Next Issue
Volume 11, March
Previous Issue
Volume 11, January
 
 

Fibers, Volume 11, Issue 2 (February 2023) – 11 articles

Cover Story (view full-size image): Scientists aim to create innovative solutions to develop drugs with improved therapeutic potential. Conventional dosage forms have limitations for advanced therapeutics, such as drug targeting. To address these limitations, nanofibers have emerged as novel materials, offering enhanced bioavailability, targeted drug release, and reduced toxicity. This review focuses on drug-loaded nanofibers and their potential in drug delivery, exploring different production methods. It highlights the importance, versatility, and adaptability of nanofibers in developing medicines with varied drug release kinetics. Challenges to their commercial realization include drug loading, the initial burst effect, residual organic solvent, active agent stability, and use of biocompatible polymers. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
9 pages, 2149 KiB  
Article
Compression of Few-Microjoule Femtosecond Pulses in a Hollow-Core Revolver Fiber
by Leonid Losev, Vladimir Pazyuk, Alexey Gladyshev, Yury Yatsenko, Alexey Kosolapov and Igor Bufetov
Fibers 2023, 11(2), 22; https://doi.org/10.3390/fib11020022 - 20 Feb 2023
Cited by 2 | Viewed by 2015
Abstract
Gas-filled hollow-core fibers are a convenient tool for laser pulse compression down to a few-cycle duration. The development of compact, efficient and high quality compression schemes for laser pulses of relatively low μJ-level energies is of particular interest. In this work, temporal pulse [...] Read more.
Gas-filled hollow-core fibers are a convenient tool for laser pulse compression down to a few-cycle duration. The development of compact, efficient and high quality compression schemes for laser pulses of relatively low μJ-level energies is of particular interest. In this work, temporal pulse compression based on nonlinear spectral broadening in a xenon-filled revolver fiber followed by a chirped mirror system is investigated. A 250 fs pulse at a central wavelength of 1.03 μm is compressed to 13.3 fs when the xenon pressure was tuned to provide zero group velocity dispersion near 1.03 μm. The energies of input and compressed pulses are 3.8 and 2.7 μJ, respectively. The compression quality factor of 1.8 is achieved. Full article
Show Figures

Figure 1

37 pages, 8935 KiB  
Review
Nanofibres in Drug Delivery Applications
by Samia Farhaj, Barbara R. Conway and Muhammad Usman Ghori
Fibers 2023, 11(2), 21; https://doi.org/10.3390/fib11020021 - 17 Feb 2023
Cited by 32 | Viewed by 7736
Abstract
Over the years, scientists have been continually striving to develop innovative solutions to design and fabricate medicines with improved therapeutic potential. Conventional dosage forms, such as tablets, capsules, and injections, are limited when exploited for advanced therapeutics, such as drug targeting. To cater [...] Read more.
Over the years, scientists have been continually striving to develop innovative solutions to design and fabricate medicines with improved therapeutic potential. Conventional dosage forms, such as tablets, capsules, and injections, are limited when exploited for advanced therapeutics, such as drug targeting. To cater to these limitations, nanofibres have emerged as novel nanomaterials to provide enhanced bioavailability, targeted drug release, extended drug release profile, minimum toxicity, and reduced dosage frequency, which has indisputably improved patient adherence and compliance. This review will concern understanding the potential of drug-loaded nanofibres in drug delivery while comprehending a detailed description of their different production methods. The literature has been thoroughly reviewed to appreciate their potential in developing nanofibrous-based pharmaceutical formulations. Overall, this review has highlighted the importance, versatility, and adaptability of nanofibres in developing medicines with varied drug release kinetics. Several problems must be resolved for their full commercial realisation, such as the drug loading, the initial burst effect, the residual organic solvent, the stability of active agents, and the combined usage of new or existing biocompatible polymers. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Graphical abstract

