455. [Google Scholar] [CrossRef] [Green Version]
- Białoszewski, D.; Bocian, E.; Bukowska, B.; Czajkowska, M.; Sokół-Leszczyńska, B.; Tyski, S. Antimicrobial activity of ozonated water. Med. Sci. Monit. 2010, 16, 71–75. [Google Scholar]
- Akbar, A.; Medina, A.; Magan, N. Potential Control of Mycotoxigenic Fungi and Ochratoxin A in Stored Coffee Using Gaseous Ozone Treatment. Microorganisms 2020, 8, 1462. [Google Scholar] [CrossRef] [PubMed]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous Ozonation to Reduce Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbezoglu, I.; Zan, R.; Tunç, T.; Sumer, Z.; Hurmuzlu, F. Antifungal Efficacy of Aqueous and Gaseous Ozone in Root Canals Infected by Candida albicans. Jundishapur J. Microbiol. 2013, 6, 8150. [Google Scholar] [CrossRef] [Green Version]
- Dubuis, M.-E.; Dumont-Leblond, N.; Laliberté, C.; Veillette, M.; Turgeon, N.; Jean, J.; Duchaine, C. Ozone efficacy for the control of airborne viruses: Bacteriophage and norovirus models. PLoS ONE 2020, 15, e0231164. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.J.; Chen, N.; Shen, Z.Q.; Yin, J.; Qiu, Z.G.; Miao, J.; Yang, Z.W.; Shi, D.Y.; Wang, H.R.; Wang, X.W.; et al. Inactivation of Poliovirus by Ozone and the Impact of Ozone on the Viral Genome. Biomed. Environ. Sci. 2019, 32, 324–333. [Google Scholar] [PubMed]
- Brié, A.; Boudaud, N.; Mssihid, A.; Loutreul, J.; Bertrand, I.; Gantzer, C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol. 2018, 70, 1–6. [Google Scholar] [CrossRef]
- Victorin, K. Review of the genotoxicity of ozone. Mutat. Res. Genet. Toxicol. 1992, 277, 221–238. [Google Scholar] [CrossRef]
- Gandhi, C.K.; Mikerov, A.N.; Durrani, F.; Umstead, T.M.; Hu, S.; Wang, G.; Phelps, D.S.; Floros, J. Impact of Ozone, Sex, and Gonadal Hormones on Bronchoalveolar Lavage Characteristics and Survival in SP-A KO Mice Infected with Klebsiella pneumoniae. Microorganisms 2020, 8, 1354. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Jardim, W.F. Trends and strategies of ozone application in environmental problems. Quím. Nova 2006, 29, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Ricevuti, G.; Galoforo, A.; Franzini, M. Microbiological aspects of ozone: Bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Langlais, B.; Reckhow, D.A.; Brink, D.R.; Awwa Research Foundation; Compagnie Générale des Eaux. Ozone in Water Treatment: Application and Engineering: Cooperative Research Report; Lewis Publishers: Chelsea, MI, USA, 1991. [Google Scholar]
- Filho, F.A.L. Ozone application in water sources: Effects of operational parameters and water quality variables on ozone residual profiles and decay rates. Braz. J. Chem. Eng. 2010, 27, 545–554. [Google Scholar] [CrossRef]
- Megahed, A.; Aldridge, B.; Lowe, J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS ONE 2018, 13, e0196555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Sánchez, G. Ozonized Water, Background, General Use in Medicine and Preclinic Support. Ozone Therapy Glob. J. 2019, 9, 33–60. [Google Scholar]
- United States Environmental Protection Agency. Alternative Disinfectants and Oxidants Guidance Manual; United States Environmental Protection Agency: Washington, DC, USA, 1999; p. 328. [Google Scholar]
- Fontes, B.; Heimbecker, A.M.C.; Brito, G.D.S.; Costa, S.F.; van der Heijden, I.M.; Levin, A.S.; Rasslan, S. Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect. Dis. 2012, 12, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shechter, H. Spectrophotometric method for determination of ozone in aqueous solutions. Water Res. 1973, 7, 729–739. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of Ozone in Water: A Review. Ozone Sci. Eng. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Bialoszewski, D.; Pietruczuk-Padzik, A.; Kalicinska, A.; Bocian, E.; Czajkowska, M.; Bukowska, B.; Tyski, S. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Med. Sci. Monit. 2011, 17, BR339–BR344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, W.; Jin, W.; Cao, S.; Zhou, X.; Wang, C.; Jiang, Q.; Huang, H.; Tu, R.; Han, S.-F.; Wang, Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Res. 2019, 160, 339–349. [Google Scholar] [CrossRef] [PubMed]
- De Vries, T.A.; Hamilton, M.A. Estimating the Antimicrobial Log Reduction: Part Quantitative Assays. Quant. Microbiol. 1999, 1, 29–45. [Google Scholar] [CrossRef]
