Experimental Analysis of Reinforcement Rust in Cement under Corrosive Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Mixing Ratio
2.2. Specimen Maintenance and Treatment
2.3. Test Methods
2.3.1. X-ray Photoelectron Spectroscopy
2.3.2. Scanning Electron Microscopy/Energy Spectrum Analysis (SEM-EDX)
3. Results and Discussion
3.1. Analysis of Macroscopic Corrosion Characteristics in Corrosive Environment
3.2. Analysis of Micro-Corrosion Components of Steel Bars under Chloride Corrosion
3.3. Analysis of Micro-Corrosion Components of Steel Bars under Carbonation Corrosion
3.4. Analysis of Micro-Corrosion Components of Steel Bars under Composite Corrosion
4. Conclusions
- In all three corrosive environments, the outside of the passivation film reacts with the cement slurry to produce Fe–SiO4. Fe can be detected in the inner side of the passivation film, indicating that the inner side is not completely corroded;
- The morphology of the corrosion is different in the three environments. In a chloride environment, corrosion products have obvious cracks, and the local layered structure is dense. The rusting process is accompanied by the expansion of the steel volume. In a carbonation environment, the surface of the steel corrosion is relatively uniform, and the structure has no local large protrusions or depressions, showing a uniform granular structure and loose texture. With the combination of chloride and combination, the surface of the structural layer of steel corrosion was uneven and accompanied by protrusions and layered materials, the delamination phenomenon was obvious, cracking and spalling occurred, and the local cracking range and size increased;
- The composition of the corrosion substances in the three corrosion environments is the same, and the content is different. They are mainly composed of FeO, Fe3O4, Fe2O3 and Fe–SiO4. The content of iron oxide increases from chloride salt carbonization to composite environment, indicating that the corrosion degree intensifies successively;
- The present findings show that the corrosion degree is the strongest under the composite environment of carbonization and chloride salt. Subsequent work will focus on the expansion effect of corrosion products on cement-based materials and the crack evolution in this environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geng, W.C.; Zhang, P.; Li, D.; Liu, Z.L.; Zhao, T.J. Application and current status of reinforcement corrosion monitoring in concrete. Concrete 2018, 2, 150–153. [Google Scholar] [CrossRef]
- Chen, E.; Leung, C.K.Y. A coupled diffusion-mechanical model with boundary element method to predict concrete cover cracking due to steel corrosion. Corros. Sci. 2017, 126, 180–196. [Google Scholar] [CrossRef]
- Lu, C.; Yuan, S.; Liu, R. Experimental and probabilistic analysis of time to corrosion-induced cover cracking for marine reinforced concrete structures. Corros. Eng. Sci. Tech. 2017, 52, 124–133. [Google Scholar] [CrossRef]
- Chen, X.X.; Niu, D.T. Seismic response analysis of corroded reinforced concrete frame. Xi’an Arch. Technol. Nat. Sci. Ed. 2018, 50, 361–367. [Google Scholar]
- Xu, C.; Wang, C.K.; Jin, W.L. Interaction between chloride ion erosion and carbonization in concrete. J. Build. Mater. 2011, 14, 376–380. [Google Scholar] [CrossRef]