18 pages, 3407 KiB  
Article
On the Design of Permanent Rock Support Using Fibre-Reinforced Shotcrete
by Andreas Sjölander, Anders Ansell and Erik Nordström
Fibers 2023, 11(2), 20; https://doi.org/10.3390/fib11020020 - 16 Feb 2023
Cited by 3 | Viewed by 2395
Abstract
Fibre-reinforced shotcrete (sprayed concrete) is one of the major components in the support system for tunnels in hard rock. Several empirical design methodologies have been developed over the years due to the complexity and many uncertainties involved in rock support design. Therefore, this [...] Read more.
Fibre-reinforced shotcrete (sprayed concrete) is one of the major components in the support system for tunnels in hard rock. Several empirical design methodologies have been developed over the years due to the complexity and many uncertainties involved in rock support design. Therefore, this paper aims to highlight how the choice of design methodology and fibre type impacts the structural capacity of the lining and the emission of greenhouse gases (GHG). The paper starts with a review of different design methods. Then, an experimental campaign is presented in which the structural performance of shotcrete reinforced with various dosages of fibres made of steel, synthetic and basalt was compared. A case study is presented in which the permanent rock support is designed based on the presented design methods. Here, only the structural requirements were considered, and suitable dosages of fibres were selected based on the experimental results. The emission of GHG was calculated for all design options based on environmental product declarations for each fibre type. The result in this paper indicates that synthetic fibres have the greatest potential to lower the emissions of GHG in the design phase. Moreover, the choice of design method has a significant impact on the required dosage of fibres. Full article
Show Figures

Figure 1

21 pages, 1739 KiB  
Article
Thin-Layer Fibre-Reinforced Concrete Sandwich Walls: Numerical Evaluation
by Ulvis Skadiņš, Kristens Kuļevskis, Andris Vulāns and Raitis Brencis
Fibers 2023, 11(2), 19; https://doi.org/10.3390/fib11020019 - 9 Feb 2023
Viewed by 2048
Abstract
In this study, structural thin-layer sandwich walls (SWs) made of steel-fibre-reinforced concrete (SFRC) without conventional reinforcements were investigated. Other researchers have shown that SWs with thin wythes can be used as load bearing structures in low-rise buildings, thereby reducing the amount of concrete [...] Read more.
In this study, structural thin-layer sandwich walls (SWs) made of steel-fibre-reinforced concrete (SFRC) without conventional reinforcements were investigated. Other researchers have shown that SWs with thin wythes can be used as load bearing structures in low-rise buildings, thereby reducing the amount of concrete by 2–5 times if compared to conventional reinforced-concrete SWs. In most studies, relatively warm climatic regions are the focus, and thin-layer SWs with shear connectors to obtain a certain level of composite action are investigated. In almost no studies has sound insulation been evaluated. In this study, a numerical investigation of structural, thermal and sound insulation performances was carried out. The load-bearing capacities of composite and non-composite SWs are compared. Regions with the lowest five-day mean air temperature of −20 C were considered. The characteristics of the SW are compared to the requirements given in relevant European and Latvian standards. The minimum thermal insulation for family houses varies from 120 mm to 200 mm, depending on the material. To ensure sufficient sound insulation, the average thickness of the concrete wythes should be around 60 mm, preferably with a 15 mm difference between them. Structural analysis of the proposed wall panel was performed using non-linear finite element analysis software ATENA Science. The obtained load-bearing capacity exceeded the design loads of a single-story family house by around 100 times, regardless of the degree of composite action. Full article
Show Figures

