Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review
Abstract
:1. Introduction
2. Polymer Nanocomposites
2.1. Processing Methods
2.1.1. Wet Chemical Processing
2.1.2. Thermo-Plastic Processing
2.1.3. Physical Vapour Deposition
2.1.4. Chemical Vapour Deposition (CVD)
2.2. Conventional Manufacturing Techniques
3. Properties of PNCs
3.1. Mechanical Properties
3.2. Flammability Properties
3.3. Characterization of PNCs
3.3.1. Raman Spectroscopy
3.3.2. Scanning Electron Microscopy
3.3.3. Environmental SEM
3.3.4. Rutherford Backscattering Theory
3.3.5. Energy-Dispersive X-ray Spectroscopy (EDAX)
3.3.6. Transmission Electron Microscopy
3.3.7. Auger Electron Spectroscopy
3.3.8. Ion Scattering Spectroscopy
3.3.9. Secondary Ion Mass Spectroscopy
3.3.10. Gas Chromatography
3.3.11. Nuclear Magnetic Resonance
3.3.12. Differential Scanning Calorimetry
3.3.13. Dynamic Mechanical Analysis
3.3.14. Thermo-Gravimetric Analysis
3.3.15. Differential Thermal Analysis
4. Applications of PNCs
5. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mikličani, E.O.; Badnjevi, A.; Kazlagi, A. Nanocomposites: A brief review. Health Technol. 2019, 10, 51. [Google Scholar] [CrossRef]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2022, 13, 40. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Raja, M.M.; Lim, P.Q.; Wong, Y.S.; Xiong, G.M. Polymeric Nanomaterials: Methods of Preparation and Characterization. In Polymeric Nanomaterials, 1st ed.; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: New York, NY, USA, 2019; pp. 557–653. [Google Scholar] [CrossRef]
- Prasad, V.; Sekar, K.; Varghese, S. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Compos. Part A Appl. Sci. Manuf. 2019, 2, 105505. [Google Scholar] [CrossRef]
- Rajeshkumar, L.; Ramesh, M.; Bhuvaneswari, V.; Balaji, D. Carbon nano-materials (CNMs) derived from biomass for energy storage applications: A review. Carbon Lett. 2023, 33, 661–690. [Google Scholar] [CrossRef]
- Kumar, D.; Babu, G.; Krishnan, S. Study on mechanical & thermal properties of PCL blended graphene biocomposites. Polímeros Ciência Tecnol. 2019, 29, e2019024. [Google Scholar]
- Ramesh, M.; Rajeshkumar, L.; Bhoopathi, R. Carbon substrates: A review on fabrication, properties and applications. Carbon Lett. 2021, 31, 557–580. [Google Scholar] [CrossRef]
- McAdam, C.P.; Hudson, N.E.; Liggat, J.J.; Pethrick, R.A. Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. J. Appl. Polym. Sci. 2008, 108, 2242–2251. [Google Scholar] [CrossRef]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, A.D.; Beatrice, C.A.G. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites-Recent Evolutions; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Adeosun, S.O.; Lawal, G.I.; Balogun, S.A.; Akpan, E.I. Review of green polymer nanocomposites. J. Miner. Mater. Character. Eng. 2012, 11, 385–416. [Google Scholar] [CrossRef]
- Ramesh, M.; Nijanthan, S. Mechanical property analysis of kenaf–glass fibre reinforced polymer composites using finite element analysis. Bull. Mater. Sci. 2016, 39, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Sudharsan, P. Experimental Investigation of Mechanical and Morphological Properties of Flax-Glass Fiber Reinforced Hybrid Composite using Finite Element Analysis. Silicon 2018, 10, 747–757. [Google Scholar] [CrossRef]
- Kausar, A. Green polymeric nanocomposite. Am. J. Nanosci. Nanotechnol. Res. 2019, 7, 23–31. [Google Scholar]
- Farahbakhsh, N.; Shahbeigi-Roodposhti, P.; Sadeghifar, H.; Venditti, R.A.; Jur, J.S. Effect of isolation method on reinforcing capability of recycled cotton nanomaterials in thermoplastic polymers. J. Mater. Sci. 2017, 52, 4997–5013. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Saleh, B.; Krishna, S.A.; Noble, N.; Rajeshkumar, L. A comprehensive review on plant-based natural fiber reinforced polymer composites: Fabrication, properties, and applications. Polym. Compos. 2023, 44, 2598–2633. [Google Scholar] [CrossRef]
- Islam, S.; Ahmad, M.B.; Hasan, M.; Aziz, S.A.; Jawaid, M.; Haafiz, M.K.M.; Zakaria, S.A.H. Natural Fiber-Reinforced Hybrid Polymer Nanocomposites: Effect of Fiber Mixing and Nanoclay on Physical, Mechanical, and Biodegradable Properties. Bioresources 2015, 10, 1394–1407. [Google Scholar] [CrossRef] [Green Version]
- Bellairu, P.K.; Bhat, S.; Gijo, E.V. Modelling and optimisation of natural fibre reinforced polymer nanocomposite: Application of mixture-design technique. Multidis. Model. Mater. Struct. 2020, 17, 507–521. [Google Scholar] [CrossRef]
- Ramesh, M.; Vigneshwari, N.; Rajeshkumar, L. Cellulose nanocrystals for drug delivery applications. In Green Sustainable Process for Chemical and Environmental Engineering and Science, 1st ed.; Inamuddin, Cruz, J.N., Altalhi, T., Eds.; Elsevier: New York, NY, USA; pp. 291–313. [CrossRef]
- Tcherbi-Narteh, A.; Hosur, M.; Jeelani, S. Effects of Different Montmorillonite Nanoclay Loading on Cure Behavior and Properties of Diglycidyl Ether of Bisphenol A Epoxy. J. Nanomater. 2016, 2016, 3840348. [Google Scholar] [CrossRef] [Green Version]
- Hossen, F.; Asraf, A.; Zahan, K.-E.; Haque, M.; Zamir, R.; Zakaria, C.M. Investigation of the Physico-Chemical Absorption Characterizations of Jute Polymer Clay Nanocomposites as a Function of Chemical Treatments. Int. Res. J. Pure Appl. Chem. 2020, 21, 118–130. [Google Scholar] [CrossRef]