- Stewart, M.G.; Wang, X.; Nguyen, M.N. Climate change impact and risks of concrete infrastructure deterioration. Eng. Struct. 2011, 33, 1326–1337. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.Q.; Shao, S.S.; Xu, X. A Review on Reinforcement Corrosion Mechanics and Monitoring Techniques in Concrete in Marine Environment. Mater. Rev. A Rev. Pap. 2018, 32, 4170–4181. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z.; Wang, Y.; Yang, J.; Han, S.; Zhao, T. 3D neutron tomography of steel reinforcement corrosion in cement-based composites. Constr. Build. Mater. 2018, 162, 561–565. [Google Scholar] [CrossRef]
- Niu, D.T.; Sun, C.T. Study on Interaction of Concrete Carbonation and Chloride Corrosion. Chin. Ceram. Soc. 2013, 41, 1094–1099. [Google Scholar] [CrossRef]
- Song, X.F.; Zhang, X.Y.; Gao, R. Corrosion Behavior of Steel Embedded in Concrete under Interaction of Carbonization and Chloride Ion. J. Build. Mater. 2014, 17, 892–895. [Google Scholar] [CrossRef]
- Abbas, S.A.; Rafiq, M.I.; Tsioulou, O. Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structures. Cem. Concr. Comp. 2021, 115, 1–28. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.L.; Zhang, L.C.; Liu, J.Z.; Han, Y.; Wang, J.M. Research on the influence of carbonation on the content and state of chloride ions and the following corrosion resistance of steel bars in cement paste. Coatings 2020, 10, 1071. [Google Scholar] [CrossRef]
- Malheiro, R.; Games, A.; Meira, G.; Amorim, M.T.; Castro, J. Effect of coupled deterioration by chloride and carbonation on chloride ions transport in concrete. RILEM Tech. Lett. 2020, 5, 56–62. [Google Scholar] [CrossRef]
- Shi, J.J.; Wu, M.; Ming, J. Degradation effect of carbonation on electrochemical behavior of 2304 duplex stainless steel in simulated concrete pore solutions. Corros. Sci. 2020, 177. [Google Scholar] [CrossRef]
- Aperador, W.; Cortes, J.; Carrillo, J. Corrosion of Reinforcing Bars Astm A706 in Self-Compacting Concrete Subjected to Chloride Attack and Carbonation. Adv. Mater. Res. 2014, 1016, 315–319. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Bary, B.; De Larrard, T. Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete. Cem. Concr. Res. 2015, 74, 95–107. [Google Scholar] [CrossRef]
- Ye, C.Q.; Hu, R.G.; Dong, S.G.; Zhang, X.J.; Pan, J.S. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. J. Electroanal. Chem. 2013, 688, 275–281. [Google Scholar] [CrossRef]
- Shen, X.H.; Jiang, W.Q.; Hou, D.S.; Hu, Z.; Yang, J.; Liu, F.Q. Numerical study of carbonation and its effect on chloride binding in concrete. Cem. Concr. Com. 2019, 104. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Wang, R.L.; Wu, M.X.; Jiang, Z.W. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations. Cem. Concr. Com. 2020, 112. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; Bensebaa, F.; Kingston, D. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution. Corros. Sci. 2012, 58, 159–167. [Google Scholar] [CrossRef]
- Liu, J.P.; Chen, C.C.; Cai, J.S.; Cui, G. 1,3-Bis-dibutylaminopropan-2-ol as inhibitor for reinforcement steel in chloride-contaminated simulated concrete pore solution. Mater. Corros. 2013, 64, 1075–1081. [Google Scholar] [CrossRef]
- Cao, F.T.; Wei, J.; Dong, J.; Ke, W. The Corrosion Inhibition Effect of Phytic Acid on 20SiMn Steel in Simulated Carbonated Concrete Pore Solution. Corros. Sci. 2015, 100, 365–376. [Google Scholar] [CrossRef]
