Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = defect passivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6698 KB  
Article
Sustainable High Corrosion Resistance in High-Concentration NaCl Solutions for Refractory High-Entropy Alloys with High Strength and Good Plasticity
by Shunhua Chen, Xinxin Liu, Chong Li, Wuji Wang and Xiaokang Yue
Entropy 2026, 28(1), 105; https://doi.org/10.3390/e28010105 - 15 Jan 2026
Viewed by 157
Abstract
Among corrosive environments, Cl is one of the most aggressive anions which can cause electrochemical corrosion and the resultant failures of alloys, and the increase in Cl concentration will further deteriorate the passive film in many conventional alloys. Here, we report [...] Read more.
Among corrosive environments, Cl is one of the most aggressive anions which can cause electrochemical corrosion and the resultant failures of alloys, and the increase in Cl concentration will further deteriorate the passive film in many conventional alloys. Here, we report single-phase Nb25Mo25Ta25Ti20W5Cx (x = 0.1, 0.3, 0.8 at.%) refractory high-entropy alloys (RHEAs) with excellent corrosion resistance in high-concentration NaCl solutions. According to potentiodynamic polarization, electrochemical impedance spectroscopy, corroded morphology and the current–time results, the RHEAs demonstrate even better corrosion resistance with the increase in NaCl concentration to 23.5 wt.%, significantly superior to 304 L stainless steel. Typically, the corrosion current density (icorr) and over-passivation potential (Et) reached the lowest and highest value, respectively, in the 23.5 wt.% NaCl solution, and the icorr (2.36 × 10−7 A/cm2) of Nb25Mo25Ta25Ti20W5C0.1 alloy is nearly two orders lower than that of 304 L stainless steel (1.75 × 10−5 A/cm2). The excellent corrosion resistance results from the formation of passive films with fewer defects and more stable oxides. Moreover, with the addition of the appropriate C element, the RHEAs also demonstrated improved strength and plasticity simultaneously, for example, the Nb25Mo25Ta25Ti20W5C0.3 alloy exhibited an average yield strength of 1368 MPa and a plastic strain of 19.7%. The present findings provide useful guidance to address the conflict between the excellent corrosion resistance and high strength of advanced alloys. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