- Bastos, T.M.; Russo, H.M.; Moretti, N.S.; Schenkman, S.; Marcourt, L.; Gupta, M.P.; Wolfender, J.-L.; Queiroz, E.F.; Soares, M.B.P. Chemical Constituents of Anacardium occidentale as Inhibitors of Trypanosoma cruzi Sirtuins. Molecules 2019, 24, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, M.; Ceci, M.; Felisa, E.; Poggio, C.; Pietrocola, G. Cytotoxicity evaluation of a new ozonized olive oil. Eur. J. Dent. 2018, 12, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Khadre, M.; Yousef, A.E.; Kim, J.-G. Microbiological Aspects of Ozone Applications in Food: A Review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Di Bernardo, L.; Dantas, A.D. Métodos E Técnicas De Tratamento De Água. Engenharia Sanitaria e Ambiental 2006, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Qingshi, Z.; Cunli, L.; Zhengyu, X. A Study of Contacting Systems in Water and Wastewater Disinfection by Ozone. Mechanism of Ozone Transfer and Inactivation Related to the Contacting Method Selection. Ozone Sci. Eng. 1989, 11, 169–188. [Google Scholar] [CrossRef]
- Tjahjanto, R.T.; Wardhani, S.; Brawijaya University. Ozone Determination: A Comparison of Quantitative Analysis Methods. J. Pure Appl. Chem. Res. 2012, 1, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 1999, 33, 2265–2276. [Google Scholar] [CrossRef]
- Rahman, M.F.; Jasim, S.Y.; Yanful, E.K.; Ndiongue, S.; Borikar, D. Advanced Oxidation Treatment of Drinking Water: Part II. Turbidity, Particles and Organics Removal from Lake Huron Water. Ozone Sci. Eng. 2010, 32, 295–304. [Google Scholar] [CrossRef]
- Kim, J.-G.; Yousef, A.E.; Khadre, M.A. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 2003, 45, 167–218. [Google Scholar] [CrossRef] [PubMed]
- Gorito, A.M.; Pesqueira, J.F.; Moreira, N.F.; Ribeiro, A.R.; Pereira, M.F.; Nunes, O.C.; Almeida, C.M.; Silva, A.M. Ozone-Based Water Treatment (O3, O3/Uv, O3/H2O2) for Removal of Organic Micropollutants, Bacteria Inactivation and Regrowth Prevention. J. Environ. Chem. Eng. 2021, 9, 105315. [Google Scholar] [CrossRef]
- Nöthe, T.; Fahlenkamp, H.; von Sonntag, C. Ozonation of Wastewater: Rate of Ozone Consumption and Hydroxyl Radical Yield. Environ. Sci. Technol. 2009, 43, 5990–5995. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wang, X. Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions. Ind. Eng. Chem. Res. 2009, 48, 5123. [Google Scholar] [CrossRef] [Green Version]
- Ginot, F.; Lenavetier, T.; Dedovets, D.; Deville, S. Solute strongly impacts freezing under confinement. Appl. Phys. Lett. 2020, 116, 253701. [Google Scholar] [CrossRef]
- Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 2007, 128, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Sória, M.; Tavares, V.E.Q.; Pinto, M.A.B.; Stumpf, L.; Zarnott, D.; Bubolz, J.; Nörenberg, B.G. Evaluation of physicochemical water parameters in watersheds of southern Brazil. Ambient. Agua Interdiscip. J. Appl. Sci. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Ermellino, I.; Insola, A.; Tufano, V. Ozone Solubility in Phosphate-Buffered Aqueous Solutions: Effect of Temperature,tert-Butyl Alcohol, and pH. Ind. Eng. Chem. Res. 1996, 35, 1467–1471. [Google Scholar] [CrossRef]
- Vannini, A.; Canali, G.; Pica, M.; Nali, C.; Loppi, S. The Water Content Drives the Susceptibility of the Lichen Evernia prunastri and the Moss Brachythecium sp. to High Ozone Concentrations. Biology 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Peirone, C.; Capita, R.; Alonso-Calleja, C.; Marques-Magallanes, J.; Pires, I.; Maltez, L.; Pereira, J.; Igrejas, G.; Poeta, P. Topical Application of Ozonated Oils for the Treatment of MRSA Skin Infection in an Animal Model of Infected Ulcer. Biology 2021, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A.D.S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans. Biomolecules 2015, 5, 142–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ersoy, Z.G.; Barisci, S.; Dinc, O. Mechanisms of the Escherichia Coli and Enterococcus Faecalis Inactivation by Ozone. LWT 2019, 100, 306–313. [Google Scholar] [CrossRef]
- World Health Organization. Who Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge: Clean Care is Safer Care; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Larson, E.L.; Cronquist, A.B.; Whittier, S.; Lai, L.; Lyle, C.T.; Della Latta, P. Differences in skin flora between inpatients and chronically ill outpatients. Heart Lung 2000, 29, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Saito, A.; Sudaryatma, P.E.; Sugiyama, H.; Okabayashi, T.; Fujimoto, S. Rapid Inactivation of Sars-Cov-2 with Ozone Water. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shin, G.-A.; Sobsey, M.D. Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by Ozone Disinfection of Water. Appl. Environ. Microbiol. 