- Verbruggen, H.; Terryn, H.; Graeve, I.D. Inhibitor evaluation in different simulated concrete pore solution for the protection of steel rebars. Constr. Build. Mater. 2016, 124, 887–896. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, J.Z.; Wang, J.M.; Geng, J.D. Microstructure of passive film on steel in synthetic concrete pore solution in presence chloride and nitrite. Int. J. Electrochem. Sci. 2019, 14, 8624–8638. [Google Scholar] [CrossRef]
- Chen, L.F. Comparative Study on the Microstructure and the Volume Expansion Ratio of Corrosion Product under Different Corrosion Environments. Master’s Thesis, Shenzhen University, Shenzhen, China, 2016. [Google Scholar]
- Otieno, M.B.; Beushausen, H.D.; Alexander, M.G. Modelling corrosion propagation in reinforced concrete structures—A critical review. Cem. Concr. Comp. 2011, 33, 240–245. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, D.Q.; Chen, H.H. The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cem. Concr. Comp. 2017, 83, 125–137. [Google Scholar] [CrossRef]
- Hu, J.Y.; Cao, S.A.; Xie, J.L. EIS study on the corrosion behavior of rusted carbon steel in 3% NaCl solution. Anti-Corros. Methods Mater. 2013, 60, 100–105. [Google Scholar] [CrossRef]
- Poyet, S.; Dridi, W.; Hostis, V.; Meinel, D. Microstructure and diffusion coefficient of an old corrosion product layer and impact on steel rebar corrosion in carbonated concrete. Corros. Sci. 2017, 125. [Google Scholar] [CrossRef]
- Zhang, S.H.; Hou, L.F.; Du, H.Y.; Wei, H.; Liu, B.S.; Wei, Y.H. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion. Corros. Sci. 2020, 167. [Google Scholar] [CrossRef]
Cement/g | Water/g | Cl-/% | NaCl/g |
---|---|---|---|
535.35 | 160.61 | 0 | 0 |
0.5 | 4.41 |
Depth | Components | Position /(eV) | Area /(eV)2 | Half Width /mV | Relative Content Respectively (%) | Relative Content (%) |
---|---|---|---|---|---|---|
0 nm | FeO | 709.1 | 2706 | 2.05 | 12.3 | 19.6 |
722.2 | 1627 | 2.05 | 7.3 | |||
0 nm | Fe3O4 | 710.6 | 3603 | 1.96 | 16.4 | 26.4 |
723.7 | 2217 | 1.96 | 10.0 | |||
0 nm | Fe2O3 | 712.2 | 2679 | 2.12 | 12.1 | 18.3 |
725.3 | 1390 | 2.12 | 6.2 | |||
0 nm | Fe–SiO4 | 713.0 | 2697 | 4.00 | 12.2 | 20.9 |
726.1 | 1927 | 4.00 | 8.7 | |||
0 nm | Sat. | 718.2 | 2153 | 4.44 | 9.7 | 14.8 |
731.9 | 1125 | 5.70 | 5.1 | |||
5 nm | Fe0 | 707.1 | 1730 | 1.58 | 4.2 | 8 |
720.2 | 1733 | 1.58 | 3.8 | |||
5 nm | FeO | 709.3 | 7758 | 2.07 | 17.9 | 26.7 |
722.4 | 3851 | 2.07 | 8.8 | |||
5 nm | Fe3O4 | 710.9 | 6625 | 2.01 | 15.4 | 24.5 |
724.0 | 3977 | 2.01 | 9.1 | |||
5 nm | Fe2O3 | 712.7 | 5585 | 2.76 | 12.9 | 20.5 |
725.8 | 3324 | 2.76 | 7.6 | |||
5 nm | Sat. | 716.0 | 5002 | 4.33 | 11.5 | 20.3 |
729.9 | 3862 | 5.61 | 8.8 |
Element | Unn. C/wt % | Norm. C/wt % | Atom. C/at % | Compound | Comp. C |
---|---|---|---|---|---|
Oxygen | 23.80 | 25.40 | 51.41 | FeO | 0.00 |
Iron | 56.52 | 60.32 | 34.98 | 57.61 | |
Silicon | 2.93 | 3.13 | 3.60 | SiO2 | 6.69 |
Calcium | 8.20 | 8.75 | 7.07 | CaO | 12.24 |
Potassium | 0.51 | 0.55 | 0.45 | K2O | 0.66 |
Sodium | 1.20 | 1.28 | 1.80 | Na2O | 1.72 |
Carbon | 0.00 | 0.00 | 0.00 | - | 0.00 |
Aluminum | 0.54 | 0.58 | 0.68 | Al2O3 | 1.09 |
Depth | Components | Position (eV) | Area | Half-Width | Relative Content Respectively (%) | Relative Content (%) |
