Abstract
Epigallocatechin gallate (EGCG)—the most abundant catechin in green tea—is a promising component of advanced composite biomaterials. The pharmacological activity of EGCG is typically attenuated upon thermal processing, although the exact effects of heating free and modified EGCG in air and vacuum are unknown. To bridge this gap, we herein examined the effects of heating free and modified (in gelatin containing beta-tricalcium phosphate granules) EGCG in vacuum and air (100–220 °C, 1–16 h) on its physicochemical and antioxidant properties using water and ethanol solubility measurements, discoloration and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) assays, ultraviolet–visible spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The antioxidant activity of EGCG-modified gelatin sponges was assessed in vitro using the DPPH assay and in vivo using a calvarial bone defect model in eight-week-old male Sprague–Dawley rats. Free and modified EGCG showed antioxidant activities, which were largely retained after heating in vacuum at 150 °C. These findings show that appropriate heating procedures preserve the antioxidant activity of EGCG and provide insights for the development of EGCG-based biomaterials.