Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
3. Results and Discussion
3.1. Light Properties
3.2. Dynamic Aging at Room Temperature
3.3. Thermal Properties
3.4. Saturated Vapor-Pressure Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narendran, N.; Gu, Y.; Freyssinier-Nova, J.P.; Zhu, Y. Extracting phosphor-scattered photons to improve white LED efficiency. Phys. Status Solidi 2005, 202, R60–R62. [Google Scholar] [CrossRef]
- Chung, T.Y.; Chiou, S.C.; Chang, Y.Y.; Sun, C.C.; Yang, T.H.; Chen, S.Y. Study of temperature distribution within pc-WLEDs using the remote-dome phosphor package. IEEE Photonics J. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Shih, B.-J.; Chiou, S.-C.; Hsieh, Y.-H.; Sun, C.-C.; Yang, T.-H.; Chen, S.-Y.; Chung, T.-Y. Study of temperature distributions in pc-WLEDs with different phosphor packages. Opt. Express 2015, 23, 33861–33869. [Google Scholar] [CrossRef]
- Lai, W.; Liu, X.; Chen, W.; Lei, X.; Cao, X. Thermal properties analysis of die attach layer based on time-constant spectrum for high-power LED. IEEE Trans. Electron Devices 2015, 62, 3715–3721. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, R.; Yu, X.; Shu, W.; Luo, X. A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes. Int. J. Heat Mass Transf. 2017, 106, 1–6. [Google Scholar] [CrossRef]
- Chen, D.; Xiang, W.; Liang, X.; Zhong, J.; Yu, H.; Ding, M.; Lu, H.; Ji, Z. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review. J. Eur. Ceram. Soc. 2015, 35, 859–869. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Q.; Yao, K.; Zhou, N. Study on phosphor powder precipitation model in flexible material manufacturing process based on neuro-fuzzy network. Optik 2018, 168, 563–576. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Kumar, R.S.; Sivakumar, V.; Thomas, P.C.; Jose, M.T. Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes. Indian J. Pure Appl. Phys. 2011, 49, 303–307. [Google Scholar]
- Lin, Y.C.; Bettinelli, M.; Sharma, S.K.; Redlich, B.; Speghini, A.; Karlsson, M. Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes. J. Mater. Chem. C. 2020, 8, 14015–14027. [Google Scholar] [CrossRef]
- Kim, Y.H.; Arunkumar, P.; Kim, B.Y.; Unithrattil, S.; Kim, E.; Moon, S.H.; Hyun, J.Y.; Kim, K.H.; Lee, D.H.; Lee, J.S.; et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Liu, R.S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011, 2, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Tucureanu, V.S.; Alina, M.; Avram, A.M. Synthesis and characterization of YAG:Ce phosphors for white LEDs. Optic−Electron. Rev. 2015, 23, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Wieg, A.T.; Penilla, E.H.; Hardin, C.L.; Kodera, Y.; Garay, J.E. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting. APL Mater. 2016, 4, 126105. [Google Scholar] [CrossRef]
- Song, Y.H.; Ji, E.K.; Jeong, B.W.; Jung, M.K.; Kim, E.Y.; Yoon, D.H. High power laser-driven ceramic phosphor plate for out-standing efficient white light conversion in application of automotive lighting. Sci. Rep. 2016, 6, 31206. [Google Scholar] [CrossRef] [PubMed]
- Raukas, M.; Kelso, J.; Zheng, Y.; Bergenek, K.; Eisert, D.; Linkov, A.; Jermann, F. Ceramic phosphors for light conversion in LEDs. ECS J. Solid State Sci. Technol. 2012, 2, R3168–R3176. [Google Scholar] [CrossRef]
- Wierer Jr, J.J.; Tsao, J.Y. Advantages of III-nitride laser diodes in solid-state lighting. Phys. Status Solidi 2014, 22, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J.; Wang, J.; Zhu, C.B.; Zhang, J.H.; Zou, R.; Lei, B.F.; Liu, Y.L.; Wu, M.M. Facile preparation and ultrastable performance of single-device white-light-emitting phosphor-in-glass used for high-power warm white LEDs. ACS Appl. Mater. Interfaces 2015, 7, 28122–28127. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, H.; Yu, Y.; Chen, D.; Xu, J.; Wang, Y. A new-generation color converter for high-power white LED: Transparent Ce3+:YAG phosphor-in-glass. Laser Photon- Rev. 2014, 8, 158–164. [Google Scholar] [CrossRef]
- Yoon, H.C.; Yoshihiro, K.; Yoo, H.; Lee, S.W.; Oh, J.H.; Do, Y.R. Low-Yellowing phosphor-in-glass for high-power chip-on-board white LEDs by optimizing a low-melting Sn-P-F-O glass matrix. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-P.; Chang, J.-K.; Cheng, W.-C.; Kuo, Y.-Y.; Liu, C.-N.; Chen, L.-Y.; Cheng, W.-H. New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine. Opt. Mater. Express 2017, 7, 1029–1034. [Google Scholar] [CrossRef]
- Kim, S.; Kim, B.; Kim, H. Optical properties of densified phosphor-in-glass LED encapsulants by spark plasma sintering. Opt. Mater. Express 2017, 7, 4304–4315. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Zhuo, Y.; Xiong, D.; Chen, M.X. Gradient refractive index structure of phosphor-in-glass coating for packaging of white LEDs. J. Am. Ceram. Soc. 2019, 102, 1677–1685. [Google Scholar] [CrossRef]
- Xi, Y.; Schubert, E.F. Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett. 2004, 85, 2163–2165. [Google Scholar] [CrossRef] [Green Version]
- Kim, L.; Choi, J.H.; Jang, S.H.; Shin, M.W. Thermal analysis of LED array system with heat pipe. Thermochim. Acta 2007, 455, 21–25. [Google Scholar] [CrossRef]
- Standard No. 51-1 Integrated Circuits Thermal Measurement Method—Electrical Test Method (Single Semiconductor Device); JEDEC: Arlington, VA, USA, 1995.
Sample | CCT (K) | CCT Difference Range (K) | CIE 1931 x,y |
---|---|---|---|
PiG | 5564 | −44–+21 | (0.3306, 0.3750) |
PiS 8.5 wt.% | 5469 | −69–+113 | (0.3278, 0.3746) |
PiS 9.0 wt.% | 5311 | −39–+61 | (0.3382, 0.3937) |
Sample | Light Output Flux (lm) | Light Output Flux Efficiency (lm/W) |
---|---|---|
PiS | 142.4 lm | 118 lm/W |
PiG | 133.2 lm | 110 lm/W |
Sample | Normalized Light Output Flux (%) | CCT (K) | CRI (Ra) | ||||
---|---|---|---|---|---|---|---|
0 h | 1008 h | ΔAverage (%) | 0 h | 1008 h | ΔAverage (%) | ||
PiS | 111% | 5652 | 5664 | +0.2 | 67.9 | 68.4 | +0.7 |
PiG | 110% | 5738 | 5771 | +0.5 | 71.8 | 72.4 | +0.8 |
Sample | Tj (°C) | Tc (°C) | Tj − Tc (°C) | Rth (°C/W) | ΔRth (%) |
---|---|---|---|---|---|
PiS | 88.4 | 56.8 | 31.6 | 37.4 | NA |
PiG | 81.3 | 51.0 | 30.3 | 35.6 | −4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C.; Weng, T.-H.; Lin, C.-L.; Su, Y.-K. Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages. Coatings 2021, 11, 239. https://doi.org/10.3390/coatings11020239
Huang C-C, Weng T-H, Lin C-L, Su Y-K. Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages. Coatings. 2021; 11(2):239. https://doi.org/10.3390/coatings11020239
Chicago/Turabian StyleHuang, Chin-Chuan, Tsung-Han Weng, Chun-Liang Lin, and Yan-Kuin Su. 2021. "Light Output, Thermal Properties, and Reliability of Using Glass Phosphors in WLED Packages" Coatings 11, no. 2: 239. https://doi.org/10.3390/coatings11020239