Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Planar Trapezoidal Si NW Arrays
3.2. Homoepitaxy of Si NWs
3.3. Epitaxy of SiGe NWs
3.4. Epitaxy of Ge/Si Core/Shell NWs
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mertens, H.; Ritzenthaler, R.; Hikavyy, A.; Kim, M.S.; Tao, Z.; Wostyn, K.; Chew, S.A.; Keersgieter, A.D.; Mannaert, G.; Rosseel, E.; et al. Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar]
- Yin, X.; Yang, H.; Xie, L.; Ai, X.Z.; Zhang, Y.B.; Jia, K.P.; Wu, Z.; Ma, X.; Zhang, Q.Z.; Mao, S.; et al. Vertical Sandwich Gate-All-Around Field-Effect Transistors with Self-Aligned High-k Metal Gates and Small Effective-Gate-Length Variation. IEEE Electron Device Lett. 2019, 41, 8–11. [Google Scholar] [CrossRef]
- Scappucci, G.; Kloeffel, C.; Zwanenburg, F.A.; Loss, D.; Myronov, M.; Zhang, J.J.; Franceschi, S.D.; Katsaros, G.; Veldhorst, M. The germanium quantum information route. Nat. Rev. Mater. 2020, 479, 1–18. [Google Scholar]
- Watzinger, H.; Kukučka, J.; Vukušić, L.; Gao, F.; Wang, T.; Schäffler, F.; Zhang, J.J.; Katsaros, G. A germanium hole spin qubit. Nat. Commun. 2018, 9, 3902. [Google Scholar] [CrossRef]
- Gonzalez-Zalba, M.F.; Shevchenko, S.N.; Barraud, S.; Johansson, J.R.; Ferguson, A.J.; Nori, F.; Betz, A.C. Gate-sensing coherent charge oscillations in a silicon field-effect transistor. Nano Lett. 2016, 16, 1614–1619. [Google Scholar] [CrossRef]
- Froning, F.N.M.; Camenzind, L.C.; van der Molen, O.A.H.; Li, A.; Bakkers, E.P.A.M.; Zumbühl, D.M.; Braakman, F.R. Ultrafast hole spin qubit with gate-tunable spin-orbit switch functionality. Nat. Nanotechnol. 2021. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Liu, H.; Zan, Y.; Lu, Y.; Zhang, Q.; Li, J.; Du, A.; Wu, Z.; Luo, J.; et al. Selective wet etching in fabricating SiGe nanowires with TMAH solution for gate-all-around MOSFETs. J. Mater. Sci. Mater. Electron. 2020, 31, 22478–22486. [Google Scholar] [CrossRef]
- Poli, S.; Pala, M.G.; Poiroux, T.; Deleonibus, S.; Baccarani, G. Size Dependence of Surface-Roughness-Limited Mobility in Silicon Nanowire FETs. IEEE Trans. Electron Devices 2008, 55, 2968–2976. [Google Scholar] [CrossRef]
- Goldthorpe, I.A.; Marshall, A.F.; McIntyre, P.C. Inhibiting strain-induced surface roughening: Dislocation-free Ge/Si and Ge/SiGe core−shell nanowires. Nano Lett. 2009, 9, 3715–3719. [Google Scholar] [CrossRef]
- Lauhon, L.J.; Gudiksen, M.S.; Wang, D.; Lieber, C.M. Epitaxial Core–Shell and Core–Multishell Nanowire Heterostructures. Nature 2002, 420, 57–61. [Google Scholar] [CrossRef]
- Xiang, J.; Lu, W.; Hu, Y.; Wu, Y.; Yan, H.; Lieber, C.M. Ge/Si Nanowire Heterostructures as High-Performance Field Effect Transistors. Nature 2006, 441, 489–493. [Google Scholar] [CrossRef]
- Lu, W.; Xiang, J.; Timko, B.P.; Wu, Y.; Lieber, C.M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 2005, 102, 10046. [Google Scholar] [CrossRef] [PubMed]