2003, 69, 3975–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, Q.; Zhang, J.; Yang, X.; Desk, S. Alteration in Escherichia coli and Streptococcus faecalis cells induced by ozone. SDRP J. Food Sci. Technol. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Komanapalli, I.R.; Lau, B.H. Inactivation of Bacteriophage Lambda, Escherichia Coli, and Candida Albicans by Ozone. Appl. Microbiol. Biotechnol. 1998, 49, 766–769. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal Properties of Ozone and Its Potential Application as a Terminal Disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Standardization. EN 1040-Basic Bactericidal Activity. UNE-EN 1040: 2006. Quantitative Suspension Test for the Evaluation of Basic Bactericidal Activity (Phase 1). Accredited by ENAC; European Committee for Standardization: Brussels, Belgium, 2006; Volume 44. [Google Scholar]
- Ouf, S.A.; Moussa, T.A.; Abd-Elmegeed, A.M.; Eltahlawy, S.R. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016, 47, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirmortazavi, A.; Haghi, H.R.; Fata, A.; Zarrinfar, H.; Bagheri, H.; Mehranfard, A. Kinetics of antifungal activity of home-generated ozonated water on Candida albicans. Curr. Med. Mycol. 2018, 4, 27–31. [Google Scholar] [CrossRef]
- Moger, G.; Khatri, I.; Kumar, N.A. Evaluation of effect of topical ozone therapy on salivary Candidal carriage in oral candidiasis. Indian J. Dent. Res. 2015, 26, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Zargaran, M.; Fatahinia, M.; Mahmoudabadi, A.Z. The efficacy of gaseous ozone against different forms of Candida albicans. Curr. Med. Mycol. 2017, 3, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Wigginton, K.R.; Kohn, T. Virus disinfection mechanisms: The role of virus composition, structure, and function. Curr. Opin. Virol. 2012, 2, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Silva, O.; Morales-Valle, H.; Venâncio, A. Potential of Aqueous Ozone to Control Aflatoxigenic Fungi in Brazil Nuts. ISRN Biotechnol. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubeneck, U.; Hugo, W.B. (Eds.) Inhibition and Destruction of the Microbial Cell. Xiii + 819 S., 47 Abb., 118 Tab; Academic Press: London, UK; New York, NY, USA, 1971. [Google Scholar]
- Thanomsub, B.; Anupunpisit, V.; Chanphetch, S.; Watcharachaipong, T.; Poonkhum, R.; Srisukonth, C. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 2002, 48, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Elvis, A.M.; Ekta, J.S. Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med. 2011, 2, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, Q.; Zhang, J.; Yang, X. Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J. Appl. Microbiol. 2011, 111, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Alia, A.S.; Kholoud, K.H.A.-O. The effect of ozone on bacterial vaginosis and how it is affected by ultrastructural changes of cells by transmission electron microscope (TEM). Afr. J. Microbiol. Res. 2014, 8, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Valdramidis, V.; Karatzas, K.A.G.; Cullen, P.; Bourke, P. Assessing the microbial oxidative stress mechanism of ozone treatment through the responses of Escherichia coli mutants. J. Appl. Microbiol. 2011, 111, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Tonus, S.S.; Oğuzkan, S.B.; Uğraş, H.I.; Kıılıç, I.H. Determining the cytotoxic effect potential of ozonated hazelnut oil. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Bocci, V. Ozone as Janus: This controversial gas can be either toxic or medically useful. Mediat. Inflamm. 2004, 13, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Seyam, O.; Smith, N.L.; Reid, I.; Gandhi, J.; Jiang, W. Clinical utility of ozone therapy for musculoskeletal disorders. Med. Gas. Res. 2018, 8, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Junior, J.O.; Lages, G.V. Ozonioterapia Em Lombociatalgia. Rev. Dor 2012, 13, 261–270. [Google Scholar] [CrossRef]
- Gavazza, A.; Marchegiani, A.; Rossi, G.; Franzini, M.; Spaterna, A.; Mangiaterra, S.; Cerquetella, M. Ozone Therapy as a Possible Option in COVID-19 Management. Front. Public Health 2020, 8, 417. [Google Scholar] [CrossRef]
- Izadi, M.; Kheirjou, R.; Mohammadpour, R.; Aliyoldashi, M.H.; Moghadam, S.J.; Khorvash, F.; Jafari, N.J.; Shirvani, S.; Khalili, N. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 822–825. [Google Scholar] [CrossRef] [PubMed]
- ANVISA, National Health Surveillance Agency. Identificação De Possível Caso De Candida Auris No Brasil. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2020/identificacao-de-possivel-caso-de-candida-auris-no-brasil/ALERTA012020CANDIDAAURIS07.12.2020_2.pdf (accessed on 4 January 2021).