Graphical abstract

19 pages, 4650 KiB  
Article
Characterization and Simulation of Acoustic Properties of Sugarcane Bagasse-Based Composite Using Artificial Neural Network Model
by Virginia Puyana-Romero, Jorge Santiago Arroyo Chuquín, Saúl Israel Méndez Chicaiza and Giuseppe Ciaburro
Fibers 2023, 11(2), 18; https://doi.org/10.3390/fib11020018 - 3 Feb 2023
Cited by 3 | Viewed by 2313
Abstract
Environmental sustainability and environmental protection represent essential challenges for the well-being of the community. The use of eco-sustainable materials in architecture is necessary for the transformation of urban centers into modern sustainable cities, to reduce air pollution and protect natural ecosystems, decrease greenhouse [...] Read more.
Environmental sustainability and environmental protection represent essential challenges for the well-being of the community. The use of eco-sustainable materials in architecture is necessary for the transformation of urban centers into modern sustainable cities, to reduce air pollution and protect natural ecosystems, decrease greenhouse gas emissions and improve the energy efficiency of buildings. In this study, sugar cane processing waste was used as an alternative and ecological acoustic material, combining it with natural binders used in construction, such as plaster and clay. To make the composite, the fibers were separated from the bark, then the fibers were assembled with the binder in the frames, and finally the frame with the composite was subjected to a drying process. Specimens of various thicknesses were prepared and the sound absorption coefficient (SAC) at normal incidence was calculated. Subsequently, to compare the acoustic performances of the samples, a simulation model for the prediction of the SAC based on the artificial neural network (ANN) was created. The results suggest the adoption of the simulation model to review the acoustic properties of the material. Full article
Show Figures

Figure 1

17 pages, 26870 KiB  
Review
Carbon Fiber-Reinforced Geopolymer Composites: A Review
by Vojtěch Růžek, Ardak Mukhamedievna Dostayeva, Janusz Walter, Thomas Grab and Kinga Korniejenko
Fibers 2023, 11(2), 17; https://doi.org/10.3390/fib11020017 - 1 Feb 2023
Cited by 15 | Viewed by 4434
Abstract
The article summarizes the state of the art in carbon-reinforced geopolymers. It takes into consideration various types of matrices and types of carbon fibers (CFs). The article shows the growing importance of this composite in the investigation conducted in recent years. Today, it [...] Read more.
The article summarizes the state of the art in carbon-reinforced geopolymers. It takes into consideration various types of matrices and types of carbon fibers (CFs). The article shows the growing importance of this composite in the investigation conducted in recent years. Today, it is one of the most promising modern research areas, taking into account the decrease in the prices of CFs and their appearance on the market waste-based CFs, as well as research on new methods of producing CFs from sustainable precursors. The research methods applied in the article are critical analyses of the literature. The results of the literature analysis are discussed in a comparative context, including production methods and the influence of CFs on geopolymer properties. The potential applications for carbon fiber-reinforced geopolymer composites are shown. Additionally, the current research challenges for geopolymer composites reinforced by CFs are presented. Full article
(This article belongs to the Special Issue Carbon Fibers from Sustainable Precursors)
Show Figures

Figure 1

17 pages, 3933 KiB  
Article
Effect of Cross-Linkers on the Processing of Lignin/Polyamide Precursors for Carbon Fibres
by Baljinder K. Kandola, Trishan A. M. Hewage, Muhammed Hajee and A. Richard Horrocks
Fibers 2023, 11(2), 16; https://doi.org/10.3390/fib11020016 - 29 Jan 2023
Cited by 1 | Viewed by 1583
Abstract
This work reports the use of cross-linkers in bio-based blends from hydroxypropyl-modified lignin (TcC) and a bio-based polyamide (PA1010) for possible use as carbon fibre precursors, which, while minimising their effects on melt processing into filaments, assist in cross-linking components during the subsequent [...] Read more.
This work reports the use of cross-linkers in bio-based blends from hydroxypropyl-modified lignin (TcC) and a bio-based polyamide (PA1010) for possible use as carbon fibre precursors, which, while minimising their effects on melt processing into filaments, assist in cross-linking components during the subsequent thermal stabilisation stage. Cross-linkers included a highly sterically hindered aliphatic hydrocarbon (Perkadox 30, PdX), a mono-functional organic peroxide (Triganox 311, TnX), and two different hydroxyalkylamides (Primid® XL-552 (PmD 552) and Primid® QM-1260 (PmD 1260)). The characterisation of melt-compounded samples of TcC/PA1010 containing PdX and TnX indicated considerable cross-linking via FTIR, DSC, DMA and rheology measurements. While both Primids showed some evidence of cross-linking, it was less than with PdX and TnX. This was corroborated via melt spinning of the melt-compounded chips or pellet-coated TcC/PA1010, each with cross-linker via a continuous, sub-pilot scale, melt-spinning process, where both Primids showed better processability. With the latter technique, while filaments could be produced, they were very brittle. To overcome this, melt-spun TcC/PA1010 filaments were immersed in aqueous solutions of PmD 552 and PmD 1260 at 80 °C. The resultant filaments could be easily thermally stabilised and showed evidence of cross-linking, producing higher char residues than the control filaments in the TGA experiments. Full article
(This article belongs to the Special Issue Fiber Composite Process)
Show Figures