- Dewan, M.W.; Hossain, M.K.; Hosur, M.; Jeelani, S. Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J. Appl. Polym. Sci. 2013, 128, 4110–4123. [Google Scholar] [CrossRef]
- Hossen, M.F.; Hamdan, S.; Rahman, M.R.; Islam, M.S.; Kiew Liew, F.; Lai, J.C.H.; Rahman, M.M. Improved thermal properties of jute fiber-reinforced polyethylene nano composites. Polym. Compos. 2017, 38, 1266–1272. [Google Scholar] [CrossRef]
- Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.-B.; Zhu, H. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef]
- Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.; Walsh, F.C. Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale 2019, 11, 4653–4682. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Razi, M.; Contreras-Mateus, M.; Hashlamoun, K.W.; Nassar, N.N. Nanoparticles: Preparation, Stabilization, and Control Over Particle Size. In Nanoparticles: An Emerging Technology for Oil Production and Processing Applications; Lecture Notes in Nanoscale Science and Technology; Nassar, N.N., Cortés, F.B., Franco, C.A., Eds.; Springer: Cham, Switzerland, 2021; Volume 32, pp. 1–40. [Google Scholar] [CrossRef]
- Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers 2018, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Saleh, T.A. Synthesis, classification, and properties of nanomaterials. Nanomater. Polym. Membr. 2018, 2, 83–133. [Google Scholar]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Trotta, F.; Mele, A. Nanomaterials: Classification and properties. In Nanosponges: Synthesis and Applications; Wiley-VCH: Hoboken, NJ, USA, 2019. [Google Scholar]
- Ramesh, M.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V. Sustainable and Renewable Nano-biocomposites for Sensors and Actuators: A Review on Preparation and Performance. Curr. Analytical Chem. 2023, 19, 38–69. [Google Scholar] [CrossRef]
- Tu, R.; Liang, Y.; Zhang, C.; Li, J.; Zhang, S.; Yang, M.; Li, Q.; Goto, T.; Zhang, L.; Shi, J.; et al. Fast synthesis of high-quality large-area graphene by laser CVD. Appl. Surf. Sci. 2012, 44, 204–210. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Han, X.M.; Liu, D.H.; Gao, W.H. Supercritical fluid applications in polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 2018, 7, 407–412. [Google Scholar] [CrossRef]
- Luan, J.; Wang, S.; Hu, Z.; Zhang, L. Synthesis techniques, properties and applications of polymer nanocomposites. Curr. Org. Synth. 2012, 9, 114–136. [Google Scholar] [CrossRef]
- Chao, H.; Riggleman, R.A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 2013, 54, 5222–5229. [Google Scholar] [CrossRef]
- Nasir, A.; Kausar, A.; Younus, A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym. Plast. Technol. Eng. 2015, 54, 325–341. [Google Scholar] [CrossRef]
- Tjong, A.S.C.; Mai, Y.-W. Physical Properties and Applications of Polymer Nanocomposites; Woodhead Publishing: Philadelphia, PA, USA, 2010. [Google Scholar]
- Valek, R.; Hell, J. Impact properties of polymeric nanocomposites with different shape of nanoparticles. Nanocon 2011, 9, 21–23. [Google Scholar]
- Chidambaram, M.; Krishnasamy, K. Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles. Adv. Pharm. Bull. 2014, 4, 205–208. [Google Scholar]
- Rong, Y.; Chen, H.-Z.; Wu, G.; Wang, M. Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater. Chem. Phys. 2005, 91, 370–374. [Google Scholar] [CrossRef]
- Nagavarma, B.V.N.; Yadav, H.K.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles—A review. Asian J. Pharm. Clin. Res. 2012, 5, 16–23. [Google Scholar]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A 2005, 39, 1–11. [Google Scholar] [CrossRef]
- Olad, A.; Azar, R.H.; Babaluo, A.A. Investigation on the Mechanical and Thermal Properties of Intercalated Epoxy/Layered Silicate Nanocomposites. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 1035–1049. [Google Scholar] [CrossRef]
- Chavarria, F.; Shah, R.; Hunter, D.; Paul, D. Effect of melt processing conditions on the morphology and properties of nylon 6 nanocomposites. Polym. Eng. Sci. 2017, 47, 1847–1864. [Google Scholar] [CrossRef]
- Lapshin, S.; Swain, S.K.; Isayev, A.I. Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites. Polym. Eng. Sci. 2018, 48, 1584–1591. [Google Scholar] [CrossRef]
- Wu, Q.; Miao, W.-S.; Zhang, Y.-D.; Gao, H.-J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Villmow, T.; Pegel, S.; Pötschke, P.; Wagenknecht, U. Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 2016, 68, 777–789. [Google Scholar] [CrossRef]
- Liu, K.; Macosko, C.W. Can nanoparticle toughen fiber-reinforced thermosetting polymers? J. Mater. Sci. 2019, 54, 4471–4483. [Google Scholar] [CrossRef]
- Stan, F.; Sandu, L.I.; Fetecau, C. Effect of processing parameters and strain rate on mechanical properties of carbon nanotube-filled polypropylene nanocomposites. Compos. Part B Eng. 2014, 59, 109–122. [Google Scholar] [CrossRef]
- Rios, P.F.; Ophir, A.; Kenig, S. Impact of injection-molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites. J. Appl. Polym. Sci. 2014, 120, 70–78. [Google Scholar] [CrossRef]
- Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. J. Polym. Sci. 2012, 2012, 562381. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.; Paridah, M.; Abdan, K.; Ibrahim, N. Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr. Build. Mater. 2016, 124, 133–138. [Google Scholar] [CrossRef]