- Conesa-Boj, S.; Li, A.; Koelling, S.; Brauns, M.; Ridderbos, J.; Nguyen, T.T.; Verheijen, M.A.; Koenraad, P.M.; Zwanenburg, F.A.; Bakkers, E.P.A.M. Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires. Nano Lett. 2017, 17, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, H.; Marshall, A.F.; Chidsey, C.E.D.; McIntyre, P.C. Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 2006, 6, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, M.; Rigas, G.P.; Castro, F.A.; Stolojan, V.; Hoettges, K.F.; Hughes, M.P.; Adkins, E.; Korgel, B.A.; Shkunov, M. Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock. ACS Nano 2016, 10, 4384–4394. [Google Scholar] [CrossRef]
- Fortuna, S.A.; Li, X. Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond. Sci. Technol. 2010, 25, 024005. [Google Scholar] [CrossRef]
- Toko, K.; Nakata, M.; Jevasuwan, W.; Fukata, N.; Suemasu, T. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor–Liquid–Solid Growth. ACS Appl. Mater. Interfaces 2015, 7, 18120–18124. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M.; Beretta, S.; Rossi, F.; Bersani, D.; Musayeva, N.; Ferrari, C. Extra-long and taper-free germanium nanowires: Use of an alternative Ge precursor for longer nanostructures. Nanotechnology 2019, 30, 415603. [Google Scholar] [CrossRef]
- Yan, H.; Choe, H.S.; Nam, S.W.; Hu, Y.J.; Das, S.; Klemic, J.F.; Ellenbogen, J.C.; Lieber, C.M. Programmable Nanowire Circuits for Nanoprocessors. Nature 2011, 470, 240–244. [Google Scholar] [CrossRef]
- Collet, M.; Salomon, S.; Klein, N.Y.; Seichepine, F.; Vieu, C.; Nicu, L.; Larrieu, G. Large-Scale Assembly of Single Nanowires Through Capillary-Assisted Dielectrophoresis. Adv. Mater. 2015, 27, 1268–1273. [Google Scholar] [CrossRef]
- Gao, F.; Wang, J.H.; Watzinger, H.; Hu, H.; Rančić, M.J.; Zhang, J.Y.; Wang, T.; Yao, Y.; Wang, G.L.; Kukučka, J.; et al. Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin–Orbit Coupling. Adv. Mater. 2020, 32, 1906523. [Google Scholar] [CrossRef]
- Tabata, O.; Asahi, R.; Funabashi, H.; Shimaoka, K.; Sugiyama, S. Anisotropic Etching of Silicon in TMAH Solutions. Sens. Actuators A 1992, 34, 51–57. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Yin, H.X.; Meng, L.K.; Yao, J.X.; Li, J.J.; Wang, G.L.; Li, Y.D.; Wu, Z.H.; Xiong, W.J.; Yang, H.; et al. Novel GAA Si Nanowire p-MOSFETs With Excellent Short-Channel Effect Immunity via an Advanced Forming Process. IEEE Electron Device Lett. 2018, 39, 464–467. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Wu, Z.; Yao, J.; Zhang, Z.; Zhu, X.; Wang, G.; Li, J.; Zhang, Y.; Cai, Y.; et al. Cryogenic Transport Characteristics of P-Type Gate-All-Around Silicon Nanowire MOSFETs. Nanomaterials 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Nanda, K.K.; Sahu, S.N.; Behera, S.N. Liquid-Drop Model for the Size-Dependent Melting of Low-Dimensional Systems. Phys. Rev. A 2002, 66, 013208. [Google Scholar] [CrossRef]
- Shin, H.S.; Yu, J.; Song, J.Y. Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 2007, 91, 173106. [Google Scholar] [CrossRef]
- Day, R.W.; Mankin, M.N.; Gao, R.; No, Y.S.; Kim, S.K.; Bell, D.C.; Park, H.G.; Lieber, C.M. Plateau–Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 2015, 10, 345–352. [Google Scholar] [CrossRef]
