Polymer Coating Effects: Study of Material Properties and Architectural Application Characteristics of Aluminum Template
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillon, O.; Roizard, X.; Belliard, P. Experimental methodology to study tribological aspects of deep drawing application to aluminum alloy sheets and tool coatings. Tribol. Int. 2001, 34, 757–766. [Google Scholar] [CrossRef]
- Yang, C.-W.; Hung, F.-Y.; Lui, T.-S.; Chen, L.-H.; Juo, J.-Y. Weibull Statistics for Evaluating Failure Behaviors and Joining Reliability of Friction Stir Spot Welded 5052 Aluminum Alloy. Mater. Trans. 2009, 50, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, F.; Esener, E.; Toros, S.; Picu, C.R. Effects of aging parameters on formability of 6061-O alloy. Mater. Des. 2010, 31, 4847–4852. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Raghavan, R.; Tewari, A.; Narasimhan, K.; Mishra, S.K. Effect of microstructure and texture on forming behavior of AA-6061 aluminum alloy sheet. Mater. Sci. Eng. A. 2017, 679, 56–65. [Google Scholar] [CrossRef]
- Ding, L.; Jia, Z.; Nie, J.-F.; Weng, Y.; Cao, L.; Chen, H.; Wu, X.; Liu, Q. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 2018, 145, 437–450. [Google Scholar] [CrossRef]
- Hung, F.-S. Material Application of a Transformer Box: A Study on the Electromagnetic Shielding Characteristics of Al–Ta Coating Film with Plasma-Spray Process. Coatings 2019, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Darmawan, A.S.; Siswanto, W.A.; Purboputro, P.I.; Anggono, A.D.; Masyrukan; Hamid, A. Effect of Increasing Salinity to Corrosion Resistance of 5052 Aluminum Alloy in Artificial Seawater. Mater. Sci. Forum 2019, 961, 107–111. [Google Scholar] [CrossRef]
- Rasouli, S.A.; Behnagh, R.; Dadvand, A.; Saleki-Haselghoubi, N. Improvement in corrosion resistance of 5083 aluminum alloy via friction stir processing. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl. 2014, 230, 142–150. [Google Scholar] [CrossRef]
- Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175. [Google Scholar] [CrossRef]
- Vanesa, C.B.; Joshua, K. Energy access is needed to maintain health during pandemics. Nat. Energy 2020, 5, 419–421. [Google Scholar]
- Weber, R.; Genovese, M.; Louli, A.J.; Hames, S.; Martin, C.; Hill, I.G.; Dahn, J.R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 2019, 4, 683–689. [Google Scholar] [CrossRef]
- Jang, J.Y.; Do, J.Y. Synthesis and evaluation of thermoplastic polyurethanes as thermo-optic waveguide materials. Polym. J. 2014, 46, 349–354. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hou, G.-G.; Du, Z.-Z.; Cong, W.; Sun, J.-F.; Xu, Y.-Y.; Liu, W.-S. Synthesis, characterization and antibacterial properties of polyurethane material functionalized with quaternary ammonium salt. Polym. J. 2015, 48, 259–265. [Google Scholar] [CrossRef]
- Chen, Q.; Mangadlao, J.D.; Wallat, J.; De Leon, A.; Pokorski, J.K.; Advincula, R.C. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl. Mater. Interfaces 2017, 9, 4015–4023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kong, Q.; Kong, F.; Liu, T.; Qian, H. Synthesis and surface properties of novel fluorinated polyurethane base on F-containing chain extender. Polym. Adv. Technol. 2019, 31, 616–629. [Google Scholar] [CrossRef]
- Zhao, B.; Jia, R.; Zhang, Y.; Liu, D.; Zheng, X. Design and synthesis of antibacterial waterborne fluorinated polyurethane. J. Appl. Polym. Sci. 2019, 136, 46923. [Google Scholar] [CrossRef]
- Oprea, S. Effect of Composition and Hard-segment Content on Thermo-mechanical Properties of Cross-linked Polyurethane Copolymers. High. Perform. Polym. 2008, 21, 353–370. [Google Scholar] [CrossRef]