- Kumar, L.; Harsha, S. Effect of Carbon Nanotubes on CNT Reinforced FGM Nano Plate under Thermo Mechanical Loading. Procedia Technol. 2016, 23, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Nahm, S.H.; Jang, H.S.; Jeon, S.K.; Lee, H.J. Mechanical properties; evaluation of nano-structured materials in scanning electron microscope. Mater. Sci. Forum 2010, 5, 654–656. [Google Scholar] [CrossRef]
- Caruso, R.A.; Antonietti, M. Sol–Gel Nanocoating: An Approach to the Preparation of Structured Materials. Chem. Mater. 2017, 13, 3272–3282. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing SiO2 nanoparticles. Mater. Sci. Eng. A 2010, 527, 7663–7672. [Google Scholar] [CrossRef]
- Schmidt, D.; Shah, D.; Giannelis, E.P. New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 2012, 6, 205–212. [Google Scholar] [CrossRef]
- Kamigaito, O. What can be improved by nanometer composites? J. Jpn. Soc. Powders Met. 2006, 38, 315–321. [Google Scholar]
- Yuvaraj, G.; Kumar, H.; Saravanan, G. An Experimentation of Chemical and Mechanical Behaviour of Epoxy-Sisal Reinforced Composites. Polym. Polym. Compos. 2017, 25, 221–224. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, P.; Li, C.; Wang, X.N.; Li, X.L.; Zhao, Y.F. Comparison approach on mechanical behavior of Al/Cr nano-interface and Cu/Cr nano-interface. Curr. Nanosci. 2012, 8, 715–719. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W. Mechanical properties and micro structure of a graphene oxide-cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Thind, K.S.; Singh, J.; Saini, J.S.; Bhunia, H. Mechanical and wear properties of hybrid epoxy nanocomposites. Indian J. Eng. Mat. Sci. 2015, 22, 421–428. [Google Scholar]
- RF Wireless World. Available online: https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Quantum-Dots.html (accessed on 25 March 2023).
- Ounaies, Z.; Park, C.; Wise, K.E.; Siochi, E.J. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 2016, 63, 1637–1646. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar]
- Saba, N.; Paridah, M.; Abdan, K.; Ibrahim, N. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr. Build. Mater. 2016, 123, 15–26. [Google Scholar] [CrossRef]
- Wypych, F.; Seefeld, N.; Denicoló, I. Preparation of nanocomposites based on the encapsulation of conducting polymers into 2H-MoS2 and 1T-TiS2. Appl. Organomet. Chem. 2016, 20, 356–360. [Google Scholar]
- Aruna, S.; Rajam, K. Synthesis, characterisation and properties of Ni/PSZ and Ni/YSZ nanocomposites. Scr. Mater. 2013, 48, 507–512. [Google Scholar] [CrossRef]
- Wypych, F.; Adad, L.B.; Grothe, M.C. Synthesis and characterisation of the nanocomposites kampak fibre. J. Mater. Sci. 2011, 1, 687–692. [Google Scholar]
- Dai, X.; Hou, C.; Xu, Z.; Yang, Y.; Zhu, G.; Chen, P.; Huang, Z.; Yan, L.-T. Entropic Effects in Polymer Nanocomposites. Entropy 2019, 21, 186. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xu, C.H.; Yi, M.D.; Xiao, G.C.; Wang, X.H. Friction and wear property of Ti (C, N)/ZrO2/WC nano-composite cermet die material. Adv. Mater. Res. 2014, 834–836, 23–28. [Google Scholar]
- Peigney, A.; Laurent, C.; Flahaut, E.; Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 2010, 26, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Maniraj, J.; Rajeshkumar, L. Thermomechanical characterization of cellulose fiber composites. In Cellulose Fibre Reinforced Composites, 1st ed.; Ramnath, A., Rangappa, R.S.M., Sienchin, S., Fiore, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 183–201. [Google Scholar] [CrossRef]
- Teng, X.; Liu, H.; Huang, C. Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics. Mater. Sci. Eng. A 2007, 452–453, 545–551. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kanny, K. Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2015, 42, 385–393. [Google Scholar] [CrossRef]
- Kamaraj, M.; Dodson, E.A.; Datta, S. Effect of graphene on the properties of flax fabric reinforced epoxy composites. Adv. Compos. Mater. 2020, 29, 443–458. [Google Scholar] [CrossRef]
- Caradonna, A.; Badini, C.; Padovano, E.; Pietrolongo, M. Electrical and thermal conductivity of epoxy-carbon filler composites processed by calendaring. Materials 2019, 12, 1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2016, 3, 1–25. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef] [Green Version]
- Das, V.K.; Shifrina, Z.B.; Bronstein, L.M. Graphene and graphene-like materials in biomass conversion: Paving the way to the future. J. Mater. Chem. A 2017, 5, 25131–25143. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol. 2022, 19, 2657–2694. [Google Scholar] [CrossRef]
- SLiu, H.T.; Yu, Y.J.; Liu, H.M.; Jin, J.Z.; Liu, S.Q. Hybrid effects of nanosilica and graphene oxide on mechanical properties and hydration products of oil well cement. Constr. Build. Mater. 2018, 191, 311–319. [Google Scholar]
- Wang, C.N.; Lin, H.S.; Hsueh, M.H.; Wang, Y.H.; Vu, T.H.; Lin, T.F. The sustainable improvement of manufacturing for nano-titanium. Sustainability 2016, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Acchar, W.; Cairo, C.A.A.; Chiberio, P. Nano-structured alumina reinforced with NbC. Compos. Struct. 2019, 225, 111109. [Google Scholar] [CrossRef]