Figure 1

28 pages, 6763 KiB  
Article
Reducing Plastic in Consumer Goods: Opportunities for Coarser Wool
by Lisbeth Løvbak Berg, Ingun Grimstad Klepp, Anna Schytte Sigaard, Jan Broda, Monika Rom and Katarzyna Kobiela-Mendrek
Fibers 2023, 11(2), 15; https://doi.org/10.3390/fib11020015 - 28 Jan 2023
Cited by 7 | Viewed by 5878
Abstract
Production and use of plastic products have drastically increased during the past decades and their environmental impacts are increasingly spotlighted. At the same time, coarse wool, a by-product of meat and dairy production, goes largely unexploited in the EU. This paper asks why [...] Read more.
Production and use of plastic products have drastically increased during the past decades and their environmental impacts are increasingly spotlighted. At the same time, coarse wool, a by-product of meat and dairy production, goes largely unexploited in the EU. This paper asks why more coarse wool is not used in consumer goods, such as acoustic and sound-absorbing products, garden products, and sanitary products. This is answered through a SWOT analysis of results from a desktop study and interviews with producers of these products made from wool, as well as policy documents relating to wool, waste, textiles, and plastic. Findings show that on a product level, the many inherent properties of wool create opportunities for product development and sustainability improvements and that using the coarser wool represents an opportunity for replacing plastics in many applications as well as for innovation. This is, however, dependent on local infrastructure and small-scale enterprises, but as such, it creates opportunities for local value chains, value creation, and safeguarding of local heritage. The shift to small-scale and local resource utilization requires systemic change on several levels: Here the findings show that policy can incentivize material usage transitions, but that these tools are little employed currently. Full article
(This article belongs to the Special Issue Natural Fiber Competitiveness and Sustainability)
Show Figures

Figure 1

15 pages, 5078 KiB  
Article
Investigation of the Influence of Hexabenzocoronene in Polyacrylonitrile-Based Precursors for Carbon Fibers
by Romy Peters, Dawon Jang, Daniel Sebastian Jens Wolz, Sungho Lee, Hubert Jäger, Mirko Richter, Chokri Cherif, Kiryl Vasiutovich, Marcus Richter, Xinliang Feng, Thomas Behnisch and Maik Gude
Fibers 2023, 11(2), 14; https://doi.org/10.3390/fib11020014 - 28 Jan 2023
Cited by 1 | Viewed by 2076
Abstract
For several decades, carbon fibers have been used for lightweight engineering in aircraft automotive and sports industries, mostly based on high-quality polyacrylonitrile (PAN). We investigated a novel PAN-based precursor fiber (PF) modified with a polycyclic aromatic hydrocarbon, namely hexabenzocoronene (HBC), which is expected [...] Read more.
For several decades, carbon fibers have been used for lightweight engineering in aircraft automotive and sports industries, mostly based on high-quality polyacrylonitrile (PAN). We investigated a novel PAN-based precursor fiber (PF) modified with a polycyclic aromatic hydrocarbon, namely hexabenzocoronene (HBC), which is expected to improve the thermal conversion process and to create a carbon fiber (CF) with enhanced mechanical properties. For this purpose, the novel PF and a spun-like homopolymeric PAN-based PF were thermally stabilized and carbonized in continuous lab-scale plants. The effect of the additive HBC on the conversion processes, fiber diameter and shape, density, and mechanical properties were investigated. The results showed that HBC seems to support stabilization reactions, and HBC/PAN-based PF show potentially higher stretchability of PF and stabilized fiber. The modified CF showed an improvement in Young’s modulus of about 25% at the same tensile strength compared to the unmodified PAN-based CF, resulting from enhanced crystalline orientation. The results showed a high potential of the HBC/PAN for energy-efficient production. In particular, the influence on tensile strength and modulus under optimized process conditions, as well as the possibility to use low quality PAN, need to be further investigated. Full article
Show Figures

