Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Device Structure of Van der Waals Magnetic Tunnel Junction
3.2. Electrical Properties of Rotating h-BN Layer in the Magnetic Van der Waals Tunnel Junctions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tulapurkar, A.; Suzuki, Y.; Fukushima, A.; Kubota, H.; Maehara, H.; Tsunekawa, K.; Djayaprawira, D.; Watanabe, N.; Yuasa, S. Spin-torque diode effect in magnetic tunnel junctions. Nature 2005, 438, 339–342. [Google Scholar] [CrossRef]
- Kiselev, S.I.; Sankey, J.; Krivorotov, I.; Emley, N.; Schoelkopf, R.; Buhrman, R.; Ralph, D. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 2003, 425, 380–383. [Google Scholar] [CrossRef]
- Khvalkovskiy, A.; Apalkov, D.; Watts, S.; Chepulskii, R.; Beach, R.; Ong, A.; Tang, X.; Driskill-Smith, A.; Butler, W.; Visscher, P. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D Appl. Phys. 2013, 46, 074001. [Google Scholar] [CrossRef]
- Burch, K.S.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Park, Y.C.; Chun, S.-H. Atomistic real-space observation of the van der Waals layered structure and tailored morphology in VSe2. Nanoscale 2019, 11, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.; Yamakage, A.; Honda, S. Graphene in Spintronics: Fundamentals and Applications; Pan Stanford Publishing: Temasek Blvd, Singapore, 2016. [Google Scholar]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, G.; Li, C.; Cheng, M.; Yang, W.; Wu, S.; Xie, G.; Zhang, J.; Zhao, J.; Lu, X. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 2016, 116, 126101. [Google Scholar] [CrossRef]
- Shearer, M.J.; Samad, L.; Zhang, Y.; Zhao, Y.; Puretzky, A.; Eliceiri, K.W.; Wright, J.C.; Hamers, R.J.; Song, J. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 2017, 139, 3496–3504. [Google Scholar] [CrossRef] [PubMed]
- Datta, S. Electronic transport in mesoscopic systems. Nanotechnology 2004, 15, S433. [Google Scholar] [CrossRef]
- Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401. [Google Scholar] [CrossRef]
- Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Esters, M.; Hennig, R.G.; Johnson, D.C. Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers. Phys. Rev. B 2017, 96, 235147. [Google Scholar] [CrossRef]
- Datta, S. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct. 2000, 28, 253–278. [Google Scholar] [CrossRef]
- Kulik, H.; Cococcioni, M.; Marzari, N.; Scherlis, D.A. Density Functional Theory in Transition Metal Chemistry: A Self-Consistent Hubbard U approach. Phys. Rev. Lett. 2006, 97, 103001. [Google Scholar] [CrossRef]
- Szotek, Z.; Temmerman, W.M.; Koedderitzsch, D.; Svane, A.; Petit, L.; Winter, H. Electronic structure of normal and inverse spinel ferrites from first principles. Phys. Rev. B Condens. Matter 2006, 74, 174431. [Google Scholar] [CrossRef]
- Takahata, Y.; Chong, D.P.; Phenomena, R. DFT calculation of core-electron binding energies. J. Electron Spectrosc. 2003, 133, 69–76. [Google Scholar] [CrossRef]
- Shukla, G.; Ali, R.; Shafique, A. Co-TMDC MTJs: A New Frontier in Spintronics. ACS Appl. Electron. Mater. 2025, 7, 115–128. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Ni, Z.; Fei, R.; Liu, Q.; Quhe, R.; Xu, C.; Zhou, J.; Gao, Z.; Lu, J. Half-metallic silicene and germanene nanoribbons: Towards high-performance spintronics device. Nano 2012, 7, 1250037. [Google Scholar] [CrossRef]