- Acchar, W.; Camara, C.R.F.D.; Cario, C.A.A.; Filgueira, M. Mechanical performance of alumina reinforced with NbC, TiC and WC. Mater. Res. 2012, 15, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Majeed, K.; Jawaid, M.; Hassan, A.A.B.A.A.; Bakar, A.A.; Khalil, H.A.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2012, 46, 391–410. [Google Scholar] [CrossRef]
- Aymonier, C.; Bortzmeyer, D.; Thomann, R.; Mülhaupt, R. Poly(methyl methacrylate)/palladium nanocomposites: Synthesis and characterization of the morphological, thermomechanical, and thermal properties. Chem. Mater. 2003, 15, 4874–4878. [Google Scholar] [CrossRef]
- Hosseini, S.B. A Review: Nanomaterials as a Filler in Natural Fiber Reinforced Composites. J. Nat. Fibers 2018, 14, 311–325. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Sun, J.; Li, Z.M.; Zheng, Y.G. Tensile mechanical properties of nano-twinned copper containing silver inclusions. Phys. B 2019, 554, 97–101. [Google Scholar] [CrossRef]
- Mohan, K.; Rajmohan, T. Fabrication and characterization of MWCNT filled hybrid natural fibre composites. J. Nat. Fibres 2017, 14, 864–874. [Google Scholar] [CrossRef]
- Pottathara, Y.B.; Grohens, Y.; Kokol, V.; Kalarikkal, N.; Thomas, S. Chapter 1—Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. In Micro and Nano Technologies, 1st ed.; Pottathara, Y.B., Thomas, S., Kalarikkal, N., Grohens, Y., Kokol, V., Eds.; Nanomaterials Synthesis; Elsevier: New York, NY, USA, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Spinella, A.; Bondioli, F.; Nasillo, G. Organic-inorganic nanocomposites prepared by reactive suspension method: Investigation on filler/matrix interactions and their effect on the nanoparticles dispersion. Colloid Polym. Sci. 2018, 295, 688–695. [Google Scholar] [CrossRef]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Inan, T.Y. Thermoplastic-based nanoblends: Preparation and characterizations. In Recent Developments in Polymer Macro, Micro and Nano Blends; Visakh, P.M., Markovic, G., Pasquini, D., Eds.; Woodhead Publishing: Philadelphia, PA, USA, 2017; pp. 17–56. [Google Scholar]
- Chaharmahali, M.; Hamzeh, Y. Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym. Bull. 2014, 71, 337–349. [Google Scholar] [CrossRef]
- Kumar, P.S.; Pavithra, K.G.; Naushad, M. Characterization techniques for nanomaterials. Nanomater. Sol. Cell. Appl. 2019, 2, 97–124. [Google Scholar]
- Rajeshwari, P.; Dey, T.K. Novel HDPE nanocomposites containing aluminum nitride (nano) particles: Micro-structural and nano mechanical properties correlation. Mater. Chem. Phys. 2017, 190, 175–186. [Google Scholar] [CrossRef]
- Abbas, M.; Naeem, N.; Iftikhar, H.; Latif, U. Synthesis, characterization and antimicrobial properties of silver nanoparticles. J. Radiat. Res. Appl. Sci. 2015, 9, 217–227. [Google Scholar]
- Srivastava, R. Synthesis and characterization techniques of nanomaterials. Int. J. Green Nanotechnol. 2012, 4, 17–27. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Santulli, C.; Sarasini, F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 2010, 31, 2397–2405. [Google Scholar] [CrossRef]
- Borba, P.M.; Tedesco, A. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/Curauá fiber composites. Mater. Res. 2014, 17, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V. Polymer composites for enzyme sensors. In Polymeric Nanocomposite Materials for Sensor Applications, 1st ed.; Jyotishkumar, P., Sayan, G., Eds.; Woodhead Publishing: Beaverton, OR, USA, 2023; pp. 343–366. [Google Scholar] [CrossRef]
- Henrique, P.; Camargo, C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar]
- Devi, R.R.; Maji, T.K. Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites. Wood Sci. Technol. 2012, 46, 1151–1168. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Hedjazi, S.; Jamalirad, L.; Sukhtesaraie, A. Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J. Indian Acad. Wood Sci. 2014, 11, 116–121. [Google Scholar] [CrossRef]
- Jaiswal, S.P.; Singh, S.K.; Mehra, R.M. Detailed review on high-frequency magnetron. J. Crit. Rev. 2020, 7, 882–886. [Google Scholar]
- Kord, B. Nanofiller reinforcement effects on the thermal, dynamic mechanical and morphological behavior of HDPE/rice husk flour composites. BioResour 2011, 6, 1351–1358. [Google Scholar]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2013, 63, 2223–2253. [Google Scholar] [CrossRef]
- Hari, J.; Pukanzsky, B. Nanocomposites: Preparation, structure, properties. In Applied Plastics Engine Handbook: Processing Materials; Kutz; Elsevier: Amsterdam, The Netherlands, 2011; pp. 109–142. [Google Scholar]
- Roco, M.C.; Mirkin, C.A. Nanotechnology research directions for societal needs in 2020: Summary of international study. J. Nanopart. Res. 2011, 13, 897–919. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.K.; Hwang, K.J.; Ha, C.S. Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 2018, 46, 1451–1462. [Google Scholar] [CrossRef]
- Mejía, O.F.O. Micro and Nanocomposites Composed of a Polymer Matrix and a Metal Disperse Phase. Doctoral Dissertation, University of North Texas, Denton, TX, USA, 2007; p. 1278. [Google Scholar]
- Marques, P.A.; Trindade, T. Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Compos. Sci. Technol. 2017, 66, 1038–1044. [Google Scholar] [CrossRef]
- Kumar, A.P.; Depan, D.; Singh, T.; Singh, R.P. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 2009, 34, 479–515. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Navaneethakrishnan, P.; Shivaram, S.V.; Santhosh Kanna, S.; Rajeshkumar, L.; Rajeshkumar, G. Characterization of New Cellulose Fiber Extracted from Pithecellobium dulce Tree. Appl. Sci. Eng. Prog. 2023, 16, 6845. [Google Scholar] [CrossRef]