39 pages, 4627 KB  
Review
Friction Stir Processing: An Eco-Efficient Route to High-Performance Surface Architectures in MMCs
by Sachin Kumar Sharma, Saša Milojević, Lokesh Kumar Sharma, Sandra Gajević, Yogesh Sharma, Mohit Sharma, Stefan Čukić and Blaža Stojanović
Processes 2026, 14(2), 306; https://doi.org/10.3390/pr14020306 - 15 Jan 2026
Viewed by 126
Abstract
Friction Stir Processing (FSP) has emerged as an advanced solid-state surface engineering technique for tailoring high-performance surface architectures in metal matrix composites (MMCs). By combining localized thermo-mechanical deformation with controlled material flow, FSP enables grain refinement, homogeneous dispersion of reinforcement, and strong interfacial [...] Read more.
Friction Stir Processing (FSP) has emerged as an advanced solid-state surface engineering technique for tailoring high-performance surface architectures in metal matrix composites (MMCs). By combining localized thermo-mechanical deformation with controlled material flow, FSP enables grain refinement, homogeneous dispersion of reinforcement, and strong interfacial bonding without melting or altering bulk properties. This review critically examines the role of FSP in enhancing the mechanical, tribological, and corrosion performance of composites, with emphasis on process–structure–property relationships. Key strengthening mechanisms, including grain boundary strengthening, load transfer, particle pinning, and defect elimination, are systematically discussed, along with their implications for wear resistance, fatigue life, and durability. Special attention is given to corrosion and tribo-corrosion behavior, highlighting electrochemical mechanisms such as micro-galvanic interactions, passive film stability, and interfacial chemistry. Furthermore, the eco-efficiency, industrial viability, and sustainability advantages of FSP are evaluated in comparison with conventional surface modification techniques. The review concludes by identifying critical challenges and outlining future research directions for the scalable, multifunctional, and sustainable design of composite surfaces. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 3250 KB  
Article
Engineered PN MoS2–Al2O3-Based Photodiode Device for High-Performance NIR LiDAR and Sensing Applications
by Ahmed Abdelhady A. Khalil, Abdallah M. Karmalawi, Moamen R. A. Elsayed, Ramy El-Bashar, Hamdy Abdelhamid, Heba A. Shawkey, S. S. A. Obayya and Mohamed Farhat O. Hameed
Sensors 2026, 26(2), 542; https://doi.org/10.3390/s26020542 - 13 Jan 2026
Viewed by 212
Abstract
Near-infrared (NIR) photodetectors are essential for LiDAR, optical communication, and sensing technologies requiring fast response and low power consumption. This work reports a PN photodiode incorporating a co-sputtered MoS2–Al2O3 composite layer to enhance NIR photoresponse for LiDAR and [...] Read more.
Near-infrared (NIR) photodetectors are essential for LiDAR, optical communication, and sensing technologies requiring fast response and low power consumption. This work reports a PN photodiode incorporating a co-sputtered MoS2–Al2O3 composite layer to enhance NIR photoresponse for LiDAR and environmental sensing applications. The composite layer improves device performance through defect passivation, dielectric screening, and modified carrier transport behavior. Under 100 mW·cm−2 illumination at 4 V, the device delivers a photocurrent of 10 mA with a response time of 155 µs, corresponding to an approximately threefold (~300%) improvement compared to a reference structure. Spectral measurements show peak responsivity at 970 nm with extended sensitivity up to 1100 nm. These results indicate that embedding Al2O3 within the MoS2 improves the MoS2/Si interface and facilitates infrared photon absorption in the Si substrate, leading to enhanced vertical carrier collection and reduced recombination compared with conventional surface-passivated MoS2/dielectric layers-based devices. The proposed device demonstrates a low-cost, broadband photodiode architecture suitable for eye-safe LiDAR and environmental monitoring applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

29 pages, 6081 KB  
Review
Preparation and Solar-Energy Applications of PbS Quantum Dots via In Situ Methods
by Binh Duc Nguyen, Hyun Kuk Lee and Jae-Yup Kim
Appl. Sci. 2026, 16(2), 589; https://doi.org/10.3390/app16020589 - 6 Jan 2026
Viewed by 246
Abstract
In situ preparation routes have become central to advancing lead sulfide (PbS) quantum dots (QDs) for solar-energy conversion, owing to their ability to create strongly coupled QD/oxide interfaces that are difficult to achieve with ex situ colloidal methods, along with their simplicity and [...] Read more.
In situ preparation routes have become central to advancing lead sulfide (PbS) quantum dots (QDs) for solar-energy conversion, owing to their ability to create strongly coupled QD/oxide interfaces that are difficult to achieve with ex situ colloidal methods, along with their simplicity and potential for low-cost, scalable processing. This review systematically examines the fundamental mechanisms, processing levers, and device implications of the dominant in situ approaches successive ionic layer adsorption and reaction (SILAR), voltage-assisted SILAR (V-SILAR), and chemical bath deposition (CBD). These methods enable conformal QD nucleation within mesoporous scaffolds, improved electronic coupling, and scalable low-temperature fabrication, forming the materials foundation for high-performance PbS-based architectures. We further discuss how these in situ strategies translate into enhanced solar-energy applications, including quantum-dot-sensitized solar cells (QDSSCs) and photoelectrochemical (PEC) hydrogen production, highlighting recent advances in interfacial passivation, scaffold optimization, and bias-assisted growth that collectively suppress recombination and boost photocurrent utilization. Representative device metrics reported in recent studies indicate that in-situ-grown PbS quantum dots can deliver photocurrent densities on the order of ~5 mA cm−2 at applied potentials around 1.23 V versus RHE in photoelectrochemical systems, while PbS-based quantum-dot-sensitized solar cells typically achieve power conversion efficiencies in the range of ~4–10%, depending on interface engineering and device architecture. These performances are commonly associated with conformal PbS loading within mesoporous scaffolds and quantum-dot sizes in the few-nanometer regime, underscoring the critical role of morphology and interfacial control in charge transport and recombination. Recent studies indicate that performance improvements in PbS-based solar-energy devices are primarily governed by interfacial charge-transfer kinetics and recombination suppression rather than QD loading alone, with hybrid heterostructures and inorganic passivation layers playing a key role in modifying band offsets and surface trap densities at the PbS/oxide interface. Remaining challenges are associated with defect-mediated recombination, transport limitations in densely loaded porous scaffolds, and long-term chemical stability, which must be addressed to enable scalable and durable PbS-based photovoltaic and photoelectrochemical technologies. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