- Lee, S.R.; Kim, M.R.; Jo, E.H.; Yoon, K.-B. Synthesis of very low birefringence polymers using fluorinated macromers for polymeric waveguides. High. Perform. Polym. 2015, 28, 131–139. [Google Scholar] [CrossRef]
- Wu, C.; Chiu, S.; Lee, H.; Suen, M. Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders. Polym. Adv. Technol. 2015, 27, 665–676. [Google Scholar] [CrossRef]
- Kerr, S.; Naumkin, F.Y. Noncovalently bound complexes of polar molecules: Dipole-inside-of-dipole vs. dipole–dipole systems. New J. Chem. 2017, 41, 13576–13584. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, W.; Hao, L.; Wang, S.; Pei, M.; Wang, X. Synthesis of novel cationic fluoroalkyl-terminated hyperbranched polyurethane latex and morphology, physical properties of its latex film. Prog. Org. Coatings 2018, 121, 209–217. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, W.; Yan, W.; Wang, X.; Liu, L.; Yu, J.; Ding, B. Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability. Compos. Commun. 2019, 15, 40–45. [Google Scholar] [CrossRef]
- Hung, F.-S. Design of lightweight aluminum alloy building materials for corrosion and wear resistance. Emerg. Mater. Res. 2020, 9, 750–757. [Google Scholar] [CrossRef]
- Hung, F.; Chen, L.; Lui, T. A study on erosion of upper bainitic ADI and PDI. Wear 2006, 260, 1003–1012. [Google Scholar] [CrossRef]
Al | Mg | Si | Mn | Cr | Cu | Fe |
---|---|---|---|---|---|---|
Bal. | 4.22 | 0.48 | 0.72 | 0.16 | 1.28 | 0.25 |
Probes | YS (MPa) | UTS(MPa) | UE (%) | TE (%) |
---|---|---|---|---|
5089 | 224 | 340 | 12.8 | 18.0 |
PVDF | 229 | 349 | 12.3 | 18.2 |
PU | 204 | 333 | 12.1 | 19.5 |
hr (s) | YS (MPa) | UTS (MPa) | UE (%) | TE (%) |
---|---|---|---|---|
0 | 229 | 349 | 12.3 | 18.2 |
625 | 221 | 341 | 11.1 | 17.3 |
1250 | 220 | 333 | 10.8 | 15.3 |
hr(s) | YS (MPa) | UTS (MPa) | UE (%) | TE (%) |
---|---|---|---|---|
0 | 204 | 333 | 12.1 | 19.5 |
625 | 198 | 325 | 11.4 | 19.2 |
1250 | 185 | 302 | 9.8 | 18.5 |
Hardness | PVDF | PU |
---|---|---|
HK 0.01 (MPa) | 86.3 | 81.9 |
Conversion to HRF (MPa) | 71.7 | 68.4 |
Test piece | Test name and Method | Result |
---|---|---|
PVDF | 1. Bending 2. Specifications: ASTM-D1737 | (1) Tests were all normal (2) No cracks on the surface. |
PU | ||
PVDF | 1. Adhesion Resistance 2. Specifications: ASTM-D3359 | (1) Tests were all normal (2) 1 mm square 100% adhesion. |
PU | ||
PVDF | 1. Alkali resistance 2. Specifications: ASTM-D1308 3. Times:500 hrs | (1) Tests were all normal (2) No discoloration, corrosion and blistering. |
PU | ||
PVDF | 1. Acid Resistance 2. Specifications:ASTM-D1308 3. Times:500 hrs | (1) Tests were all normal (2) No discoloration, corrosion and blistering. |
PU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, F.S. Polymer Coating Effects: Study of Material Properties and Architectural Application Characteristics of Aluminum Template. Coatings 2021, 11, 240. https://doi.org/10.3390/coatings11020240
Hung FS. Polymer Coating Effects: Study of Material Properties and Architectural Application Characteristics of Aluminum Template. Coatings. 2021; 11(2):240. https://doi.org/10.3390/coatings11020240
Chicago/Turabian StyleHung, Fei Shuo. 2021. "Polymer Coating Effects: Study of Material Properties and Architectural Application Characteristics of Aluminum Template" Coatings 11, no. 2: 240. https://doi.org/10.3390/coatings11020240
APA StyleHung, F. S. (2021). Polymer Coating Effects: Study of Material Properties and Architectural Application Characteristics of Aluminum Template. Coatings, 11(2), 240. https://doi.org/10.3390/coatings11020240