Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Obtaining and Characterization of Tansy EOs
4.2. Antibacterial Activity of T. vulgare EOs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 18 September 2023).
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Chifiriuc, M.C.; Mihăescu, G.; Lazăr, V. Antimicrobial therapy. In Microbiology and Medical Virology; University of Bucharest: Bucharest, Romania, 2011; pp. 426–431. [Google Scholar]
- World Health Organization. Global Shortage of Innovative Antibiotics Fuels Emergence and Spread of Drug-Resistance. Available online: https://www.who.int/news/item/15-04-2021-global-shortage-of-innovative-antibiotics-fuels-emergence-and-spread-of-drug-resistance (accessed on 28 June 2023).
- Adeyemi, A.D.; Oluigbo, C.C.; Esan, A.O.; Bello, M.O.; Oladoye, S.O.; Emmanuel, C.P.; Effiong, E. Chemical Composition and Antimicrobial Activity of the Essential oils of 14 known Ficus species–A Concise. Biointerface Res. Appl. Chem. 2021, 12, 8003–8034. [Google Scholar]
- Saber, M.; Harhar, H.; Bouyahya, A.; Ouchbani, T.; Tabyaoui, M. Chemical Composition and Antioxidant Activity of Essential Oil of Sawdust from Moroccan Thuya (Tetraclinis articulata (Vahl) Masters). Biointerface Res. Appl. Chem. 2020, 11, 7912–7920. [Google Scholar]
- Balaban, Y.H.; Aka, C.; Koca-Caliskan, U. Liver immunology and herbal treatment. World J. Hepatol. 2017, 9, 757–770. [Google Scholar] [CrossRef]
- Iriti, M.; Vitalini, S.; Fico, G.; Faoro, F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010, 15, 3517–3555. [Google Scholar] [CrossRef]
- Diao, W.-R.; Hu, Q.-P.; Zhang, H.; Xu, J.-G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Grigore, A.; Colceru-Mihul, S.; Bazdoaca, C.; Yuksel, R.; Ionita, C.; Glava, L. Antimicrobial Activity of an Achillea millefolium L. Proceedings 2020, 57, 34. [Google Scholar] [CrossRef]
- Lu, Y.; Joerger, R.; Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2011, 59, 10934–10942. [Google Scholar] [CrossRef]
- Petrovic, J.; Stanojkovic, A.; Comic, L.; Curcic, S. Antibacterial activity of Cichorium intybus. Fitoterapia 2004, 75, 737–739. [Google Scholar] [CrossRef]
- Sati, S.C.; Joshi, S. Antibacterial activities of Ginkgo biloba L. leaf extracts. Sci. World J. 2011, 11, 2237–2242. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, C.; Parafati, L.; Cirvilleri, G.; Mauromicale, G. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. var. altilis DC.) leaf extracts against bacterial species of agricultural and food interest. Ind. Crops Prod. 2019, 129, 206–211. [Google Scholar] [CrossRef]
- Al-Habib, A.; Al-Saleh, E.; Safer, A.M.; Afzal, M. Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J. Toxicol. Sci. 2010, 35, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Anesini, C.; Perez, C. Screening of plants used in Argentine folk medicine for antimicrobial activity. J. Ethnopharmacol. 1993, 39, 119–128. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Korpinen, R.I.; Välimaa, A.L.; Liimatainen, J.; Kunnas, S. Essential Oils and Supercritical CO2 Extracts of Arctic Angelica (Angelica archangelica L.), Marsh Labrador Tea (Rhododendron tomentosum) and Common Tansy (Tanacetum vulgare)-Chemical Compositions and Antimicrobial Activities. Molecules 2021, 26, 7121. [Google Scholar] [CrossRef] [PubMed]
- Benkhaira, N.; Koraichi, S.I.; Fikri-Benbrahim, K. In vitro methods to study antioxidant and some biological activities of essential oils: A review. Biointerface Res. Appl. Chem 2022, 12, 3332. [Google Scholar]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Müller, J. Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.). Ind. Crops Prod. 2014, 52, 118–124. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Stevovic, S.; Devrnja, N.; Calic-Dragosavac, D. Environmental impact quantification and correlation between site location and contents and structure of Tansy. Afr. J. Biotechnol. 2011, 10, 5075–5083. [Google Scholar]
- Xu, W.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Effects of geographical location and environmental factors on metabolite content and immune activity of Echinacea purpurea in China based on metabolomics analysis. Ind. Crops Prod. 2022, 189, 115782. [Google Scholar] [CrossRef]
- Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Stojiljković, N.I. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 105, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Abu-Dieyeh, Z.H.M. Essential oil content and heavy metals composition of Thymus vulgaris cultivated in various climatic regions of Jordan. Int. J. Agric. Biol 2009, 11, 59–63. [Google Scholar]
- Stevovic, S.; Mikovilovic, V.S.; Dragosavac, D.C. Environmental adaptibility of tansy (Tanacetum vulgare L.). Afr. J. Biotechnol. 2009, 8, 6290–6294. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol (accessed on 20 September 2023).