13 pages, 1128 KB  
Article
Dietary Choline Intake During Pregnancy and Congenital Heart Defects in a Chinese Population
by Yue-Hua Li, Ziqi Xiao, Rui Guo, Baligen Rekemubieke, Wanting Hu, Xin Liu and Jiaomei Yang
Nutrients 2026, 18(1), 126; https://doi.org/10.3390/nu18010126 - 31 Dec 2025
Viewed by 382
Abstract
Background/Objectives: The impact of choline on congenital heart defects (CHDs) in humans remains unclear. This study aimed to investigate the associations between maternal dietary intakes of choline and choline derivatives during pregnancy and CHD. Methods: This case–control study included 474 cases [...] Read more.
Background/Objectives: The impact of choline on congenital heart defects (CHDs) in humans remains unclear. This study aimed to investigate the associations between maternal dietary intakes of choline and choline derivatives during pregnancy and CHD. Methods: This case–control study included 474 cases and 948 controls from hospitals in Northwest China. Pregnant women admitted for delivery were enrolled and completed a validated food frequency questionnaire to assess their dietary intake during pregnancy. A standardized questionnaire was also administered to collect additional pregnancy-related information. Mixed logistic regression models were used to estimate ORs (95%CIs) for CHD in association with choline intake. Results: Higher intakes of total choline, phosphatidylcholine, sphingomyelin, glycerophosphocholine, and phosphocholine in pregnancy were associated with reduced risks of total CHD, ventricular septal defects, and atrial septal defects, with all trend tests showing statistical significance (all p < 0.05). The ORs (95%CIs) of total CHD, comparing the highest with the lowest tertiles of intake, were 0.38 (0.24–0.61) for total choline, 0.51 (0.38–0.70) for phosphatidylcholine, 0.37 (0.26–0.51) for sphingomyelin, 0.34 (0.21–0.53) for glycerophosphocholine, and 0.53 (0.34–0.82) for phosphocholine. The inverse associations remained unchanged according to maternal age, work, education, parity, passive smoking, anemia, medication use, or folate/iron supplements use in pregnancy; however, these associations appeared to be more pronounced among pregnant women in urban areas. Conclusions: Higher maternal intake of dietary choline during pregnancy may be associated with a lower risk of CHD. Promoting choline intake in pregnant women could serve as a potential strategy for the primary prevention of fetal CHD in China. Full article
(This article belongs to the Special Issue Nutrition, Diet and Metabolism in Pregnancy)
Show Figures