- Biswas, M.; Ray, S.S. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 2001, 155, 167–221. [Google Scholar]
- Kakroodi, A.R.; Cheng, S.; Sain, M. Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. J. Nanomater. 2014, 2014, 903498. [Google Scholar]
- Paridah, M.T.; Jawaid, M. A Review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 2019, 6, 2247–2273. [Google Scholar]
- Singha, S.; Hedenqvist, M.S. A review on barrier properties of poly (lactic acid)/clay nanocomposites. Polymers 2020, 12, 1095. [Google Scholar] [CrossRef]
- Gupta, M.K.; Ramesh, M.; Thomas, S. Effect of hybridization on properties of natural and synthetic fiber-reinforced polymer composites (2001–2020): A review. Polym. Compos. 2021, 42, 4981–5010. [Google Scholar] [CrossRef]
- Greene, M.E.; Kinser, C.R.; Kramer, D.E.; Pingree, L.S.C.; Hersam, M.C. Application ofscanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. Microsc. Res. Tech. 2004, 64, 415–434. [Google Scholar] [CrossRef]
- Chipara, M.; Lau, A.K.T.; Aliofkhazraei, M.; Romo-Uribe, A.; Bafekrpour, E. Polymer-Based Nano/Composites: Theory, Synthesis, Modifications, and Properties. J. Nanomater. 2015, 2015, 603907. [Google Scholar] [CrossRef] [Green Version]
- Sheshmani, S.; Amini, R. Preparation and characterization of some graphene based nanocomposite materials. Carbohydr. Polym. 2014, 95, 348–359. [Google Scholar] [CrossRef]
- da Luz, F.S.; Garcia Filho, F.D.C.; Del-Rio, M.T.G.; Nascimento, L.F.C.; Pinheiro, W.A.; Monteiro, S.N. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Pallares, R.M.; Nguyen, T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [Green Version]
- Zagho, M.M.; Hussein, E.A.; Elzatahry, A. Recent overviews in functional polymer composites for biomedical applications. Polymers 2010, 2, 739. [Google Scholar] [CrossRef] [Green Version]
- Poulin, P.; Vigolo, B.; Launois, P. Films and fibers of oriented single wall nanotubes. Carbon 2002, 40, 1741–1749. [Google Scholar] [CrossRef]
- Chen, W.; Tao, X.; Liu, Y. Carbon nanotube-reinforced polyurethane composite fibers. Compos. Sci. Technol. 2006, 66, 3029–3034. [Google Scholar] [CrossRef]
- Ji, Y.; Li, B.; Ge, S.; Sokolov, J.C.; Rafailovich, M.H. Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 2006, 22, 1321–1328. [Google Scholar] [CrossRef]
- Jen, M.-H.R.; Tseng, Y.-C.; Wu, C.-H. Manufacturing and mechanical response of nanocomposite laminates. Compos. Sci. Technol. 2005, 65, 775–779. [Google Scholar] [CrossRef]
- Chang, L.; Friedrich, K. Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: A critical discussion of wear mechanisms. Tribol. Int. 2010, 43, 2355–2364. [Google Scholar] [CrossRef]
- Sen, A.K.; Kumar, S. Coir-fiber-based fire retardant nano filler for epoxy composites. J. Therm. Anal. Calorim. 2010, 101, 265–271. [Google Scholar] [CrossRef]
- Ogasawara, T.; Ishida, Y.; Ishikawa, T.; Yokota, R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos. A Appl. Sci. Manuf. 2004, 35, 67–74. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Dhand, C. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2005, 5, 105003–105037. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 2009, 100, 4903–4906. [Google Scholar] [CrossRef]
- Henriksson, M.; Berglund, L.A. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J. Appl. Polym. Sci. 2017, 106, 2817–2824. [Google Scholar] [CrossRef]
- Gao, W.; Majumder MAlemany, L.B.; Narayanan, T.N.; Ibarra, M.A. Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interf. 2011, 3, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2013, 246, 1–11. [Google Scholar] [CrossRef]
- Asmawi, N.; Ilyas, R.A.; Roslim, M.H.M.; Rajeshkumar, L.; Abotbina, W.; Syafri, E.; Jumaidin, R.; Syafiq, R.; Rafiqah, S.A.; Ridwan, R.; et al. Cassava starch nanocomposite films reinforced with nanocellulose. Phys. Sci. Rev. 2023. [Google Scholar] [CrossRef]
- Babaei, I.; Madanipour, M.; Farsi, M.; Farajpoor, A. Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos. B Eng. 2014, 56, 163–170. [Google Scholar] [CrossRef]
- Daneshvar, F.; Chen, H.; Noh, K.; Sue, H.-J. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics. Nanoscale Adv. 2021, 3, 942–962. [Google Scholar] [CrossRef]
- Masoodi, R.; El-Hajjar, R.; Pillai, K.; Sabo, R. Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater. Des. 2016, 36, 570–576. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kailas, S.V. On the effect of surface texture on friction andtransfer layer formation—A study using Al and steel pair. Wear 2016, 265, 1655–1669. [Google Scholar] [CrossRef]
- Wang, X. Effects of Nanoparticles on the Properties of Cement Based Materials. Doctoral Dissertation, Iowa State University, Ames, IA, USA, 2017. [Google Scholar]
- Atmaca, N.; Abbas, M.L.; Atmaca, A. Effects of nanosilica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete. Constr. Build. Mater. 2017, 147, 17–26. [Google Scholar] [CrossRef]
- Khalid, H.R.; Jang, D.; Abbas, N.; Haider, M.S.; Bukhari, S.N.; Mirza, C.R.; Elboughdiri, N.; Ahmad, F. Electrical stability and piezoresistive sensing performance of high strain-range ultra-stretchable CNT-Embedded sensors. Polymers 2022, 14, 1366. [Google Scholar] [CrossRef] [PubMed]
- Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.E.; Sebastiani, M. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 2012, 35, 666–675. [Google Scholar] [CrossRef]
- Omrani, E.; Menezes, P.L.; Rohatgi, P.K. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 2016, 19, 717–736. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Zhang, Z.; Kong, D.; Chen, R. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 2007, 21, 539–545. [Google Scholar]
- Qamhia, I.I.; Sham, S.S.; El-Hajjar, R.F. Quasi-isotropic triaxially braided cellulose-reinforced composites. Mech. Adv. Mater. Struct. 2015, 22, 988–995. [Google Scholar] [CrossRef]
- Saha, P.; Manna, S.; Chowdhury, S.R.; Sen, R.; Roy, D.; Adhikari, B. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour. Technol. 2010, 101, 3182–3187. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 2016, 10, 1992–1996. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B. In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Bi, J.; Pane, I.; Hariandja, B.; Imran, I. The use of nanosilica for improving of concrete compressive strength and durability. Appl. Mech. Mater. 2012, 204–208, 4059–4063. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, Z. Mechanical performance of nano-CaCO3 filled polystyrene composites. Acta Mech. Solida Sin. 2019, 22, 555–562. [Google Scholar] [CrossRef]
- He, X.; Shi, X. Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transport Res. Rec. 2008, 2070, 13–21. [Google Scholar] [CrossRef]
- Agubra, V.A.; Owuor, P.S.; Hosur, M.V. Influence of nanoclay dispersion methods on the mechanical behaviour of e-glass/epoxy nanocomposites. Nanomaterials 2013, 3, 550–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, H.U.; Hun, P.D.; Khan, R.H.; Yoon, K.B. Morphology, mechanical, and crystallization behaviors of micro- and nano-ZnO filled polypropylene composites. J. Reinf. Plast. Compos. 2016, 31, 323–329. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Sayer, M. Elastic properties and buckling load evaluation of ceramic particles filled glass/epoxy composites. Compos. Part B Eng. 2016, 59, 296–305. [Google Scholar] [CrossRef]
- Restivo, J.; Gonçalves Pinto Soares, O.S.; Ribeiro Pereira, M.F. Processing methods used in the fabrication of macrostructures containing 1D carbon nanomaterials for catalysis. Processes 2020, 8, 1329. [Google Scholar] [CrossRef]
- Yang, H.S.; Kim, H.J.; Son, J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos. Struct. 2014, 2, 305–312. [Google Scholar] [CrossRef]
- Li, M.-C.; Zhang, Y.; Cho, U.R. Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Mater. Des. 2016, 63, 565–574. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Sapuan, S.M.; Faieza, A.A. Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. J. Mech. Eng. Sci. 2012, 12, 385–400. [Google Scholar]
- Ray, D.; Bhattacharya, D.; Mohanty, A.K.; Drzal, L.T.; Misra, M. Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash. Macromol. Mater. Eng. 2016, 291, 784–792. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Ezenwafor, T.C.; AttahDaniel, B.E.; Olusunle, S.O.O. Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. Am. Chem. Sci. J. 2013, 3, 526–531. [Google Scholar] [CrossRef]
- Raja, R.S.; Manisekar, K.; Manikandan, V. Study on mechanical properties of fly ash impregnated glass fiber. J. Mech. Eng. 2014, 61, 601–609. [Google Scholar]
- Ozsoy, I.; Demirkol, A.; Mimaroglu, A.; Unal, H.; Demir, Z. The influence of micro- and nano-filler content on the mechanical properties of epoxy reinforced polymer composites using mixture design analysis. Mater. Des. 2015, 55, 499–508. [Google Scholar]
- Sadasivuni, K.K.; Rattan, S.; Waseem, S.; Bramhe, S.K. Silver nanoparticles and its polymer nanocomposites—Synthesis, optimization, biomedical usage, and its various applications. Polym. Nanocompos. Biomed. Eng. Lect. Notes Bioeng. 2019, 11, 331–373. [Google Scholar]
- Prakash, A.M.; Kumar, G.S.; Sandeep, N.; Ravikumar, K. A review on ceria epoxy nanocomposites with a new research proposal. J. Mech. Civ. Eng. 2016, 12, 41–47. [Google Scholar]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Taylor, P.; Hu, S. Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fibers. Nanotechnol. Rev. 2020, 9, 504–514. [Google Scholar] [CrossRef]
- Bordes, P.; Pollet, E.; Averous, L. Nano-biocomposites: Biodegrdable polyester/nanoclay systes. Prog. Polym. Sci. 2009, 34, 125–155. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Krishnaraj, M.; Raajeshkrishna, C.R. Mechanical characterization of pineapple, watermelon peel nanoparticles reinforced carbon, jute fabric and its hybrid epoxy composites. Mater. Res. Exp. 2019, 6, 105356. [Google Scholar] [CrossRef]
- Raajeshkrishna, C.R.; Pradeep, A.S.; Rishi Kumar, R. Influence of fiber content on mechanical, tribological properties of short basalt fiber-reinforced nylon 6 and polypropylene composites. J. Compos. Mater. 2019, 1, 765–779. [Google Scholar] [CrossRef]
- Jiang, S.; Han, D.; Huang, C.; Duan, G.; Hou, H. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater. Lett. 2017, 12, 146–153. [Google Scholar] [CrossRef]
- Weisenberger, M.C.; Grulke, E.A.; Jacques, D.; Rantell, A.T.; Andrewsa, R. Enhanced mechanical properties of polyacrylonitrile: Multiwall carbon nanotube composite fibers. J. Nanosci. 2013, 3, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Mago, G.; Ray, S.S.; Shofner, M.L. Polymer nanocomposite processing, characterization, and applications. J. Nanomater. 2013, 2, 403492. [Google Scholar] [CrossRef]