- Qin, R.; Lu, J.; Lai, L.; Zhou, J.; Li, H.; Liu, Q.; Luo, G.; Zhao, L.; Gao, Z.; Mei, W.N. Room-temperature giant magnetoresistance over one billion percent in a bare graphene nanoribbon device. Phys. Rev. B 2010, 81, 233403. [Google Scholar] [CrossRef]
- Li, L.; Qin, R.; Li, H.; Yu, L.; Liu, Q.; Luo, G.; Gao, Z.; Lu, J. Functionalized graphene for high-performance two-dimensional spintronics devices. ACS Nano 2011, 5, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Quhe, R.; Liu, J.; Wu, J.; Yang, J.; Wang, Y.; Li, Q.; Li, T.; Guo, Y.; Yang, J.; Peng, H. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 2019, 11, 532–540. [Google Scholar] [CrossRef]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Li, F.; Tu, K.; Chen, Z. Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: A computational exploration. J. Phys. Chem. C 2014, 118, 21264–21274. [Google Scholar] [CrossRef]
θ (°) | a (Å) | b (Å) | Γ (°) | GPC × 1 × 10−7 (Siemens) | GAPC × 1 × 10−9 (Siemens) | d (Å) | TMR% |
---|---|---|---|---|---|---|---|
0 | 6.65 | 6.62 | 60.04 | 1.64 | 1.06 | 3.53 | 15,372 |
10.8 | 8.70 | 8.70 | 119.99 | 0.78 | 1.19 | 3.73 | 6455 |
23.8 | 15.18 | 8.85 | 50.03 | 3.45 | 7.91 | 3.52 | 4262 |
32.8 | 8.90 | 8.89 | 22.32 | 3.80 | 3.20 | 3.54 | 11,775 |
40.8 | 6.62 | 6.66 | 60.30 | 1.46 | 1.05 | 3.54 | 13,805 |
52.4 | 16.47 | 8.83 | 39.4 | 7.19 | 2.91 | 3.48 | 24,608 |
62.5 | 28.47 | 11.72 | 16.30 | 9.60 | 4.33 | 3.50 | 22,071 |
70.9 | 8.72 | 8.66 | 59.91 | 3.88 | 2.67 | 3.53 | 14,432 |
83.7 | 15.18 | 8.85 | 50.03 | 2.20 | 9.06 | 3.49 | 2328 |
92.8 | 8.88 | 8.89 | 60.12 | 3.93 | 3.31 | 3.54 | 11,773 |
100.8 | 6.61 | 6.66 | 60.30 | 1.44 | 0.93 | 3.54 | 15,384 |
112.4 | 16.47 | 8.84 | 39.41 | 3.66 | 1.79 | 3.53 | 20,347 |
122.9 | 11.72 | 8.98 | 64.37 | 1.77 | 5.51 | 3.53 | 3108 |
130.9 | 8.72 | 8.66 | 59.90 | 3.06 | 2.21 | 3.53 | 13,746 |
143.7 | 15.18 | 8.89 | 129.73 | 6.11 | 3.28 | 3.53 | 18,528 |
152.6 | 15.42 | 8.88 | 89.91 | 7.49 | 6.61 | 3.54 | 11,231 |
160.8 | 6.62 | 6.63 | 60.02 | 0.99 | 1.36 | 3.53 | 7179 |
172.4 | 16.47 | 8.88 | 140.22 | 6.18 | 3.02 | 3.53 | 20,364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, C.; Wang, W.; Sun, R.; Zheng, R.; Ji, Q.; Yan, H.; Wang, Z.; He, X.; Wang, H.; et al. Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer. Nanomaterials 2025, 15, 1246. https://doi.org/10.3390/nano15161246
Zhang Q, Wang C, Wang W, Sun R, Zheng R, Ji Q, Yan H, Wang Z, He X, Wang H, et al. Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer. Nanomaterials. 2025; 15(16):1246. https://doi.org/10.3390/nano15161246
Chicago/Turabian StyleZhang, Qiaoxuan, Cong Wang, Wenjie Wang, Rong Sun, Rongjie Zheng, Qingchang Ji, Hongwei Yan, Zhengbo Wang, Xin He, Hongyan Wang, and et al. 2025. "Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer" Nanomaterials 15, no. 16: 1246. https://doi.org/10.3390/nano15161246
APA StyleZhang, Q., Wang, C., Wang, W., Sun, R., Zheng, R., Ji, Q., Yan, H., Wang, Z., He, X., Wang, H., Yang, C., Yu, J., Zhang, L., Lei, M., & Wang, Z. (2025). Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer. Nanomaterials, 15(16), 1246. https://doi.org/10.3390/nano15161246