- Day, R.W.; Mankin, M.N.; Lieber, C.M. Plateau–Rayleigh crystal growth of nanowire heterostructures: Strain-modified surface chemistry and morphological control in one, two, and three dimensions. Nano Lett. 2016, 16, 2830–2836. [Google Scholar] [CrossRef]
- Lee, L.L.; Antoniadis, D.A.; Fitzgerald, E.A. Challenges in Epitaxial Growth of SiGe Buffers on Si(111), (110), and (112). Thin Solid Films 2006, 508, 136–139. [Google Scholar] [CrossRef]
- Zhang, J.J.; Rastelli, A.; Schmidt, O.G.; Bauer, G. Role of the wetting layer for the SiGe Stranski-Krastanow island growth on planar and pit-patterned substrates. Semicond. Sci. Technol. 2011, 26, 014028. [Google Scholar] [CrossRef]
- Gai, Z.; Yang, W.S.; Sakurai, T.; Zhao, R.G. Heteroepitaxy of germanium on Si (103) and stable surfaces of germanium. Phys. Rev. B 1999, 59, 13009–13013. [Google Scholar] [CrossRef]
- Gai, Z.; Ji, H.; Gao, B.; Zhao, R.G.; Yang, W.S. Surface structure of the (3× 1) and (3× 2) reconstructions of Ge (113). Phys. Rev. B 1996, 54, 8593. [Google Scholar] [CrossRef]
- Laracuente, A.; Erwin, S.C.; Whitman, L.J. Structure of Ge (113): Origin and Stability of Surface Self-Interstitials. Phys. Rev. Lett. 1998, 81, 5177. [Google Scholar] [CrossRef]
- Zhang, J.J.; Katsaros, G.; Montalenti, F.; Scopece, D.; Rezaev, R.O.; Mickel, C.; Rellinghaus, B.; Miglio, L.; De Franceschi, S.; Rastelli, A.; et al. Monolithic growth of ultrathin Ge nanowires on Si (001). Phys. Rev. Lett. 2012, 109, 085502. [Google Scholar] [CrossRef]
- Eaglesham, D.J.; White, A.E.; Feldman, L.C.; Moriya, N.; Jacobson, D.C. Equilibrium shape of Si. Phys. Rev. Lett. 1993, 70, 1643–1646. [Google Scholar] [CrossRef]
- Lu, G.H.; Huang, M.; Cuma, M.; Liu, F. Relative stability of Si surfaces: A first-principles study. Surf. Sci. Rep. 2005, 588, 61–69. [Google Scholar] [CrossRef]
- De Vries, F.K.; Shen, J.; Skolasinski, R.J.; Nowak, M.P.; Varjas, D.; Wang, L.; Wimmer, M.; Ridderbos, J.; Zwanenburg, F.A.; Li, A.; et al. Spin-Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas. Nano Lett. 2018, 18, 6483–6488. [Google Scholar] [CrossRef] [PubMed]
- Kloeffel, C.; Trif, M.; Loss, D. Strong spin-orbit interaction and helical hole states in Ge/Si nanowires. Phys. Rev. B. 2011, 84, 195314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-H.; Wang, T.; Zhang, J.-J. Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001). Nanomaterials 2021, 11, 788. https://doi.org/10.3390/nano11030788
Wang J-H, Wang T, Zhang J-J. Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001). Nanomaterials. 2021; 11(3):788. https://doi.org/10.3390/nano11030788
Chicago/Turabian StyleWang, Jian-Huan, Ting Wang, and Jian-Jun Zhang. 2021. "Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001)" Nanomaterials 11, no. 3: 788. https://doi.org/10.3390/nano11030788
APA StyleWang, J.-H., Wang, T., & Zhang, J.-J. (2021). Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001). Nanomaterials, 11(3), 788. https://doi.org/10.3390/nano11030788