- Chen, W.F.; Lv, G.; Hu, W.M.; Li, D.J.; Chen, S.N.; Dai, Z.X. Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 2018, 7, 157–185. [Google Scholar] [CrossRef]
- Tseng, K.K.; Wang, L. Modeling and simulation of mechanical properties of nano-particle filled materials. J. Nanopart. Res. 2004, 6, 489–494. [Google Scholar] [CrossRef]
- Choolaei, M.; Rashidi, A.M.; Ardjmand, M.; Yadegari, A.; Soltanian, H. The effect of nanosilica on the physical properties of oil well cement. Mater. Sci. Eng. A 2012, 538, 288–294. [Google Scholar] [CrossRef]
- Tshai, K.Y.; Khalili, P.; Kong, I.; Yeoh, C.H.; Tshai, K.H. Synthesization of graphene and its incorporation into natural fiber reinforced thermosetting nanocomposite. ARPN J. Eng. Appl. Sci. 2016, 11, 121–127. [Google Scholar]
- Yang, J.; Schaller, R. Mechanical spectroscopy of mg reinforced with Al2O3 short fibers and carbon nanotubes. Mater. Sci. Eng. 2013, 370, 512–515. [Google Scholar] [CrossRef]
- Liany, Y.; Tabei, A.; Madanipour, M. Effect of nanoclay and magnesium hydroxide on some properties of HDPE/wheat straw composites. Fibers Polym. 2009, 14, 304–310. [Google Scholar] [CrossRef]
- Ramesh, M.; Bhuvaneswari, V.; Balaji, D.; Rajeshkumar, L. Self-Healable Conductive and Polymeric Composite Materials. In Aerospace Polymeric Materials, 1st ed.; Inamuddin, Altalhi, T., Adnan, S.M., Eds.; Wiley: Weinheim, Germany, 2022; pp. 231–258. [Google Scholar] [CrossRef]
- Jang, D.; Yoon, H.N.; Seo, J.; Cho, H.J.; Kim, G.M.; Kim, Y.K.; Yang, B. Improved electromagnetic interference shielding performances of carbon nanotube and carbonyl iron powder (CNT@ CIP)-embedded polymeric composites. J. Mater. Res. Technol. 2022, 18, 1256–1266. [Google Scholar] [CrossRef]
- Jang, D.; Yoon, H.N.; Seo, J.; Park, S.; Kil, T.; Lee, H.K. Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Compos. Sci. Technol. 2021, 212, 108866. [Google Scholar] [CrossRef]
- Qasim, U.; Osman, A.I.; Al-Muhtaseb, A.A.H.; Farrell, C.; Al-Abri, M.; Ali, M.; Vo, D.V.N.; Jamil, F.; Rooney, D.W. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. 2021, 19, 613–641. [Google Scholar] [CrossRef]
- Nazrin, A.; Sapuan, S.M.; Ilyas, R.A.; Hawanis, H.S.N.; Khalina, A.; Jumaidin, R.; Asyraf, M.R.M.; Nurazzi, N.M.; Norrrahim, M.N.F.; Rajeshkumar, L.; et al. Introduction to bio-based packaging materials. Phys. Sci. Rev. 2023. [Google Scholar] [CrossRef]
- Rajeshkumar, L.; Ramesh, M.; Bhuvaneswari, V.; Balaji, D.; Deepa, C. Synthesis and thermo-mechanical properties of bioplastics and biocomposites: A systematic review. J. Mater. Chem. B. 2023, 11, 3307–3337. [Google Scholar] [CrossRef]
- Duan, Z.; Yuan, Z.; Jiang, Y.; Yuan, L.; Tai, H. Amorphous carbon material of daily carbon ink: Emerging applications in pressure, strain, and humidity sensors. J. Mater. Chem. C 2023, 11, 5585–5600. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Nazrin, A.; Huzaifah, M.R.M.; Sapuan, S.M.; Syafiq, R.M.O.; Nurazzi, N.M.; Asyraf, M.R.M.; Norrrahim, M.N.F.; Uda, M.N.A.; Hazrati, K.Z.; et al. Banana starch nanocomposite films reinforced with nanocellulose. Phys. Sci. Rev. 2023. [Google Scholar] [CrossRef]
Thermosetting Polymers | Thermoplastic Polymers |
---|---|
Hand molding and nano-coating | Hot pressing |
Inject ram and plunger transfer | Vacuum forming |
Closed-mold process | Back pressure method |
Plunger and ram-type molding | Cold drawn |
Pump nozzle injection | Thermoforming |
Vacuum bag molding | Glass fiber thermoplastics |
Fiber-reinforced plastics | Drostholm process |
Vacuum infusion molding | Injected foam molding |
Nanocomposites | Nanoparticles Concentration (wt.%) | Fabrication Method | Young’s Modulus (MPa) | Tensile Strength (MPa) | Refs. |
---|---|---|---|---|---|
Epoxy/graphene | 0.62 | Sonication | 0.8 | 1.09 | [79,82] |
Graphene/nano-cellulose | 10 | In-situ | 1.11 | 1.13 | [83] |
Polyaniline/graphene | 1.6 | Solution casting | 0.87 | 1.16 | [127] |
PMMA/graphene | 2–6 | Melt blending | 0.93 | 1.21 | [82] |
Natural rubber/graphene | 3.8 | In-situ | 1.02 | 2.10 | [83,85] |
Epoxy/SWCNT | 0.5–4 | Melt blending | 2.04 | 1.47 | [83,84] |
PMMA/SWCNT | 0.5 | Solution casting | 1.06 | 1.9 | [128] |
Epoxy/MWCNT | 0.25–5 | In-situ | 1.1 | 1.07 | [134] |
Polyurethane/SWCNT | 0.7 | Solution casting | 0.6 | 1.0 | [133] |
PP/MWCNT | 1 | Ball milling | 1.1 | 3.7 | [140] |
PP/SWCNT | 0.75 | Solution mixing | 1.54 | 1.89 | [176] |
Polyurethane/SWCNT | 0.38 | Melt extrusion | 1.4 | 3.6 | [139] |
HPDE/graphene | 3 | In-situ | 1.05 | 2.3 | [137,138] |
LDPE/MWCNT | 3–5 | Melt mixing | 1.56 | 1.89 | [145,146] |
Nylon/MWCNT | 1 | Melt blending | 1.06 | 2.15 | [141] |
PVA/SWCNT | 0.80 | Solution casting | 1.45 | 1.92 | [139] |
PI/SWCNT | 0.56 | In-situ | 1.20 | 3 | [128,133] |
PI/MWCNT | 1.50 | Solution intercalation | 1.12 | 2.47 | [142,144] |
S. No. | Description | Characterization Technique | Ref. |
---|---|---|---|
1. | Confocal laser scanning | Ultrafine microstructure determination | [72,183] |
2. | Scanning optical microscopy | Raster scan | [72,100] |
3. | Two-photon fluorescence | Biological materials and systems | [100] |
4. | Dynamic light scattering technique | Brownian motion and size of the particles | [72] |