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can eucalyptol replace antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1, 8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, S.; Hadjiakhoondi, A.; Yassa, N.; Khanavi, M.; Tofighi, Z. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus. Iran. J. Basic Med. Sci. 2016, 19, 159–165. [Google Scholar] [PubMed]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- Samba, N.; Aitfella-Lahlou, R.; Nelo, M.; Silva, L.; Coca, R.; Rocha, P.; López Rodilla, J.M. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020, 26, 155. [Google Scholar] [CrossRef]
- Mischko, W.; Hirte, M.; Fuchs, M.; Mehlmer, N.; Brück, T.B. Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective β-copaene and cubebol production in E. coli. Microb. Cell Fact. 2018, 17, 164. [Google Scholar] [CrossRef]
- Özek, G.; Schepetkin, I.A.; Yermagambetova, M.; Özek, T.; Kirpotina, L.N.; Almerekova, S.S.; Abugalieva, S.I.; Khlebnikov, A.I.; Quinn, M.T. Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules 2021, 26, 7644. [Google Scholar] [CrossRef]
- Nakanishi, T.; Inatomi, Y.; Murata, H.; Shigeta, K.; Iida, N.; Inada, A.; Murata, J.; Farrera, M.A.; Iinuma, M.; Tanaka, T.; et al. A new and known cytotoxic aryltetralin-type lignans from stems of Bursera graveolens. Chem. Pharm. Bull. 2005, 53, 229–231. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical Composition, and Antioxidant and Antimicrobial Activities of Essential Oil of Spearmint (Mentha spicata L.) From Pakistan. J. Essent. Oil Res. 2010, 22, 78–84. [Google Scholar] [CrossRef]
- Mathela, C.S.; Padalia, R.C.; Chanotiya, C.S.; Tiwari, A. Carvone rich Mentha longifolia (Linn.): Chemical Variation and Commercial Potential. J. Essent. Oil Bear. Plants 2005, 8, 130–133. [Google Scholar] [CrossRef]
- Micali, G.; Lanuzza, F. HPLC determination of β- and β-thujone, potentially toxic components of natural flavourings, in alcoholic beverages. Flavour Fragr. J. 1995, 10, 329–333. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Emmert, J.; Kuballa, T.; Sartor, G. Thujone—Cause of absinthism? Forensic Sci. Int. 2006, 158, 1–8. [Google Scholar] [CrossRef]
- Höld, K.M.; Sirisoma, N.S.; Ikeda, T.; Narahashi, T.; Casida, J.E. Alpha-thujone (the active component of absinthe): Gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc. Natl. Acad. Sci. USA 2000, 97, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. RTP 2013, 65, 100–107. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Public Statement on the Use of Herbal Medicinal Products Containing Thujone; European Medicines Agency: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Zámboriné Németh, É.; Thi Nguyen, H. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Mohammadian Yasuj, S.F.; Najafian, S.; Hosseinifarahi, M. Comparison monoterpene and sesquiterpene, herbage yield of Satureja hortensis, Thymus vulgaris, and Salvia officinalis from the Fars province of Iran. Nat. Prod. Res. 2022, 37, 3711–3715. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, H.; Lim, W.; Song, G. α,β-Thujone suppresses human placental choriocarcinoma cells via metabolic disruption. Reproduction 2020, 159, 745–756. [Google Scholar] [CrossRef]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Teethaisong, Y.; Autarkool, N.; Sirichaiwetchakoon, K.; Krubphachaya, P.; Kupittayanant, S.; Eumkeb, G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J. Biomed. Sci. 2014, 21, 90. [Google Scholar] [CrossRef]
- Sibanda, T.; Okoh, A.I. In vitro evaluation of the interactions between acetone extracts of Garcinia kola seeds and some antibiotics. Afr. J. Biotechnol. 2008, 7, 1672–1678. [Google Scholar]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Chiavari-Frederico, M.O.; Barbosa, L.N.; dos Santos, I.C.; da Silva, G.R.; de Castro, A.F.; Bortolucci, W.d.C.; Barboza, L.N.; Campos, C.F.d.A.A.; Gonçalves, J.E.; Menetrier, J.V.; et al. Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLoS ONE 2020, 15, e0227023. [Google Scholar] [CrossRef]
- Gadisa, E.; Tadesse, E. Antimicrobial activity of medicinal plants used for urinary tract infections in pastoralist community in Ethiopia. BMC Complement. Med. Ther. 2021, 21, 74. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry (accessed on 28 June 2023).
- Sparkman, O.D. MassFinder 3. J. Am. Soc. Mass Spectrom. 2007, 18, 1137–1144. [Google Scholar] [CrossRef]
- M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018.
- M7-A7; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006.
- M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
Nr. Peak | Compound | Retention Time (min) | Compound Class | Concentration (w/w %) |
---|---|---|---|---|
1 | α-Thujone | 4.24 | MO | 0.05 ± 0.02 |
2 | α-Pinenene | 4.42 | MH | 0.85 ± 0.03 |
3 | Camphene | 4.76 | MH | 0.53 ± 0.02 |
4 | Dehydro sabinene ketone | 4.83 | MO | 0.02 ± 0.01 |
5 | Sabinene | 5.22 | MH | 1.51 ± 0.01 |
6 | β-Pinene | 5.36 | MH | 0.42 ± 0.04 |
7 | β-Mircene | 5.54 | MH | 0.14 ± 0.03 |
8 | 2,3-Dehydro-1,8-cineole | 5.61 | MO | 0.04 ± 0.01 |
9 | α-Phellandrene | 6.00 | MH | 0.03 ± 0.01 |
10 | (+)-3-Carene | 6.08 | MH | 0.16 ± 0.02 |
11 | α-Terpinene | 6.27 | MH | 0.29 ± 0.03 |
12 | p-Cymene | 6.46 | MO | 0.52 ± 0.01 |
13 | D-Limonene | 6.59 | MH | 0.62 ± 0.02 |
14 | Eucalyptol | 6.67 | MO | 2.47 ± 0.03 |
15 | Trans-β-Ocimene | 7.01 | MH | 0.07 ± 0.01 |
16 | γ-Terpinene | 7.37 | MH | 0.58 ± 0.01 |
17 | cis-Sabinene hydrate | 7.71 | MO | 0.02 ± 0.01 |
18 | Terpinolene | 8.16 | MH | 0.16 ± 0.02 |
19 | Linalool | 8.54 | MO | 0.03 ± 0.01 |
20 | Filifolone | 8.57 | MO | 0.33 ± 0.01 |
21 | α-Thujone | 8.76 | MH | 3.47 ± 0.03 |
22 | β-Thujone | 9.15 | MO | 30.26 ± 0.04 |
23 | Chrysanthenone | 9.22 | MO | 1.60 ± 0.01 |
24 | trans-(2-Ethylcyclopentyl)methanol | 9.32 | O | 0.09 ± 0.01 |
25 | (+)-Isothujol | 9.71 | MO | 0.19 ± 0.02 |
26 | (−)-cis-Sabinol | 9.78 | MO | 0.20 ± 0.03 |
27 | L-trans-Pinocarveol | 9.83 | MO | 0.19 ± 0.01 |
28 | (+)-Camphor | 10.00 | MO | 1.67 ± 0.03 |
29 | Pinocarvone | 10.48 | MO | 0.34 ± 0.01 |
30 | (1S)-endo)-(−)-Borneol | 10.79 | MO | 0.24 ± 0.01 |
31 | cis-Pinocamphone | 10.91 | MO | 0.03 ± 0.01 |
32 | (−)-Terpinen-4-ol | 11.06 | MO | 1.01 ± 0.02 |
34 | α-Thujenol | 11.12 | MO | 0.02 ± 0.01 |
35 | 1,5-Menthadien-7-ol | 11.42 | MO | 0.05 ± 0.01 |
36 | cis-Dihydrocarvone | 11.52 | MO | 0.38 ± 0.03 |
37 | cis-Dihydrocarvone | 11.58 | MO | 0.12 ± 0.02 |
38 | (−)-trans-Isopiperilenol | 11.69 | MO | 0.02 ± 0.01 |
39 | trans-Dihydrocarvone | 11.80 | MO | 0.02 ± 0.01 |
40 | cis-p-Menth-2-en-7-ol | 11.90 | MO | 0.23 ± 0.01 |
41 | trans-p-Menth-2-en-7-ol | 11.95 | MO | 0.16 ± 0.02 |
42 | cis-Carveol | 12.28 | MO | 1.23 ± 0.02 |
43 | trans-Chrysanthenyl acetate | 12.68 | MO | 0.06 ± 0.01 |
44 | Carveol | 12.70 | MO | 0.79 ± 0.01 |
45 | (−)-Carvone | 13.05 | MO | 0.4 ± 0.02 |
46 | Piperitone | 13.24 | MO | 0.04 ± 0.01 |
47 | cis-Chrysanthenyl acetate | 13.48 | MO | 1.25 ± 0.03 |
48 | iso-3-Thujyl acetate | 13.61 | MO | 0.06 ± 0.01 |
49 | (Z)-Linalool oxide acetat pvr | 14.23 | MO | 0.02 ± 0.01 |
50 | (−)-Bornyl acetate | 14.36 | MO | 0.09 ± 0.01 |
51 | trans-Sabinil acetate | 14.49 | MO | 4.6 ± 0.03 |
52 | trans-2,trans-4-Decadiene|C10H18 | 15.03 | MH | 0.25 ± 0.02 |
53 | Chrysanthenyl propionate | 15.59 | MO | 0.02 ± 0.01 |
54 | 1,4-p-Menthadien-7-ol | 15.81 | MO | 0.07 ± 0.01 |
55 | cis-Carvyl acetate | 15.90 | MO | 0.23 ± 0.01 |
56 | α-Fenchene | 16.02 | MH | 0.52 ± 0.02 |
57 | Pseudolimonen | 16.49 | MH | 0.13 ± 0.01 |
58 | trans-Carveyl acetate | 16.78 | MO | 34.44 ± 0.03 |
59 | 7-epi-Silphiperfol-5-ene | 17.26 | SH | 0.02 ± 0.01 |
60 | α-Copaene | 17.31 | MH | 0.06 ± 0.01 |
61 | Caryophylene | 18.66 | SH | 0.25 ± 0.02 |
62 | β-Copaene | 18.97 | MH | 0.02 ± 0.01 |
63 | Humulene | 19.75 | SH | 0.09 ± 0.01 |
64 | γ-Cardinene | 20.35 | SH | 0.05 ± 0.01 |
65 | Germacrene D | 20.53 | SH | 3.03 ± 0.02 |
66 | Bicyclogermacren | 20.97 | SH | 0.53 ± 0.01 |
67 | β-Cadinene | 21.66 | SH | 0.23 ± 0.02 |
68 | cis-Verbenyl angelate | 21.95 | SO | 0.05 ± 0.01 |
69 | Bornyl acetate, (E)-methyl tiglate | 22.84 | MO | 0.09 ± 0.01 |
70 | Spathulenol | 23.34 | SO | 0.09 ± 0.01 |
71 | Caryophylene oxide | 23.49 | SO | 0.11 ± 0.01 |
72 | Salvial-4(14)-en-1-one | 23.80 | SO | 0.03 ± 0.01 |
73 | Cedrol | 24.25 | SO | 0.14 ± 0.02 |
74 | 10-epi-juneol | 24.64 | SO | 0.03 ± 0.01 |
75 | Cubenol | 24.81 | SO | 0.05 ± 0.01 |
76 | 13-Tetradecanolide | 25.38 | O | 0.3 ± 0.01 |
77 | α-Cardanol | 25.58 | SO | 0.13 ± 0.01 |
78 | Neointermedeol | 25.64 | SO | 0.31 ± 0.02 |
79 | Intermedeol | 25.81 | SO | 0.32 ± 0.01 |
Total concentration | 99.26 |
Identified Compound | % | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 (R) | 4 (M) | 4 (W) | 4 (T) | |
Sabinene | 1.51 | 2.02 | 0.1 | 2.09 | 3.39 | 2.36 | 0.24 |
Eucalyptol | 2.47 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Trans-β-Ocimene | 0.07 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Linalool | 0.03 | 0.38 | n.d. | 0.33 | 0.33 | 0.28 | 0.17 |
Filifolone | 0.33 | 0.15 | tr | n.d. | n.d. | n.d. | n.d. |
A-Thujone | 3.47 | 0.08 | 0.9 | n.d. | tr | 0.14 | n.d. |
β-Thujone | 30.26 | 3.66 | 66.6 | n.d. | n.d. | n.d. | n.d. |
Chrysanthenone | 1.6 | 3.76 | tr | n.d. | n.d. | n.d. | n.d. |
(+)-Camphor | 1.67 | 30.48 | 3.1 | 31.21 | 10.17 | 11.93 | 1.27 |
cis-Pinocamphone | 0.03 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
(−)-Terpinen 4-ol | 1.01 | 0.09 | 0.8 | n.d. | n.d. | n.d. | n.d. |
cis-Carveol | 1.23 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
cis-Chrysanthenyl acetate | 1.25 | 0.1 | n.d. | 0.07 | 0.13 | 1.91 | 0.11 |
(z)-Linalool oxide acetate (pyranoid) | 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
trans-Sabinyl acetate | 4.6 | n.d. | 0.1 | n.d. | n.d. | n.d. | n.d. |
α-Fenchene | 0.52 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
trans-Carvyl acetate | 34.44 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
β-Copaene | 0.02 | n.d. | tr | n.d. | n.d. | n.d. | n.d. |
Germacrene D | 3.03 | 0.09 | 0.7 | 0.46 | 0.42 | 0.7 | 0.38 |
Cedrol | 0.14 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Juneol | 0.03 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Strain | Diameter (mm) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tv | TPZ (100 + 10 µg) | TPZ + Tv | PIP (75 µg) | PIP + Tv | SAM (10 + 10 µg | SAM + Tv | CAZ (10 µg) | CAZ + Tv | ATM (30 µg) | ATM + Tv | IPM (10 µg) | IPM + Tv | MEM (10 µg) | MEM + Tv | GM (10 µg) | GM + Tv | TOB (10 µg) | TOB + Tv | LVX (5 µg) | LVX + Tv | CIP (5 µg) | CIP + Tv | |
PaATC | 21 | 20(S) | 21(S) | 30(S) | 28(I) | 20(S) | 20(S) | 17(S) | 21(S) | 16(I) | 20(S) | 20(S) | 21(S) | 24(S) | 28(S) | 20(S) | 22(S) | 18(S) | 20(S) | 24(S) | 28(S) | 20(S) | 28(S) |
Pa3162 | 19 | 6(R) | 12(S) | 6(R) | 14(I) | 8(R) | 19(S) | 6(R) | 17(S) | 6(R) | 16(S) | 6(R) | 12(S) | 10(R) | 19(S) | 6(R) | 18(S) | 6(R) | 19(S) | 6(R) | 19(S) | 6(R) | 14(I) |
Pa11I | 18 | 6(R) | 10(S) | 6(R) | 15(I) | 10(R) | 20(S) | 8(R) | 19(S) | 6(R) | 18(S) | 6(R) | 10(S) | 8(R) | 21(S) | 6(R) | 20(S) | 6(R) | 20(S) | 6(R) | 18(S) | 6(R) | 15(I) |
Ab3997 | 20 | 6(R) | 17(S) | 10(R) | 18(S) | 6(R) | 20(S) | 6(R) | 20(S) | 6(R) | 19(S) | 6(R) | 17(S) | 6(R) | 19(S) | 6(R) | 17(S) | 6(R) | 20(S) | 10(R) | 18(S) | 10(R) | 18(S) |
Ab288 | 22 | 6(R) | 20(S) | 8(R) | 20(S) | 6(R) | 22(S) | 6(R) | 14(S) | 14(I) | 20(S) | 6(R) | 20(S) | 8(R) | 24(S) | 6(R) | 20(S) | 6(R) | 22(S) | 6(R) | 20(S) | 8(R) | 20(S) |
Kp6I | 21 | 6(R) | 19(S) | 8(R) | 17(S) | 6(R) | 19(S) | 14(R) | 20(S) | 6(R) | 21(S) | 6(R) | 19(S) | 6(R) | 19(S) | 6(R) | 19(S) | 6(R) | 19(S) | 6(R) | 17(S) | 8(R) | 17(S) |
Kp14I | 18 | 6(R) | 17(S) | 6(R) | 19(S) | 10(R) | 18(S) | 6(R) | 19(S) | 6(R) | 19(S) | 6(R) | 17(S) | 8(R) | 18(S) | 6(R) | 17(S) | 10(R) | 18(S) | 6(R) | 19(S) | 6(R) | 19(S) |
Kp15I | 22 | 6(R) | 18(S) | 8(R) | 21(S) | 10(R) | 20(S) | 6(R) | 21(S) | 14(I) | 20(S) | 6(R) | 18(S) | 10(R) | 20(S) | 6(R) | 18(S) | 10(R) | 20(S) | 10(R) | 21(S) | 6(R) | 21(S) |