Figure 1

11 pages, 1543 KB  
Article
Enhanced Stability and Performance of α-FAPbI3 Photodetectors via Long-Chain n-Heptanoic Acid Passivation
by Xintao Bai, Yunjie Lou, Mengxuan Wang, Zhenkun Gu and Yanlin Song
Materials 2026, 19(1), 122; https://doi.org/10.3390/ma19010122 - 30 Dec 2025
Viewed by 324
Abstract
Owing to its narrow bandgap and excellent thermal stability, formamidinium–lead triiodide (FAPbI3) is a promising perovskite for high-performance, wide-spectrum photodetectors. Here, we selected long-chain n-heptanoic acid as the passivating agent and introduced it onto the perovskite surface via post-treatment, thereby enabling [...] Read more.
Owing to its narrow bandgap and excellent thermal stability, formamidinium–lead triiodide (FAPbI3) is a promising perovskite for high-performance, wide-spectrum photodetectors. Here, we selected long-chain n-heptanoic acid as the passivating agent and introduced it onto the perovskite surface via post-treatment, thereby enabling the fabrication of high-quality α-FAPbI3 perovskite films and photodetectors. It is found that the carboxylic acid group in the n-heptanoic acid molecule can effectively passivate crystal defects, greatly reduce the density of defect states in the perovskite film, and inhibit the non-radiative recombination of carriers. The α-FAPbI3 perovskite phase was effectively stabilized. The responsivity of the photodetector optimized by n-heptanoic acid is as high as 0.47 A W−1 at 740 nm. At the same time, the optimized device still maintains 95% of its initial performance after 552 h of storage in an air environment with a room temperature of 25 °C and a relative humidity of 25%. This method provides a reliable way to prepare a high-performance and stable α-FAPbI3 photodetector. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Graphical abstract

15 pages, 8095 KB  
Article
Synergistic Surface Modification of Bromocarboxylic Acid-Oleylamine Dual Ligands for Highly Stable and Luminescent CsPbBr3 Perovskite Nanocrystals
by Wenjun Chen, Rui Zhang, Xiaobo Hu, Jingsheng Ma, Duna Su, Chuanli Wu, Yanqiao Xu and Xiuxun Han
Molecules 2026, 31(1), 127; https://doi.org/10.3390/molecules31010127 - 29 Dec 2025
Viewed by 214
Abstract
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and [...] Read more.
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and luminescent dynamics of CsPbBr3 PNCs. The results reveal that carboxylate groups of BCA ligands modulate crystal growth, while its terminal Br atom forms a strong coordination with exposed Pb2+ on the PNCs surface, which can effectively passivate lead- and bromine-related defects. The synergistic protection of OAm ligands enhances the stability of PNCs via amino-halide electrostatic interactions and steric hindrance effects. Notably, based on the relatively dense surface coating of 4-bromobutyric acid (BBA) and OAm dual-ligands, the prepared CsPbBr3 PNCs exhibit a high photoluminescence quantum yield (PLQY) of 85.2 ± 2.4% and remarkable storage stability, retaining 90.2 ± 1.7% of their initial PL intensity after being stored for 63 days under ambient conditions. Furthermore, a prototype white light-emitting diode (WLED) fabricated with these PNCs displays a wide color gamut covering 122.1% of the NTSC standard and a luminous efficacy of 64.6 lm/W. This work provides a facile and feasible ligand engineering strategy to obtain highly stable and emissive PNCs. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

29 pages, 5660 KB  
Review
Survey of Polymer Self-Healing Mechanisms in Perovskite Solar Cells
by Hayeon Lee, Zachary Lewis, Lars Christensen, Jianbo Gao and Dawen Li
Polymers 2026, 18(1), 69; https://doi.org/10.3390/polym18010069 - 26 Dec 2025
Viewed by 706
Abstract
Perovskite solar cells (PSCs) have emerged as a rising next-generational photovoltaic technology due to low fabrication costs through solution processing as compared to traditional silicon solar cells and high-power conversion efficiency. However, the poor long-term operational stability due to environmental and mechanical degradation [...] Read more.
Perovskite solar cells (PSCs) have emerged as a rising next-generational photovoltaic technology due to low fabrication costs through solution processing as compared to traditional silicon solar cells and high-power conversion efficiency. However, the poor long-term operational stability due to environmental and mechanical degradation remains a hindrance to commercialization. Herein, self-healing polymer additives are utilized by researchers to enhance the photovoltaic performance of PSCs by enabling self-restorative behavior from physical damage or chemical degradation. This review explores the design and application of self-healing polymers in both flexible and rigid PSCs, contrasting the two main reversible bonding mechanisms: physical bonds, such as hydrogen bonds, and chemical bonds, such as dynamic covalent disulfide bonds. Physical bonds provide passive healing at ambient conditions; meanwhile, chemical bonds offer a stronger restoration under external stimuli such as heat or light. These polymers are exceptionally effective at mitigating mechanical stress and cracks in flexible PSCs and combating moisture-induced degradation in rigid PSCs. The applications of self-healing polymers are categorized based on substrate type, healing mechanism, and perovskite composition, with the benefits and limitations of each approach highlighted. Additionally, the review explores the potential of multifunctional self-healing polymers to passivate defects at the grain boundaries and on surface of perovskite films, thereby enhancing the overall photovoltaic performance. Full article
Show Figures