5. | Brewster angle | Imaging technique for gas liquid interface | [183] |
6. | Nano-sight | Characterize nanoparticles from in solution | [100,183] |
7. | SEM | Particle shape, size, and morphology | [72] |
8. | Electron probe microscopic analysis | Local chemical analysis | [72,100] |
9. | Static light scattering | Molecular weight using the relationship between the intensity of light scattered by a molecule | [74,103] |
10. | Transmission electron microscopy (TEM) | Particle size and shape and other images at very high resolution | [104,183] |
11. | High-resolution TEM | Extensively used to investigate the crystal structures, interfaces, and defects such as dislocations, stacking faults, and grain boundaries of various types of crystalline materials | [183,184] |
12. | Low energy electron diffraction technique | Adsorbate bonding of materials | [103,104] |
13. | Auger electron | Analysis of chemical surfaces | [100,183] |
14. | AFM | Forces between the probe and the sample as an element of their common partition | [100,184] |
15. | Magnetic force microscopy | Measures the force of a magnetic field on a tip to elucidate | [103,104] |
16. | Scanning tunneling microscopy | Analysis of friction, surface roughness, and surface defects | [99,100] |
17. | Atomic probe microscopy | To measure adhesion strength, magnetic forces, and mechanical strengths | [72,100] |
18. | Field ion microscopy | To image the arrangement of atoms at the surface | [103,184] |
19. | Atomic probe tomography | Nanoscale materials analysis technique that provides 3D spatial imaging and chemical composition measurements with high sensitivity | [104] |
20. | Ultraviolet photo-emission | Measurement of kinetic energy spectra of photoelectrons emitted by molecules on the surface | [100] |
21. | UV-visible spectroscopy | The absorbance spectra of a compound in solution or as a solid | [72,103] |
22. | Atomic absorption spectroscopy | Measuring the concentrations of metallic elements in different materials | [100,104] |
23. | Inductively coupled plasma spectroscopy | Technique for trace multi-element and isotopic analysis | [99] |
24. | Fluorescence spectroscopy | Analyzes fluorescence from a sample | [100] |
25. | Localized surface plasma resonance technique | Analysis of nanoparticle | [103,104] |
26. | Rutherford backscattering technique | Elemental analysis using quantitative and qualitative techniques | [100] |
27. | Small angle neutron scattering method | Characterization of the surface of the material | [104] |
28. | Nuclear reaction analysis method | Thin solid films depth profile | [100,183] |
29. | X-Ray diffraction (XRD) | Determine the thickness of thin films and atomic arrangements of amorphous materials | [72] |
30. | Raman XRD spectroscopy | Vibration crystal structure analysis | [103,183] |
31. | Energy dispersive X-ray spectroscopic method | Elemental constituent analysis | [100] |
32. | Small angle X-ray scattering method | Particle sizing in nanoscale | [72,183] |
33. | Cathodoluminescence technique | Emission characteristics of materials | [72] |
34. | Nuclear magnetic resonance technique | Nuclear species analysis | [100] |
35. | Thermo-gravimetric analysis | Relationship between temperature variation and weight loss | [74] |
36. | Differential thermal analysis | Reaction heat capacity of the material | [75,183] |
37. | Differential scanning calorimetry | Thermal characterization of materials | [90,104] |
38. | Nanocalorimetric method | Measures latent fusion heat | [183] |
39. | Brunauer-Emmett-Teller technique | Specific areas of nanoparticles, including pore size distribution | [103,104] |
40. | Fourier-transform infrared spectroscopy | Obtaining the infrared spectrum of absorption, emission, and the photoconductivity of all types of objects | [100] |
41. | Differential thermal analysis | Phase transitions of metals, determining the effect of oxidative or reductive atmospheres on materials | [72,103] |
42. | Electron energy loss spectroscopy | Loss of energy, change in momentum, and ionization potential of an atom | [72,183] |
43. | Sears technique | Colloidal size | [103] |
44. | Laser doppler anemometry | Used for velocity determination and the surface charge of the colloidal particles | [104,105] |
45. | Hydrophobic interaction chromatography | Surface hydrophobicity | [100,183] |
46. | Pycnometer | The density of nanoparticles is determined | [100] |
47. | Gel permeation chromatography | Used to measure the molecular weight of the polymer and its distribution in the matrix | [76,103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuvaraj, G.; Ramesh, M.; Rajeshkumar, L. Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review. Nanomaterials 2023, 13, 1803. https://doi.org/10.3390/nano13111803
Yuvaraj G, Ramesh M, Rajeshkumar L. Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review. Nanomaterials. 2023; 13(11):1803. https://doi.org/10.3390/nano13111803
Chicago/Turabian StyleYuvaraj, Gopal, Manickam Ramesh, and Lakshminarasimhan Rajeshkumar. 2023. "Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review" Nanomaterials 13, no. 11: 1803. https://doi.org/10.3390/nano13111803
APA StyleYuvaraj, G., Ramesh, M., & Rajeshkumar, L. (2023). Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review. Nanomaterials, 13(11), 1803. https://doi.org/10.3390/nano13111803