---|---|---|---|---|---|---|
0 nm | FeO | 709.1 | 4280 | 2.11 | 20.7 | 34.1 |
722.2 | 2779 | 2.11 | 13.4 | |||
0 nm | Fe3O4 | 710.5 | 2757 | 1.75 | 13.3 | 21.1 |
723.6 | 1621 | 1.75 | 7.8 | |||
0 nm | Fe2O3 | 712.2 | 2179 | 1.81 | 10.5 | 14.8 |
725.3 | 900 | 1.81 | 4.3 | |||
0 nm | Fe–SiO4 | 713.0 | 1738 | 3.13 | 8.3 | 14.7 |
726.2 | 1346 | 3.13 | 6.4 | |||
0 nm | Sat. | 718.4 | 2364 | 4.05 | 11.4 | 15.3 |
731.7 | 810 | 4.24 | 3.9 | |||
5 nm | Fe0 | 707.0 | 852 | 1.61 | 2.6 | 5.9 |
720.1 | 1079 | 1.61 | 3.3 | |||
5 nm | FeO | 709.1 | 5991 | 2.31 | 18.2 | 29 |
722.2 | 3566 | 2.31 | 10.8 | |||
5 nm | Fe3O4 | 710.7 | 4817 | 2.23 | 14.6 | 21.6 |
723.8 | 2316 | 2.23 | 7.0 | |||
5 nm | Fe2O3 | 712.5 | 4499 | 2.89 | 13.6 | 21.7 |
725.6 | 2640 | 2.89 | 8.1 | |||
5 nm | Sat. | 715.7 | 4380 | 4.28 | 13.3 | 22.8 |
729.6 | 2787 | 5.96 | 8.5 |
Element | Unn. C/wt % | Norm. C/wt % | Atom. C/wt % | Compound | Comp. C |
---|---|---|---|---|---|
Oxygen | 26.02 | 28.12 | 52.40 | FeO | 0.00 |
Iron | 46.33 | 50.07 | 26.73 | 66.42 | |
Silicon | 6.82 | 7.38 | 7.83 | SiO2 | 15.78 |
Calcium | 6.21 | 6.71 | 4.99 | CaO | 9.38 |
Sodium | 3.19 | 3.45 | 4.47 | Na2O | 4.65 |
Carbon | 0.00 | 0.00 | 0.00 | - | 0.00 |
Aluminum | 0.83 | 0.90 | 1.00 | Al2O3 | 1.70 |
Depth | Components | Position (eV) | Area | Half Width /mV | Relative Content Respectively (%) | Relative Content (%) |
---|---|---|---|---|---|---|
0 nm | FeO | 709.1 | 1721 | 2.98 | 5.7 | 8.9 |
722.2 | 986 | 2.98 | 3.2 | |||
0 nm | Fe3O4 | 710.6 | 5165 | 2.00 | 17.1 | 24.2 |
723.7 | 2117 | 2.00 | 7.1 | |||
0 nm | Fe2O3 | 712.1 | 3422 | 2.46 | 11.3 | 19.4 |
725.2 | 2406 | 2.46 | 8.1 | |||
0 nm | Fe–SiO4 | 713.0 | 4491 | 4.31 | 14.9 | 28 |
726.1 | 3909 | 4.31 | 13.1 | |||
0 nm | Sat. | 718.6 | 4241 | 6.03 | 14.2 | 19.5 |
732.0 | 1605 | 5.78 | 5.3 | |||
5 nm | Fe0 | 707.0 | 4768 | 1.40 | 6.9 | 11.5 |
720.0 | 3165 | 1.40 | 4.6 | |||
5 nm | FeO | 709.1 | 12,527 | 2.21 | 18.3 | 27 |
722.2 | 5976 | 2.21 | 8.7 | |||
5 nm | Fe3O4 | 710.7 | 9913 | 2.15 | 14.5 | 23 |
723.8 | 5731 | 2.15 | 8.5 | |||
5 nm | Fe2O3 | 712.5 | 7958 | 2.93 | 14.8 | 24.3 |
725.6 | 5023 | 2.93 | 9.5 | |||
5 nm | Sat. | 715.6 | 8268 | 4.54 | 11 | 14.2 |
729.8 | 4832 | 5.28 | 3.2 |
Element | Unn. C/wt % | Norm. C/wt % | Atom. C/wt % | Compound | Comp. C |
---|---|---|---|---|---|
Oxygen | 24.33 | 25.38 | 51.09 | FeO | 0.00 |
Iron | 55.87 | 58.53 | 33.75 | 75.30 | |
Silicon | 2.63 | 2.76 | 3.16 | SiO2 | 5.91 |
Calcium | 9.85 | 10.32 | 8.29 | CaO | 14.44 |
Potassium | 0.58 | 0.61 | 0.50 | K2O | 0.74 |
Sodium | 1.60 | 1.67 | 2.34 | Na2O | 2.26 |
Carbon | 0.00 | 0.00 | 0.00 | - | 0.00 |
Aluminum | 0.69 | 0.72 | 0.86 | Al2O3 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, H.; Wang, J.; Liu, J. Experimental Analysis of Reinforcement Rust in Cement under Corrosive Environment. Coatings 2021, 11, 241. https://doi.org/10.3390/coatings11020241
Li X, Wang H, Wang J, Liu J. Experimental Analysis of Reinforcement Rust in Cement under Corrosive Environment. Coatings. 2021; 11(2):241. https://doi.org/10.3390/coatings11020241
Chicago/Turabian StyleLi, Xiaozhen, Hui Wang, Jianmin Wang, and Junzhe Liu. 2021. "Experimental Analysis of Reinforcement Rust in Cement under Corrosive Environment" Coatings 11, no. 2: 241. https://doi.org/10.3390/coatings11020241