Figure 1

21 pages, 2605 KB  
Review
Metal–Organic Frameworks as Synergistic Scaffolds in Biomass Fermentation: Evolution from Passive Adsorption to Active Catalysis
by Tao Liu, Chuming Wang, Haozhe Zhou and Wen Luo
Fermentation 2026, 12(1), 9; https://doi.org/10.3390/fermentation12010009 - 22 Dec 2025
Viewed by 592
Abstract
Microbial fermentation stands as the foundational technology in modern biorefineries, yet its industrial scalability is critically constrained by product inhibition, prohibitive downstream separation costs, and substrate inhibition. Metal–organic frameworks (MOFs) offer a tunable material platform to address these challenges through rational design of [...] Read more.
Microbial fermentation stands as the foundational technology in modern biorefineries, yet its industrial scalability is critically constrained by product inhibition, prohibitive downstream separation costs, and substrate inhibition. Metal–organic frameworks (MOFs) offer a tunable material platform to address these challenges through rational design of pore size, shape, and chemical functionality. This review systematically chronicles the evolution of MOF applications in biomass fermentation across four generations, demonstrating a synergistic mapping where the core fermentation challenges—product toxicity, substrate toxicity, and separation energy intensity—align with the inherent MOF advantages of high adsorption capacity, programmable selectivity, and tunable functionality. The applications progress from first-generation passive adsorbents for in situ product removal, to second-generation protective agents for mitigating inhibitors, and third-generation immobilization scaffolds enabling continuous processing. The fourth-generation systems transcend passive scaffolding to position MOFs as active metabolic partners in microbe-MOF hybrids, driving cofactor regeneration and tandem biocatalysis. By synthesizing diverse research streams, ranging from defect engineering to artificial symbiosis, including defect engineering strategies, this review establishes critical design principles for the rational integration of programmable materials in next-generation biorefineries. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Graphical abstract

16 pages, 315 KB  
Review
Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies
by Susanna Esposito, Camilla Aurelio, Marina Cifaldi, Angela Lazzara, Federico Viafora and Nicola Principi
Vaccines 2026, 14(1), 11; https://doi.org/10.3390/vaccines14010011 - 22 Dec 2025
Viewed by 560
Abstract
Background: Children with congenital heart disease (CHD) are at substantially increased risk for respiratory infections, which occur more frequently and with greater severity than in healthy peers. This heightened vulnerability stems from multifactorial immune impairment, including defects in innate and adaptive immunity, chronic [...] Read more.
Background: Children with congenital heart disease (CHD) are at substantially increased risk for respiratory infections, which occur more frequently and with greater severity than in healthy peers. This heightened vulnerability stems from multifactorial immune impairment, including defects in innate and adaptive immunity, chronic inflammation related to abnormal hemodynamics and hypoxia, reduced thymic function, and genetic syndromes affecting both cardiac and immune development. Viral pathogens—particularly respiratory syncytial virus (RSV), influenza viruses, and SARS-CoV-2—account for most infections, although bacterial pathogens remain relevant, especially in postoperative settings. Methods: This narrative review summarizes current evidence on infection susceptibility in children with CHD, the epidemiology and clinical relevance of major respiratory pathogens, and the effectiveness of available preventive measures. Literature evaluating immunological mechanisms, infection burden, vaccine effectiveness, and passive immunization strategies was examined, along with existing national and international immunization guidelines. Results: Children with CHD consistently exhibit higher rates of hospitalization, intensive care unit admission, mechanical ventilation, and mortality following respiratory infections. RSV, influenza, and SARS-CoV-2 infections are particularly severe in this population, while bacterial infections, though less common, contribute substantially to postoperative morbidity. Preventive options—including routine childhood vaccines, pneumococcal and Haemophilus influenzae type b vaccines, influenza vaccines, COVID-19 mRNA vaccines, and RSV monoclonal antibodies—demonstrate strong protective effects. New long-acting RSV monoclonal antibodies and maternal vaccination markedly enhance prevention in early infancy. However, vaccine coverage remains insufficient due to parental hesitancy, provider uncertainty, delayed immunization, and limited CHD-specific evidence. Conclusions: Respiratory infections pose a significant and preventable health burden in children with CHD. Enhancing the use of both active and passive immunization is essential to reduce morbidity and mortality. Strengthening evidence-based guidelines, improving coordination between specialists and primary care providers, integrating immunization checks into routine CHD management, and providing clear, condition-specific counseling to families can substantially improve vaccine uptake and clinical outcomes in this vulnerable population. Full article
(This article belongs to the Special Issue Pediatric Infectious Diseases and Immunization)
24 pages, 3258 KB  
Review
Progress in Charge Transfer in 2D Metal Halide Perovskite Heterojunctions: A Review
by Chenjing Quan, Jiahe Yan, Xiaofeng Liu, Qing Lin, Beibei Xu and Jianrong Qiu
Materials 2025, 18(24), 5690; https://doi.org/10.3390/ma18245690 - 18 Dec 2025
Viewed by 369
Abstract
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor [...] Read more.
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor in determining the optoelectronic performance of the heterojunction devices. By constructing heterojunctions between MHPs and two-dimensional (2D) materials such as graphene, MoS2, and WS2, efficient electron–hole separation and transport can be achieved, significantly extending carrier lifetimes and suppressing non-radiative recombination. This results in enhanced response speed and energy conversion efficiency in photodetectors, photovoltaic devices, and light-emitting devices (LEDs). In these heterojunctions, the thickness of the MHP layer, interface defect density, and band alignment significantly influence carrier dynamics. Furthermore, techniques such as interface engineering, molecular passivation, and band engineering can effectively optimize charge separation efficiency and improve device stability. The integration of multilayer heterojunctions and flexible designs also presents new opportunities for expanding the functionality of high-performance optoelectronic devices. In this review, we systematically summarize the charge transfer mechanisms in MHP-based heterojunctions and highlight recent advances in their optoelectronic applications. Particular emphasis is placed on the influence of interfacial coupling on carrier generation, transport, and recombination dynamics. Furthermore, the ultrafast dynamic behaviors and band-engineering strategies in representative heterojunctions are elaborated, together with key factors and approaches for enhancing charge transfer efficiency. Finally, the potential of MHP heterojunctions for high-performance optoelectronic devices and emerging photonic systems is discussed. This review aims to provide a comprehensive theoretical and experimental reference for future research and to offer new insights into the rational design and application of flexible optoelectronics, photovoltaics, light-emitting devices, and quantum photonic technologies. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

8 pages, 1476 KB  
Article
Reducing the Degradation of CsFAMA Perovskite Solar Cells
by Aleksandr Degterev, Aleksandr Tarasov, Mariya Degtereva, Marina Pavlova, Nikita Khorshev, Yevgeniy Levin, Ivan Mikhailov, Dmitriy Testov, Ivan Lamkin and Sergey Tarasov
Colloids Interfaces 2025, 9(6), 88; https://doi.org/10.3390/colloids9060088 - 15 Dec 2025
Viewed by 355
Abstract
Triple-cation perovskite solar cells, such as Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 (hereinafter referred to as CsFAMA) have high efficiency (>26%), but their stability is limited by phase segregation and defects at grain boundaries. In [...] Read more.
Triple-cation perovskite solar cells, such as Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 (hereinafter referred to as CsFAMA) have high efficiency (>26%), but their stability is limited by phase segregation and defects at grain boundaries. In this work, the effect of formic acid (HCOOH) on suppressing the degradation of perovskite films is investigated. It is shown that the addition of HCOOH to the precursor solution reduces the size of colloidal particles by 90%, which contributes to the formation of highly homogeneous films with a photoluminescence intensity deviation of ≤3%. Structural analysis and dynamic light scattering measurements confirmed that HCOOH suppresses iodide oxidation and cation deprotonation, reducing the defect density. Aging tests (ISOS-D) demonstrated an increase in the T80 lifetime (time to 80% efficiency decline) from 158 to 320 days for the modified cells under ambient conditions at room temperature and 40% relative humidity. The obtained results indicate a key role of HCOOH in stabilizing CsFAMA perovskite by controlling colloidal dynamics and defect passivation, which opens up prospects for the creation of commercially viable PSCs. Full article
(This article belongs to the Topic New Research on Thin Films and Nanostructures)
Show Figures

Figure 1

14 pages, 2174 KB  
Article
Functional Carbazole–Cellulose Composite Binders for High-Stability Carbon Electrodes in Perovskite Solar Cells
by Fengming Guo, Junjie Wu, Yujing Li, Zilong Zhang, Maolin He, Lusheng Liang, Reza Keshavarzi and Peng Gao
Nanomaterials 2025, 15(24), 1868; https://doi.org/10.3390/nano15241868 - 12 Dec 2025
Viewed by 458
Abstract
Perovskite solar cells (PSCs) based on metal halides have garnered significant attention due to their exceptional power conversion efficiency (PCE) and compatibility with low-temperature fabrication processes. However, the development of stable and inexpensive carbon electrodes remains hindered by issues such as insufficient conductivity [...] Read more.
Perovskite solar cells (PSCs) based on metal halides have garnered significant attention due to their exceptional power conversion efficiency (PCE) and compatibility with low-temperature fabrication processes. However, the development of stable and inexpensive carbon electrodes remains hindered by issues such as insufficient conductivity at the carbon electrode/perovskite interface and weak coupling strength. In this study, we employed a functionalized carbazole–cellulose composite (C–Cz) as an alternative binder to construct highly stable carbon electrodes for PSCs. The incorporation of C–Cz enhances electron interactions through its conjugated carbazole moieties, while the cellulose backbone facilitates uniform dispersion of carbon particles and forms continuous transport pathways. These synergistic effects significantly optimize interfacial energy alignment and defect passivation. Ultimately, p-i-n PSCs fabricated with C–Cz carbon paste electrodes achieved a champion PCE of 16.79%, substantially outperforming the control device using a conventional PMMA binder (10.56%). Notably, the exceptional hydrophobicity and defect passivation capabilities of the C–Cz electrode substantially enhance device durability—maintaining over 95% of initial efficiency after 400 h of continuous maximum power point tracking irradiation. This study reveals an effective adhesive engineering strategy for robust, scalable carbon electrodes, paving new pathways for practical applications in stable perovskite photovoltaics. Full article
Show Figures

