Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Magnetic Nanoparticles
2.3. Coating Magnetic Nanoparticles with a Gold Shell
2.4. Modification of MNPs-Au by m-Anti-hGH Antibodies
2.5. Development of Sandwich Type Magneto-Immunoassay for hGH Detection Using MNPs-Au
3. Results and Discussion
3.1. Characterization of Magnetic MNPs-Au
3.2. Magneto-Immunoassay Performance Optimization
3.3. Analytical Characteristics of Sandwich Type Magneto-Immunoassay for hGH Detection Using MNPs-Au
3.4. Determination of hGH in Spiked Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popov, A.; Stirke, A.; Bakute, N.; Brasiunas, B.; Ramanavicius, A.; Ramanaviciene, A. Efficiency of granulocyte colony-stimulating factor immobilized on magnetic microparticles on proliferation of NFS-60 cells. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123580. [Google Scholar] [CrossRef]
- Baniukevic, J.; Hakki Boyaci, I.; Goktug Bozkurt, A.; Tamer, U.; Ramanavicius, A.; Ramanaviciene, A. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 2013, 43, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.; Turemis, M.; Marini, B.; Ippodrino, R.; Giardi, M.T. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing. Biotechnol. Adv. 2017, 35, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Gloag, L.; Mehdipour, M.; Chen, D.; Tilley, R.D.; Gooding, J.J. Advances in the Application of Magnetic Nanoparticles for Sensing. Adv. Mater. 2019, 31, 1904385. [Google Scholar] [CrossRef] [PubMed]
- Poudineh, M.; Aldridge, P.M.; Ahmed, S.; Green, B.J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R.M.; Nam, R.K.; Hansen, A.; et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017, 12, 274–281. [Google Scholar] [CrossRef]
- Campuzano, S.; de Ávila, B.E.-F.; Yuste, J.; Pedrero, M.; García, J.L.; García, P.; García, E.; Pingarrón, J.M. Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosens. Bioelectron. 2010, 26, 1225–1230. [Google Scholar] [CrossRef]
- Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; et al. Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnol. 2020, 18, 62. [Google Scholar] [CrossRef]
- Laube, T.; Kergaravat, S.V.; Fabiano, S.N.; Hernández, S.R.; Alegret, S.; Pividori, M.I. Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients. Biosens. Bioelectron. 2011, 27, 46–52. [Google Scholar] [CrossRef]
- Lin, P.-C.; Tseng, M.-C.; Su, A.-K.; Chen, Y.-J.; Lin, C.-C. Functionalized Magnetic Nanoparticles for Small-Molecule Isolation, Identification, and Quantification. Anal. Chem. 2007, 79, 3401–3408. [Google Scholar] [CrossRef]
- Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. Sensors 2020, 20, 6890. [Google Scholar] [CrossRef]
- Popov, A.; Brasiunas, B.; Kausaite-Minkstimiene, A.; Ramanaviciene, A. Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. Chemosens 2021, 9, 85. [Google Scholar] [CrossRef]
- Goldman, E.R.; Clapp, A.R.; Anderson, G.P.; Uyeda, H.T.; Mauro, J.M.; Medintz, I.L.; Mattoussi, H. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Anal. Chem. 2004, 76, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Growth Hormone Human ELISA Kit. Available online: https://www.thermofisher.com/elisa/product/Growth-Hormone-Human-ELISA-Kit/EHGH1 (accessed on 15 November 2021).