Figure 1

19 pages, 2715 KiB  
Review
Physical, Chemical, and Mechanical Characterization of Natural Bark Fibers (NBFs) Reinforced Polymer Composites: A Bibliographic Review
by Sivasubramanian Palanisamy, Mayandi Kalimuthu, Rajini Nagarajan, José Maria Fernandes Marlet and Carlo Santulli
Fibers 2023, 11(2), 13; https://doi.org/10.3390/fib11020013 - 28 Jan 2023
Cited by 12 | Viewed by 3389
Abstract
The specific interest for the use of bark in materials, instead than for energy recovery, is owed to circular economy considerations, since bark fibers are normally byproducts or even waste from other sectors, and therefore their use would globally reduce the amount of [...] Read more.
The specific interest for the use of bark in materials, instead than for energy recovery, is owed to circular economy considerations, since bark fibers are normally byproducts or even waste from other sectors, and therefore their use would globally reduce the amount of refuse by replacing other materials in the production of composites. For the purpose of promoting their application in polymer composites, mainly under a geometry of short random fibers, bark fibers are extracted and treated, normally chemically by alkali. Following this, investigations are increasingly carried out on their chemical composition. More specifically, this includes measuring cellulose, hemicellulose, and lignin content and their modification with treatment on their thermal properties and degradation profile, and on the mechanical performance of the fibers and of the tentatively obtained composites. This work aims at reviewing the current state of studies, trying to elicit which bark fibers might be most promising among the potentially enormous number of these, clarifying which of these have received some attention in literature and trying to elicit the reason for this specific interest. These can be more thoroughly characterized for the purpose of further use, also in competition with other fibers not from bark, but from bast, leaves, etc., and pertaining to developed production systems (cotton, hemp, flax, jute, etc.). The latter are already widely employed in the production of composites, a possibility scantly explored so far for bark fibers. However, some initial works on bark fiber composites and both thermoplastic and thermosetting are indicated and the importance of some parameters (aspect ratio, chemical treatment) is discussed. Full article
(This article belongs to the Special Issue Plant Fibers II)
Show Figures

Figure 1

23 pages, 954 KiB  
Article
Natural and Sustainable? Consumers’ Textile Fiber Preferences
by Anna Schytte Sigaard and Kirsi Laitala
Fibers 2023, 11(2), 12; https://doi.org/10.3390/fib11020012 - 26 Jan 2023
Cited by 13 | Viewed by 11297
Abstract
Textile fibers have become a major issue in the debate on sustainable fashion and clothing consumption. While consumers are encouraged to choose more sustainable and circular textile materials, studies have indicated that a reduction in production and consumption has the greatest potential to [...] Read more.
Textile fibers have become a major issue in the debate on sustainable fashion and clothing consumption. While consumers are encouraged to choose more sustainable and circular textile materials, studies have indicated that a reduction in production and consumption has the greatest potential to reduce the total environmental impact. This can be considered an ecocentric perspective with a focus on degrowth as opposed to a technocentric view where new technologies are expected to solve environmental problems while economic growth continues. Based on a survey in Norway (N = 1284), we investigate how the techno- and ecocentric perspectives impact Norwegian consumers’ fiber preferences and perceptions and the corresponding effects on their clothing consumption. We found that the majority of consumers preferred natural fibers compared to synthetic materials. This contradicts current market practices and the recommendations by material sustainability comparison tools such as the Higg Material Sustainability Index (MSI), where many synthetics receive better ratings than natural fibers. We also found that perceptions of high sustainability regarding fibers were negatively correlated with reduced consumption. Our study suggests that a continued focus on material substitution and other technological measures for reducing climate change will impede the move toward sustainability in the textile sector. Full article
(This article belongs to the Special Issue Natural Fiber Competitiveness and Sustainability)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop