Kinetics and Mechanical Characterization of Hard Layers Obtained by Boron Diffusion in 80/20 Nickel–Chromium Alloy
Abstract
:1. Introduction
2. Experimental Details
2.1. Boriding Treatment
2.2. Kinetics of Growth
2.3. Characterization
3. Results and Discussions
3.1. Microstructure
3.2. Kinetics of Growth
3.3. Mechanical Characterization
4. Conclusions
- The boride layers’ growth in 80/20 Ni–Cr alloy obeys parabolic law, so the boriding process can be considered a controlled process.
- The layer thickness depends on the treatment conditions, time, and temperature. However, the temperature of the process seems to be the most relevant parameter, since a low increase in temperature generated high changes in the growth rate of the boride layers.
- The hardness of the boride layers is also dependent on the treatment conditions and was established in the range from 1052 to 1350 HV, compared with the hardness of the substrate which is approximately 270 HV. Moreover, the hardness of the boride phase decreases gradually as a function of the distance from the surface, indicating a decrease in the boron concentration.
- The activation energy for the mobility of boron into 80/20 Ni–Cr alloy was established as 145.9 kJ/mol, which is similar to that reported for the low-alloying steels. The result indicates that 80/20 Ni–Cr alloy has an excellent affinity to boron diffusion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gossé, S. Thermodynamic Assessment of Solubility and Activity of Iron, Chromium, and Nickel in Lead Bismuth Eutectic. J. Nucl. Mater. 2014, 449, 122–131. [Google Scholar] [CrossRef]
- Metikoš-Huković, M.; Omanović, S.; Babić, R.; Milošev, I. An Electrochemical Study of the Passive Film Formed on Ni-Cr (80/20) Coating. Ber. Bunsenges. Phys. Chem. 1994, 98, 1243–1249. [Google Scholar] [CrossRef]
- Nickel and Nickel Alloys. Available online: http://www.totalmateria.com/Article9.htm (accessed on 18 July 2022).
- Aytekin, H.; Akçin, Y. Characterization of Borided Incoloy 825 Alloy. Mater. Des. 2013, 50, 515–521. [Google Scholar] [CrossRef]
- Stott, F.H.; Lin, D.S.; Wood, G.C.; Stevenson, C.W. The Tribological Behaviour of Nickel and Nickel-Chromium Alloys at Temperatures from 20° to 800 °C. Wear 1976, 36, 147–174. [Google Scholar] [CrossRef]
- Bond, A.P.; Uhlig, H.H. Corrosion Behavior and Passivity of Nickel-Chromium and Cobalt-Chromium Alloys. J. Electrochem. Soc. 1960, 107, 488. [Google Scholar] [CrossRef]
- Viswanathan, R. High Temperature Corrosion of Some Gas Turbine Alloys. Corrosion 1968, 24, 359–368. [Google Scholar] [CrossRef]
- Makuch, N.; Kulka, M.; Dziarski, P.; Taktak, S. The Influence of Chemical Composition of Ni-Based Alloys on Microstructure and Mechanical Properties of Plasma Paste Borided Layers. Surf. Coat. Technol. 2019, 367, 187–202. [Google Scholar] [CrossRef]
- Ge, H.; Yang, Y.; Zheng, S.; Liu, K.; Ma, X. Creep Induced Precipitation of the (Cr,Mo)5B3-Type Boride in γ/Γ′ Eutectic of a Ni-Based Superalloy. Mater. Character. 2020, 169, 110569. [Google Scholar] [CrossRef]
- Makuch, N. Influence of Nickel Silicides Presence on Hardness, Elastic Modulus and Fracture Toughness of Gas-Borided Layer Produced on Nisil-Alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 764–778. [Google Scholar] [CrossRef]
- Galerie, A. High Temperature Corrosion of Chromia-Forming Iron, Nickel and Cobalt-Base Alloys. In Shreir’s Corrosion; Elsevier: Amsterdam, The Netherlands, 2010; pp. 583–605. [Google Scholar] [CrossRef]
- Hernández-Sanchez, E.; Rodriguez-Castro, G.; Meneses-Amador, A.; Bravo-Bárcenas, D.; Arzate-Vazquez, I.; Martínez-Gutiérrez, H.; Romero-Romo, M.; Campos-Silva, I. Effect of the Anisotropic Growth on the Fracture Toughness Measurements Obtained in the Fe2B Layer. Surf. Coat. Technol. 2013, 237, 292–298. [Google Scholar] [CrossRef]
- Velázquez-Altamirano, J.C.; Torres-Avila, I.P.; Teran-Méndez, G.; Capula-Colindres, S.I.; Cabrera-Sierra, R.; Carrera-Espinoza, R.; Hernández-Sánchez, E. A Stochastic Model and Investigation into the Probability Distribution of the Thickness of Boride Layers Formed on Low-Carbon Steel. Coatings 2019, 9, 756. [Google Scholar] [CrossRef]
- Hernández-Sánchez, E.; Domínguez-Galicia, Y.M.; Orozco-Álvarez, C.; Carrera-Espinoza, R.; Herrera-Hernández, H.; Velázquez, J.C. A Study on the Effect of the Boron Potential on the Mechanical Properties of the Borided Layers Obtained by Boron Diffusion at the Surface of AISI 316L Steel. Adv. Mater. Sci. Eng. 2014, 2014, 249174. [Google Scholar] [CrossRef]
- von Matuschka, M.G. Boronizing, 1st ed.; Carl Hanser: Munich, Germany, 1980. [Google Scholar]
- Campos, I.; Bautista, O.; Ramírez, G.; Islas, M.; de La Parra, J.; Zúñiga, L. Effect of Boron Paste Thickness on the Growth Kinetics of Fe2B Boride Layers during the Boriding Process. Appl. Surf. Sci. 2005, 243, 429–436. [Google Scholar] [CrossRef]
- Campos-Silva, I.; Ortiz-Domínguez, M.; Bravo-Bárcenas, O.; Doñu-Ruiz, M.A.; Bravo-Bárcenas, D.; Tapia-Quintero, C.; Jiménez-Reyes, M.Y. Formation and Kinetics of FeB/Fe2B Layers and Diffusion Zone at the Surface of AISI 316 Borided Steels. Surf. Coat. Technol. 2010, 205, 403–412. [Google Scholar] [CrossRef]
- Ozbek, I.; Bindal, C. Kinetics of Borided AISI M2 High Speed Steel. Vacuum 2011, 86, 391–397. [Google Scholar] [CrossRef]
- Popela, T.; Vojtěch, D. Characterization of Pack-Borided Last-Generation TiAl Intermetallics. Surf. Coat. Technol. 2012, 209, 90–96. [Google Scholar] [CrossRef]
- Gurappa, I. Development of Appropriate Thickness Ceramic Coatings on 316 L Stainless Steel for Biomedical Applications. Surf. Coat. Technol. 2002, 161, 70–78. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Özbek, I.; Konduk, B.A.; Bindal, C.; Ucisik, A.H. Characterization of Borided AISI 316L Stainless Steel Implant. Vacuum 2002, 65, 521–525. [Google Scholar] [CrossRef]
- Kulka, M.; Makuch, N.; Dziarski, P.; Piasecki, A. A Study of Nanoindentation for Mechanical Characterization of Chromium and Nickel Borides’ Mixtures Formed by Laser Boriding. Ceram. Internat. 2014, 40, 6083–6094. [Google Scholar] [CrossRef]
- Hernández-Sánchez, E.; Velázquez, J.C. Kinetics of Growth of Iron Boride Layers on a Low-Carbon Steel Surface. In Laboratory Unit Operations and Experimental Methods in Chemical Engineering; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- ASTM International ASTM E384. Standard Test Method for Microindentation Hardness of Materials; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Campos-Silva, I.; Hernández-Ramirez, E.J.; Contreras-Hernández, A.; Rosales-Lopez, J.L.; Valdez-Zayas, E.; Mejía-Caballero, I.; Martínez-Trinidad, J. Pulsed-DC Powder-Pack Boriding: Growth Kinetics of Boride Layers on an AISI 316 L Stainless Steel and Inconel 718 Superalloy. Surf. Coat. Technol. 2021, 421, 127404. [Google Scholar] [CrossRef]
- D’Souza, B.; Leong, A.; Yang, Q.; Zhang, J. Corrosion Behavior of Boronized Nickel-Based Alloys in the Molten Chloride Salt. Corros. Sci. 2021, 182, 109285. [Google Scholar] [CrossRef]
- Genel, K.; Ozbek, I.; Bindal, C. Kinetics of Boriding of AISI W1 Steel. Mat. Sci. Eng. A 2003, 347, 311–314. [Google Scholar] [CrossRef]
- Sen, S.; Sen, U.; Bindal, C. The Growth Kinetics of Borides Formed on Boronized AISI 4140 Steel. Vacuum 2005, 77, 195–202. [Google Scholar] [CrossRef]
Nominal Composition | |
---|---|
Element | Content (%) |
Chromium | 19.50 |
Silicon | 1.25 |
Iron | 0.50 |
Manganese | 0.40 |
Nickel | Balance |
Temperature (°C) | |||
---|---|---|---|
Time (h) | 900 | 950 | 975 |
2 | 39 ± 2.8 | 63 ± 5.2 | 100 ± 08.8 |
4 | 68 ± 4.5 | 989 ± 8.7 | 131 ± 12.4 |
6 | 86 ± 9.2 | 123 ± 10.1 | 156 ± 14.3 |
Temperature | R | |
---|---|---|
(°C) | (m2/s) | - |
900 | 4.14 × 10−13 | 0.9910 |
950 | 7.80 × 10−13 | 0.9998 |
975 | 1.01 × 10−12 | 0.9918 |
Material | Activation energy (KJ/mol) | Reference |
---|---|---|
Ni3Al | 188.8 | [23] |
AISI W1 | 171.2 | [28] |
AISI 4140 | 215.0 | [29] |
80/20 Ni–Cr | 145.3 | [present] |
900 °C | 950 °C | 975 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (s) | Layer Thickness (µm) | Layer Thickness (µm) | Layer Thickness (µm) | ||||||
Measured | Calculated | Error (%) | Measured | Calculated | Error (%) | Measured | Calculated | Error (%) | |
7200 | 38.97 | 54.80 | 40.62 | 63.21 | 74.41 | 17.71 | 99.68 | 85.90 | 13.81 |
14,400 | 68.08 | 77.50 | 13.84 | 98.79 | 105.22 | 6.51 | 131.47 | 121.49 | 7.59 |
21,600 | 86.48 | 94.92 | 9.76 | 123.39 | 128.87 | 4.44 | 156.49 | 148.79 | 4.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chino-Ulloa, A.; Ruiz-Trabolsi, P.A.; Torres-Avila, I.P.; Orozco-Álvarez, C.; Tadeo-Rosas, R.; Velázquez, J.C.; Hernández-Sánchez, E. Kinetics and Mechanical Characterization of Hard Layers Obtained by Boron Diffusion in 80/20 Nickel–Chromium Alloy. Coatings 2022, 12, 1387. https://doi.org/10.3390/coatings12101387
Chino-Ulloa A, Ruiz-Trabolsi PA, Torres-Avila IP, Orozco-Álvarez C, Tadeo-Rosas R, Velázquez JC, Hernández-Sánchez E. Kinetics and Mechanical Characterization of Hard Layers Obtained by Boron Diffusion in 80/20 Nickel–Chromium Alloy. Coatings. 2022; 12(10):1387. https://doi.org/10.3390/coatings12101387
Chicago/Turabian StyleChino-Ulloa, Alexis, Pablo Alfredo Ruiz-Trabolsi, Itzel Pamela Torres-Avila, Carlos Orozco-Álvarez, Raúl Tadeo-Rosas, Julio César Velázquez, and Enrique Hernández-Sánchez. 2022. "Kinetics and Mechanical Characterization of Hard Layers Obtained by Boron Diffusion in 80/20 Nickel–Chromium Alloy" Coatings 12, no. 10: 1387. https://doi.org/10.3390/coatings12101387
APA StyleChino-Ulloa, A., Ruiz-Trabolsi, P. A., Torres-Avila, I. P., Orozco-Álvarez, C., Tadeo-Rosas, R., Velázquez, J. C., & Hernández-Sánchez, E. (2022). Kinetics and Mechanical Characterization of Hard Layers Obtained by Boron Diffusion in 80/20 Nickel–Chromium Alloy. Coatings, 12(10), 1387. https://doi.org/10.3390/coatings12101387