- Popii, V.; Baumann, G. Laboratory measurement of growth hormone. Clin. Chim. Acta 2004, 350, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Saugy, M.; Robinson, N.; Saudan, C.; Baume, N.; Avois, L.; Mangin, P. Human growth hormone doping in sport. Br. J. Sports Med. 2006, 40, i35–i39. [Google Scholar] [CrossRef] [PubMed]
- Baumann, G.P. Growth hormone isoforms. Growth Horm. IGF Res. 2009, 19, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Møller, N.; Jørgensen, J.O.L. Effects of Growth Hormone on Glucose, Lipid, and Protein Metabolism in Human Subjects. Endocr. Rev. 2009, 30, 152–177. [Google Scholar] [CrossRef] [PubMed]
- Rhee, N.; Jeong, K.; Yang, E.M.; Kim, C.J. Gigantism caused by growth hormone secreting pituitary adenoma. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 96–99. [Google Scholar] [CrossRef][Green Version]
- Fowelin, J.; Attvall, S.; von Schenck, H.; Bengtsson, B.-Å.; Smith, U.; Lager, I. Effect of prolonged hyperglycemia on growth hormone levels and insulin sensitivity in insulin-dependent diabetes mellitus. Metabolism 1993, 42, 387–394. [Google Scholar] [CrossRef]
- Salomon, F.; Cuneo, R.; Sönksen, P.H. Growth Hormone and Protein Metabolism. Hormones 1991, 36 (Suppl. 1), 41–43. [Google Scholar] [CrossRef]
- Ayuk, J.; Sheppard, M.C. Growth hormone and its disorders. Postgrad. Med. J. 2006, 82, 24–30. [Google Scholar] [CrossRef]
- Reiter, E.O.; Morris, A.H.; Macgillivray, M.H.; Weber, D. Variable Estimates of Serum Growth Hormone Concentrations by Different Radioassay Systems. J. Clin. Endocrinol. Metab. 1988, 66, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Albertsson-Wikland, K.; Jansson, C.; Rosberg, S.; Novamo, A. Time-resolved immunofluorometric assay of human growth hormone. Clin. Chem. 1993, 39, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, A.; Grisso, B.; Veldhuis, J.D. Low basal and persistent pulsatile growth hormone secretion are revealed in normal and hyposomatotropic men studied with a new ultrasensitive chemiluminescence assay. J. Clin. Endocrinol. Metab. 1994, 78, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Kausaite-Minkstimiene, A.; Ramanavicius, A.; Ruksnaite, J.; Ramanaviciene, A. A surface plasmon resonance immunosensor for human growth hormone based on fragmented antibodies. Anal. Methods 2013, 5, 4757–4763. [Google Scholar] [CrossRef]
- Makaraviciute, A.; Ramanavicius, A.; Ramanaviciene, A. Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Anal. Methods 2015, 7, 9875–9884. [Google Scholar] [CrossRef]
- Rezaei, B.; Khayamian, T.; Majidi, N.; Rahmani, H. Immobilization of specific monoclonal antibody on Au nanoparticles for hGH detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2009, 25, 395–399. [Google Scholar] [CrossRef]
- Serafín, V.; Úbeda, N.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Ultrasensitive determination of human growth hormone (hGH) with a disposable electrochemical magneto-immunosensor. Anal. Bioanal. Chem. 2012, 403, 939–946. [Google Scholar] [CrossRef]
- Tamer, U.; Gündoğdu, Y.; Boyacı, İ.H.; Pekmez, K. Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J. Nanoparticle Res. 2010, 12, 1187–1196. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- He, J.; Unser, S.; Bruzas, I.; Cary, R.; Shi, Z.; Mehra, R.; Aron, K.; Sagle, L. The facile removal of CTAB from the surface of gold nanorods. Colloids Surf. B Biointerfaces 2018, 163, 140–145. [Google Scholar] [CrossRef]
- Xu, Z.; Hou, Y.; Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc. 2007, 129, 8698–8699. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J.J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem. Commun. 2016, 52, 7528–7540. [Google Scholar] [CrossRef] [PubMed]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Tamer, U.; Cetin, D.; Suludere, Z.; Boyaci, I.H.; Temiz, H.T.; Yegenoglu, H.; Daniel, P.; Dinçer, İ.; Elerman, Y. Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli. Int. J. Mol. Sci. 2013, 14, 6223. [Google Scholar] [CrossRef] [PubMed]
- Makaraviciute, A.; Ruzgas, T.; Ramanavicius, A.; Ramanaviciene, A. Antibody fragment immobilization on planar gold and gold nanoparticle modified quartz crystal microbalance with dissipation sensor surfaces for immunosensor applications. Anal. Methods 2014, 6. [Google Scholar] [CrossRef]
- Treviño, J.; Calle, A.; Rodríguez-Frade, J.M.; Mellado, M.; Lechuga, L.M. Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin. Chim. Acta 2009, 403, 56–62. [Google Scholar] [CrossRef]
- Enzyme Immunoassay for Quantitative Determination of Human Growth Hormone. Available online: https://www.ibl-america.com/content/elisa/E02.pdf (accessed on 15 November 2021).
