Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
3. Results and Discussion
3.1. Light Properties
3.2. Dynamic Aging at Room Temperature
3.3. Thermal Properties
3.4. Saturated Vapor-Pressure Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narendran, N.; Gu, Y.; Freyssinier-Nova, J.P.; Zhu, Y. Extracting phosphor-scattered photons to improve white LED efficiency. Phys. Status Solidi 2005, 202, R60–R62. [Google Scholar] [CrossRef]
- Chung, T.Y.; Chiou, S.C.; Chang, Y.Y.; Sun, C.C.; Yang, T.H.; Chen, S.Y. Study of temperature distribution within pc-WLEDs using the remote-dome phosphor package. IEEE Photonics J. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Shih, B.-J.; Chiou, S.-C.; Hsieh, Y.-H.; Sun, C.-C.; Yang, T.-H.; Chen, S.-Y.; Chung, T.-Y. Study of temperature distributions in pc-WLEDs with different phosphor packages. Opt. Express 2015, 23, 33861–33869. [Google Scholar] [CrossRef]
- Lai, W.; Liu, X.; Chen, W.; Lei, X.; Cao, X. Thermal properties analysis of die attach layer based on time-constant spectrum for high-power LED. IEEE Trans. Electron Devices 2015, 62, 3715–3721. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, R.; Yu, X.; Shu, W.; Luo, X. A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes. Int. J. Heat Mass Transf. 2017, 106, 1–6. [Google Scholar] [CrossRef]
- Chen, D.; Xiang, W.; Liang, X.; Zhong, J.; Yu, H.; Ding, M.; Lu, H.; Ji, Z. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review. J. Eur. Ceram. Soc. 2015, 35, 859–869. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Q.; Yao, K.; Zhou, N. Study on phosphor powder precipitation model in flexible material manufacturing process based on neuro-fuzzy network. Optik 2018, 168, 563–576. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Kumar, R.S.; Sivakumar, V.; Thomas, P.C.; Jose, M.T. Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes. Indian J. Pure Appl. Phys. 2011, 49, 303–307. [Google Scholar]
- Lin, Y.C.; Bettinelli, M.; Sharma, S.K.; Redlich, B.; Speghini, A.; Karlsson, M. Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes. J. Mater. Chem. C. 2020, 8, 14015–14027. [Google Scholar] [CrossRef]
- Kim, Y.H.; Arunkumar, P.; Kim, B.Y.; Unithrattil, S.; Kim, E.; Moon, S.H.; Hyun, J.Y.; Kim, K.H.; Lee, D.H.; Lee, J.S.; et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Liu, R.S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011, 2, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Tucureanu, V.S.; Alina, M.; Avram, A.M. Synthesis and characterization of YAG:Ce phosphors for white LEDs. Optic−Electron. Rev. 2015, 23, 239–251. [Google Scholar] [CrossRef]
- Wieg, A.T.; Penilla, E.H.; Hardin, C.L.; Kodera, Y.; Garay, J.E. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting. APL Mater. 2016, 4, 126105. [Google Scholar] [CrossRef]
- Song, Y.H.; Ji, E.K.; Jeong, B.W.; Jung, M.K.; Kim, E.Y.; Yoon, D.H. High power laser-driven ceramic phosphor plate for out-standing efficient white light conversion in application of automotive lighting. Sci. Rep. 2016, 6, 31206. [Google Scholar] [CrossRef] [PubMed]
- Raukas, M.; Kelso, J.; Zheng, Y.; Bergenek, K.; Eisert, D.; Linkov, A.; Jermann, F. Ceramic phosphors for light conversion in LEDs. ECS J. Solid State Sci. Technol. 2012, 2, R3168–R3176. [Google Scholar] [CrossRef]
- Wierer Jr, J.J.; Tsao, J.Y. Advantages of III-nitride laser diodes in solid-state lighting. Phys. Status Solidi 2014, 22, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J.; Wang, J.; Zhu, C.B.; Zhang, J.H.; Zou, R.; Lei, B.F.; Liu, Y.L.; Wu, M.M. Facile preparation and ultrastable performance of single-device white-light-emitting phosphor-in-glass used for high-power warm white LEDs. ACS Appl. Mater. Interfaces 2015, 7, 28122–28127. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, H.; Yu, Y.; Chen, D.; Xu, J.; Wang, Y. A new-generation color converter for high-power white LED: Transparent Ce3+:YAG phosphor-in-glass. Laser Photon- Rev. 2014, 8, 158–164. [Google Scholar] [CrossRef]
- Yoon, H.C.; Yoshihiro, K.; Yoo, H.; Lee, S.W.; Oh, J.H.; Do, Y.R. Low-Yellowing phosphor-in-glass for high-power chip-on-board white LEDs by optimizing a low-melting Sn-P-F-O glass matrix. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Chang, Y.-P.; Chang, J.-K.; Cheng, W.-C.; Kuo, Y.-Y.; Liu, C.-N.; Chen, L.-Y.; Cheng, W.-H. New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine. Opt. Mater. Express 2017, 7, 1029–1034. [Google Scholar] [CrossRef]
- Kim, S.; Kim, B.; Kim, H. Optical properties of densified phosphor-in-glass LED encapsulants by spark plasma sintering. Opt. Mater. Express 2017, 7, 4304–4315. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Zhuo, Y.; Xiong, D.; Chen, M.X. Gradient refractive index structure of phosphor-in-glass coating for packaging of white LEDs. J. Am. Ceram. Soc. 2019, 102, 1677–1685. [Google Scholar] [CrossRef]
- Xi, Y.; Schubert, E.F. Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett. 2004, 85, 2163–2165. [Google Scholar] [CrossRef]
- Kim, L.; Choi, J.H.; Jang, S.H.; Shin, M.W. Thermal analysis of LED array system with heat pipe. Thermochim. Acta 2007, 455, 21–25. [Google Scholar] [CrossRef]
- Standard No. 51-1 Integrated Circuits Thermal Measurement Method—Electrical Test Method (Single Semiconductor Device); JEDEC: Arlington, VA, USA, 1995.
Sample | CCT (K) | CCT Difference Range (K) | CIE 1931 x,y |
---|---|---|---|
PiG | 5564 | −44–+21 | (0.3306, 0.3750) |
PiS 8.5 wt.% | 5469 | −69–+113 | (0.3278, 0.3746) |
PiS 9.0 wt.% | 5311 | −39–+61 | (0.3382, 0.3937) |
Sample | Light Output Flux (lm) | Light Output Flux Efficiency (lm/W) |
---|---|---|
PiS | 142.4 lm | 118 lm/W |
PiG | 133.2 lm | 110 lm/W |
Sample | Normalized Light Output Flux (%) | CCT (K) | CRI (Ra) | ||||
---|---|---|---|---|---|---|---|
0 h | 1008 h | ΔAverage (%) | 0 h | 1008 h | ΔAverage (%) | ||
PiS | 111% | 5652 | 5664 | +0.2 | 67.9 | 68.4 | +0.7 |
PiG | 110% | 5738 | 5771 | +0.5 | 71.8 | 72.4 | +0.8 |
Sample | Tj (°C) | Tc (°C) | Tj − Tc (°C) | Rth (°C/W) | ΔRth (%) |
---|---|---|---|---|---|
PiS | 88.4 | 56.8 | 31.6 | 37.4 | NA |
PiG | 81.3 | 51.0 | 30.3 | 35.6 | −4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C.; Weng, T.-H.; Lin, C.-L.; Su, Y.-K. Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages. Coatings 2021, 11, 239. https://doi.org/10.3390/coatings11020239
Huang C-C, Weng T-H, Lin C-L, Su Y-K. Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages. Coatings. 2021; 11(2):239. https://doi.org/10.3390/coatings11020239
Chicago/Turabian StyleHuang, Chin-Chuan, Tsung-Han Weng, Chun-Liang Lin, and Yan-Kuin Su. 2021. "Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages" Coatings 11, no. 2: 239. https://doi.org/10.3390/coatings11020239
APA StyleHuang, C.-C., Weng, T.-H., Lin, C.-L., & Su, Y.-K. (2021). Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages. Coatings, 11(2), 239. https://doi.org/10.3390/coatings11020239