Kp19I | 22 | 6(R) | 20(S) | 12(R) | 18(S) | 6(R) | 18(S) | 6(R) | 17(S) | 10(R) | 20(S) | 6(R) | 20(S) | 6(R) | 18(S) | 6(R) | 20(S) | 6(R) | 18(S) | 12(R) | 18(S) | 12(R) | 18(S) |
Antibiotic Class | Antibiotics | Pseudomonas aeruginosa | Acinetobacter baumannii | Klebsiella pneumoniae |
---|---|---|---|---|
Penicilins/+clavulanic acid or sulbactam | TPZ | 2/3 | 2/2 | 4/4 |
PIP | 3/3 | 2/2 | 4/4 | |
SAM | 2/3 | 2/2 | 4/4 | |
Cephalosporins | CAZ | 2/3 | 2/2 | 4/4 |
Monobactams | ATM | 2/3 | 2/2 | 4/4 |
Carbapenems | IMP | 1/3 | 2/2 | 4/4 |
MEM | 3/3 | 2/2 | 4/4 | |
Aminoglycosides | GN | 1/3 | 2/2 | 4/4 |
TOB | 3/3 | 2/2 | 4/4 | |
Quinolones | LEV | 3/3 | 2/2 | 4/4 |
CIP | 2/3 | 2/2 | 4/4 |
Strain | The Influence of EO Tansy against Bacterial Growth in Combination with the Antibiotic (µg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CIP (5 µg) | CIP + Tv | FEP (30 µg) | FEP + Tv | AMC (30 µg) | AMC + Tv | GM (10 µg) | GM + Tv | IPM (10 µg) | IPM + Tv | TOB (10 µg) | TOB + Tv | |
S. aureus732 | 128 | 16 | 256 | 32 | 128 | 32 | 128 | 16 | 128 | 16 | 256 | 16 |
S. aureus735 | 256 | 32 | 512 | 16 | 64 | 16 | 256 | 32 | 256 | 32 | 512 | 16 |
A. baumannii288 | 64 | 8 | 128 | 8 | 64 | 8 | 64 | 16 | 128 | 64 | 128 | 32 |
A. baumannii3997 | 256 | 32 | 128 | 32 | 32 | 64 | 256 | 32 | 256 | 32 | 64 | 64 |
P. aeruginosa3162 | 64 | 16 | 256 | 8 | 128 | 32 | 128 | 8 | 64 | 16 | 128 | 16 |
P. aeruginosa11I | 128 | 64 | 64 | 32 | 256 | 64 | 128 | 16 | 128 | 32 | 256 | 8 |
K. pneumoniae6I | 256 | 64 | 256 | 8 | 256 | 32 | 16 | 4 | 512 | 32 | 128 | 32 |
K. pneumoniae14I | 128 | 32 | 128 | 32 | 128 | 8 | 128 | 8 | 256 | 16 | 256 | 64 |
K. pneumoniae15I | 256 | 64 | 64 | 16 | 64 | 32 | 64 | 16 | 128 | 8 | 64 | 8 |
K. pneumoniae19I | 128 | 32 | 64 | 8 | 64 | 16 | 256 | 8 | 128 | 16 | 128 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, H.; Niculescu, A.-G.; Lazăr, V.; Mitache, M.M. Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics 2023, 12, 1635. https://doi.org/10.3390/antibiotics12111635
Roman H, Niculescu A-G, Lazăr V, Mitache MM. Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics. 2023; 12(11):1635. https://doi.org/10.3390/antibiotics12111635
Chicago/Turabian StyleRoman, Horațiu, Adelina-Gabriela Niculescu, Veronica Lazăr, and Mihaela Magdalena Mitache. 2023. "Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics" Antibiotics 12, no. 11: 1635. https://doi.org/10.3390/antibiotics12111635
APA StyleRoman, H., Niculescu, A. -G., Lazăr, V., & Mitache, M. M. (2023). Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics, 12(11), 1635. https://doi.org/10.3390/antibiotics12111635