- Human Growth Hormone ELISA Kit. Available online: https://www.antibodies.com/human-growth-hormone-elisa-kit-a33015 (accessed on 15 November 2021).
Analytical System for hGH Detection | Linear or Dynamic Range | LOD | Sensitivity | Ref. |
---|---|---|---|---|
SPR-based immunosensors for the direct detection using reduced half antibody fragments | 10–720 nmol L−1 | 3.4 nmol L−1 | [25] | |
SPR-based immunosensors for the direct detection using antibody immobilization via protein G | 3–9 nmol L−1 | 0.99 nmol L−1 | [26] | |
SPR-based inhibition immunosensor format using surface modified with hGH | 18–542 ng mL−1 (0.82–24.6 nmol L−1) | 4 ng mL−1 (0.18 nmol L−1) | [37] | |
Sandwich ELISA, p-anti-hGH/hGH/anti-hGH-B/S-HRP, absorbance at 450 nm. | 1–25 ng mL−1 (0.046–1.14 nmol L−1) | 0.25 ng mL−1 (0.0114 nmol L−1) | [38] | |
Sandwich ELISA, anti-hGH/hGH/anti-hGH-B/S-HRP, absorbance at 450 nm. | 2.5–600 pg mL−1 1.1·10−4–0.027 nmol L−1 | 4 pg mL−1 (1.8·10−4 nmol L−1) | [13] | |
Sandwich ELISA, m-anti-hGH/hGH/m-anti-hGH-HRP, absorbance at 450 nm. | 0.5–50 ng mL−1 (0.023–2.27 nmol L−1) | 0.5 ng mL−1 (0.023 nmol L−1) | [39] | |
Indirect detection, MNPs-Au/m-anti-hGH/hGH/p-anti-hGH-B/S-HRP immunoassay, absorbance at 450 nm. | 0.1–5.0 nmol L−1 | 0.082 nmol L−1 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramanaviciene, A.; Popov, A.; Baliunaite, E.; Brasiunas, B.; Kausaite-Minkstimiene, A.; Tamer, U.; Kirdaite, G.; Bernotiene, E.; Mobasheri, A. Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone. Biosensors 2022, 12, 65. https://doi.org/10.3390/bios12020065
Ramanaviciene A, Popov A, Baliunaite E, Brasiunas B, Kausaite-Minkstimiene A, Tamer U, Kirdaite G, Bernotiene E, Mobasheri A. Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone. Biosensors. 2022; 12(2):65. https://doi.org/10.3390/bios12020065
Chicago/Turabian StyleRamanaviciene, Almira, Anton Popov, Ema Baliunaite, Benediktas Brasiunas, Asta Kausaite-Minkstimiene, Ugur Tamer, Gailute Kirdaite, Eiva Bernotiene, and Ali Mobasheri. 2022. "Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone" Biosensors 12, no. 2: 65. https://doi.org/10.3390/bios12020065
APA StyleRamanaviciene, A., Popov, A., Baliunaite, E., Brasiunas, B., Kausaite-Minkstimiene, A., Tamer, U., Kirdaite, G., Bernotiene, E., & Mobasheri, A. (2022). Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone. Biosensors, 12(2), 65. https://doi.org/10.3390/bios12020065