- Alfouzan, W.; Dhar, R.; Albarrag, A.; Al-Abdely, H. The emerging pathogen Candida auris: A focus on the Middle-Eastern countries. J. Infect. Public Health 2019, 12, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Kanamori, H.; Gergen, M.F.; Sickbert-Bennett, E.E.; Weber, D.J. Susceptibility of Candida auris and Candida albicans to 21 germicides used in healthcare facilities. Infect. Control. Hosp. Epidemiology 2019, 40, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Cadnum, J.L.; Shaikh, A.A.; Piedrahita, C.T.; Sankar, T.; Jencson, A.L.; Larkin, E.L.; Ghannoum, M.A.; Donskey, C.J. Effectiveness of Disinfectants against Candida Auris and Other Candida Species. Infect. Control. Hosp. Epidemiol. 2017, 38, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Le, T.; Liu, Z.; Wang, L.; Guo, H.; Yang, J.; Chen, Q.; Hu, J. Different efficacies of common disinfection methods against candida auris and other candida species. J. Infect. Public Health 2020, 13, 730–736. [Google Scholar] [CrossRef]
- Livingston, S.; Cadnum, J.L.; Gestrich, S.; Jencson, A.L.; Donskey, C.J. Efficacy of automated disinfection with ozonated water in reducing sink drainage system colonization with Pseudomonas species and Candida auris. Infect. Control. Hosp. Epidemiol. 2018, 39, 1497–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogales, C.G.; Ferreira, M.B.; Montemor, A.F.; Rodrigues, M.F.D.A.; Lage-Marques, J.L.; Antoniazzi, J.H. Ozone therapy as an adjuvant for endondontic protocols: Microbiological—Ex vivo study and citotoxicity analyses. J. Appl. Oral Sci. 2016, 24, 607–613. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.M.C.d.; Silva, E.S.d.; Oliveira, F.O.; Rodrigues, L.d.A.P.; Neves, P.R.F.; Meira, C.S.; Moreira, G.A.F.; Lobato, G.M.; Nascimento, C.; Gerhardt, M.; et al. Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology 2021, 10, 525. https://doi.org/10.3390/biology10060525
Santos LMCd, Silva ESd, Oliveira FO, Rodrigues LdAP, Neves PRF, Meira CS, Moreira GAF, Lobato GM, Nascimento C, Gerhardt M, et al. Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology. 2021; 10(6):525. https://doi.org/10.3390/biology10060525
Chicago/Turabian StyleSantos, Laerte Marlon Conceição dos, Eduardo Santos da Silva, Fabricia Oliveira Oliveira, Leticia de Alencar Pereira Rodrigues, Paulo Roberto Freitas Neves, Cássio Santana Meira, Greta Almeida Fernandes Moreira, Gabriela Monteiro Lobato, Carlos Nascimento, Marcelo Gerhardt, and et al. 2021. "Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity" Biology 10, no. 6: 525. https://doi.org/10.3390/biology10060525
APA StyleSantos, L. M. C. d., Silva, E. S. d., Oliveira, F. O., Rodrigues, L. d. A. P., Neves, P. R. F., Meira, C. S., Moreira, G. A. F., Lobato, G. M., Nascimento, C., Gerhardt, M., Lessa, A. S., Mascarenhas, L. A. B., & Machado, B. A. S. (2021). Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology, 10(6), 525. https://doi.org/10.3390/biology10060525