Figure 1

33 pages, 5043 KB  
Review
Ultrasound Evaluation of Fontan-Associated Liver Disease: A State-of-the-Art Review
by Federica Di Natale, Andrea Boccatonda, Marco Musmeci, Alice Brighenti, Luciano Potena, Christoph Frank Dietrich and Carla Serra
Diagnostics 2025, 15(24), 3171; https://doi.org/10.3390/diagnostics15243171 - 12 Dec 2025
Viewed by 1127
Abstract
Background: Fontan-associated liver disease (FALD) is a progressive condition resulting from chronic hepatic venous congestion following the Fontan procedure for univentricular heart defects. As survival improves in these patients, recognition and management of FALD have become increasingly important. Objective: To describe [...] Read more.
Background: Fontan-associated liver disease (FALD) is a progressive condition resulting from chronic hepatic venous congestion following the Fontan procedure for univentricular heart defects. As survival improves in these patients, recognition and management of FALD have become increasingly important. Objective: To describe the pathophysiological mechanisms, imaging findings, and diagnostic approach to FALD, with a focus on the role of ultrasonography, including contrast-enhanced ultrasound (CEUS). Methods: This narrative review explores the evolution of FALD through a multidisciplinary lens, integrating cardiovascular and hepatic imaging data. Particular attention is paid to Doppler ultrasound and CEUS, both in early parenchymal changes and in the differential diagnosis of potential complications such as hepatic nodules. Results: FALD is characterized by progressive fibrosis due to long-standing passive congestion, resulting in a wide spectrum of imaging findings. B-mode ultrasound reveals hepatomegaly, heterogeneous parenchyma, and gallbladder wall thickening. Doppler studies show altered hepatic venous flow patterns, while CEUS provides dynamic vascular evaluation, highlighting areas of altered perfusion. In advanced stages, hypo-vascular areas in the late phase may simulate malignant lesions, emphasizing the need for careful interpretation. The role of liver biopsy, though limited by invasiveness, remains crucial in selected cases. Surveillance strategies are not standardized but require close multidisciplinary follow-up. Conclusions: FALD presents complex diagnostic challenges requiring integrated imaging and clinical assessment. CEUS emerges as a valuable, non-invasive tool in characterizing hepatic congestion and guiding management. Increased awareness and standardized protocols are essential for early detection and tailored care in this growing patient population. Full article
(This article belongs to the Special Issue Recent Progress in Abdominal Ultrasound)
Show Figures

Figure 1

25 pages, 1490 KB  
Review
Linking Cell Architecture to Mitochondrial Signaling in Neurodegeneration: The Role of Intermediate Filaments
by Emanuele Marzetti, Rosa Di Lorenzo, Riccardo Calvani, Hélio José Coelho-Júnior, Francesco Landi, Vito Pesce and Anna Picca
Int. J. Mol. Sci. 2025, 26(24), 11852; https://doi.org/10.3390/ijms262411852 - 8 Dec 2025
Viewed by 559
Abstract
Mitochondrial dysfunction is a pivotal contributor to neurodegeneration. Neurons heavily rely on mitochondrial oxidative metabolism and therefore need highly efficient quality control mechanisms, including proteostasis, mitochondrial biogenesis, fusion–fission dynamics, and mitophagy, to sustain bioenergetics and synaptic function. With aging, deterioration of mitochondrial quality [...] Read more.
Mitochondrial dysfunction is a pivotal contributor to neurodegeneration. Neurons heavily rely on mitochondrial oxidative metabolism and therefore need highly efficient quality control mechanisms, including proteostasis, mitochondrial biogenesis, fusion–fission dynamics, and mitophagy, to sustain bioenergetics and synaptic function. With aging, deterioration of mitochondrial quality control pathways leads to impaired oxidative phosphorylation, excessive reactive oxygen species generation, calcium imbalance, and defective clearance of damaged organelles, ultimately compromising neuronal viability. Pathological protein aggregates, such as α-synuclein in Parkinson’s disease, β-amyloid and tau in Alzheimer’s disease, and misfolded superoxide dismutase 1 and transactive response DNA-binding protein 43 in amyotrophic lateral sclerosis, further aggravate mitochondrial stress, establishing self-perpetuating cycles of neurotoxicity. Such mitochondrial defects underscore mitochondria as a convergent pathogenic hub and a promising therapeutic target for neuroprotection. Intermediate filaments (IFs), traditionally viewed as passive structural elements, have recently gained attention for their roles in cytoplasmic organization, mitochondrial positioning, and energy regulation. Emerging evidence indicates that IF–mitochondria interactions critically influence organelle morphology and function in neurons. This review highlights the multifaceted involvement of mitochondrial dysfunction and IF dynamics in neurodegeneration, emphasizing their potential as targets for novel therapeutic strategies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop