Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (863)

Search Parameters:
Keywords = vacuum heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4509 KiB  
Article
Numerical Simulation and Analysis of Performance of Switchable Film-Insulated Photovoltaic–Thermal–Passive Cooling Module for Different Design Parameters
by Cong Jiao, Zeyu Li, Tiancheng Ju, Zihan Xu, Zhiqun Xu and Bin Sun
Processes 2025, 13(8), 2471; https://doi.org/10.3390/pr13082471 - 5 Aug 2025
Viewed by 145
Abstract
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. [...] Read more.
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. In our previous work, we proposed a switchable film-insulated photovoltaic–thermal–passive cooling (PVT-PC) module to address the structural incompatibility between diurnal and nocturnal modes. However, the performance of the proposed module strongly depends on two key design parameters: the structural height and the vacuum level of the air cushion. In this study, a numerical model of the proposed module is developed to examine the impact of design and meteorological parameters on its all-day performance. The results show that diurnal performance remains stable across different structural heights, while nocturnal passive cooling power shows strong dependence on vacuum level and structural height, achieving up to 103.73 W/m2 at 10 mm height and 1500 Pa vacuum, which is comparable to unglazed PVT modules. Convective heat transfer enhancement, induced by changes in air cushion shape, is identified as the primary contributor to improved nocturnal cooling performance. Wind speed has minimal impact on electrical output but significantly enhances thermal efficiency and nocturnal convective cooling power, with a passive cooling power increase of up to 31.61%. In contrast, higher sky temperatures degrade nocturnal cooling performance due to diminished radiative exchange, despite improving diurnal thermal efficiency. These findings provide fundamental insights for optimizing the structural design and operational strategies of PVT-PC systems under varying environmental conditions. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

15 pages, 4071 KiB  
Article
Microstructural Characterisation of Bi-Ag-Ti Solder Alloy and Evaluation of Wettability on Ceramic and Composite Substrates Joined via Indirect Electron Beam Heating in Vacuum
by Mikulas Sloboda, Roman Kolenak, Tomas Melus, Peter Gogola, Matej Pasak, Daniel Drimal and Jaromir Drapala
Materials 2025, 18(15), 3634; https://doi.org/10.3390/ma18153634 - 1 Aug 2025
Viewed by 190
Abstract
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of [...] Read more.
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of a bismuth matrix containing silver lamellae. Titanium, acting as an active element, positively influenced the interaction between the solder and the joined materials. SiC and Ni-SiC substrates were soldered at temperatures of 750 °C, 850 °C, and 950 °C. Measurements of wettability angles indicated that the lowest value (20°) was achieved with SiC substrates at 950 °C. A temperature of 750 °C appeared to be the least suitable for both substrates and was entirely unsuitable for Ni-SiC. It was also observed that the Bi11Ag3Ti solder wetted the SiC substrates more effectively than Ni-SiC substrates. The optimal working temperature for this solder was determined to be 950 °C. The shear strength of the joints soldered with the Bi11Ag3Ti alloy was 23.5 MPa for the Al2O3/Ni-SiC joint and 9 MPa for the SiC/Ni-SiC joint. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

15 pages, 3003 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 - 1 Aug 2025
Viewed by 210
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Graphical abstract

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 110
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 289
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 571
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Viewed by 272
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

12 pages, 1442 KiB  
Article
Reversible Binding of Nitric Oxide in a Cu(II)-Containing Microporous Metal-Organic Framework
by Konstantin A. Bikov, Götz Schuck and Peter A. Georgiev
Molecules 2025, 30(14), 3007; https://doi.org/10.3390/molecules30143007 - 17 Jul 2025
Viewed by 265
Abstract
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose [...] Read more.
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose of comparison, we also measured the corresponding CO2 adsorption isotherms, and as a result, the isosteric heats of adsorption for the two studied adsorptives were derived, being in the range of 12–15 kJ/mol for NO at loadings up to 0.5 NO molecules per formula unit (f.u.) of the bare compound (C4O3HCu), and 23–25 kJ/mol CO2 in the range 0–1 CO2 per f.u. Microscopically, the mode of NO binding near the square pyramid Cu(II) centers was directly accessed with the use of in situ NO gas adsorption X-ray Absorption Spectroscopy (XAS). Additionally, during the vacuum/temperature activation of the material and consequent NO adsorption, the electronic state of the Cu-species was monitored by observing the corresponding X-ray Near Edge Spectra (XANES). Contrary to the previously anticipated chemisorption mechanism for NO binding at Cu(II) species, we found that at slightly elevated temperatures, under ambient, but also cryogenic conditions, only relatively weak physisorption takes place, with no evidence for a particular adsorption preference to the coordinatively unsaturated Cu-centers of the material. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

19 pages, 3482 KiB  
Article
Development and Performance Evaluation of Central Pipe for Middle-Deep Geothermal Heat Pump Systems
by Xiong Zhang, Ziyan Zhao, Zhengrong Guan, Jiaojiao Lv and Lu Cui
Energies 2025, 18(14), 3713; https://doi.org/10.3390/en18143713 - 14 Jul 2025
Viewed by 282
Abstract
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer [...] Read more.
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer and conversion mechanisms of the MD-GHP system, incorporating unsteady heat transfer in the central pipe, is established and validated using field test data. Secondly, taking the inner diameter, wall thickness, and effective thermal conductivity of the central pipe as design variables, the effects of these parameters on the COP of a 2700 m deep MD-GHP system are analyzed and optimized via the response surface method. The resulting optimal parameters are as follows: an inner diameter of 88 mm, a wall thickness of 14 mm, and an effective thermal conductivity of 0.2 W/(m·K). Based on these results, a composite central pipe composed of high-density polyethylene (HDPE), silica aerogels, and glass fiber tape is designed and fabricated. The developed pipe achieves an effective thermal conductivity of 0.13 W/(m·K) and an axial tensile force of 29,000 N at 105 °C. Compared with conventional PE and vacuum-insulated pipes, the composite central pipe improves the COP by 11% and 7%, respectively. This study proposes an optimization-based design approach for central pipe configuration in MD-GHP systems and presents a new composite pipe with enhanced thermal insulation and mechanical performance. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

16 pages, 1610 KiB  
Article
Energy-Efficient Vacuum Sublimation Drying of Camel Milk: Numerical Simulation and Parametric Analysis
by Arshyn Altybay, Ayaulym Rakhmatulina, Dauren Darkenbayev and Symbat Satybaldy
Energies 2025, 18(14), 3665; https://doi.org/10.3390/en18143665 - 10 Jul 2025
Viewed by 353
Abstract
This study describes both experimental and numerical investigations into the heat and mass transfer processes governing the vacuum freeze drying of camel milk, with a specific focus on improving the energy efficiency. A three-dimensional model was developed and solved using the finite element [...] Read more.
This study describes both experimental and numerical investigations into the heat and mass transfer processes governing the vacuum freeze drying of camel milk, with a specific focus on improving the energy efficiency. A three-dimensional model was developed and solved using the finite element method to simulate temperature evolution and sublimation interface progression during drying. The numerical model was validated against experimental data, achieving strong agreement, with an R2 value of 0.94. A detailed parametric analysis examined the effects of the shelf temperature, sample thickness, and chamber pressure on the drying kinetics and energy input. The results indicate that optimising these parameters can significantly reduce the energy consumption and processing time while maintaining product quality. Notably, reducing the sample thickness to 4 mm shortened the drying time by up to 40% and reduced the specific energy consumption (SEC) from 358 to 149 kWh/kg. These findings offer valuable insights for the design of more energy-efficient freeze drying systems, with implications for sustainable milk powder production and industrial-scale process optimisation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 1125 KiB  
Article
Influence of Heat Treatment Temperature on Microstructure and Mechanical Properties of TiB2@Ti/AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Matrix Composites
by Fuqiang Guo, Yajun Zhou, Qinggang Jiang, Panfeng Chen and Bo Ren
Metals 2025, 15(7), 757; https://doi.org/10.3390/met15070757 - 5 Jul 2025
Viewed by 320
Abstract
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist [...] Read more.
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist of FCC, BCC, TiB2, and Ti phases, with a preferred orientation of the (111) crystal plane of the FCC phase. As the temperature increases, the diffraction peak of the BCC phase separates from the main FCC peak and its intensity increases, while the diffraction peak positions of the FCC and BCC phases shift at small angles. This is attributed to the diffusion of TiB2@Ti from the grain boundaries into the matrix, where the Ti solid solution increases the lattice constant of the FCC phase. Microstructural observations reveal that the eutectic region transforms from lamellar to island-like structures, and the solid solution zone narrows. With increasing temperature, the Ti concentration in the solid solution zone increases, while the contents of elements such as Ni decrease. Element diffusion is influenced by binary mixing enthalpy, with Ti and B tending to solidify in the FCC and BCC phase regions, respectively. The mechanical properties improve with increasing temperature. At 1000 °C, the average hardness is 579.2 HV, the yield strength is 1294 MPa, the fracture strength is 2385 MPa, and the fracture strain is 19.4%, representing improvements of 35.5% and 24.9% compared to the as-sintered state, respectively, without loss of plasticity. The strengthening mechanisms include enhanced solid solution strengthening due to the diffusion of Ti and TiB2, improved grain boundary strength due to the diffusion of alloy elements to the grain boundaries, and synergistic optimization of strength and plasticity. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

12 pages, 1111 KiB  
Article
Structure–Function Relationship of Novel Tetrakis (Mercapto-Terphenyl)Benzene Cobalt (II) Phthalocyanines: Synthesis and Computational Evaluation
by Sevil Sener and Nursel Acar-Selcuki
Molecules 2025, 30(13), 2693; https://doi.org/10.3390/molecules30132693 - 22 Jun 2025
Viewed by 451
Abstract
This study introduces a newly synthesized Co(II) phthalocyanine complex (Co-Pc, 4) incorporating two (mercapto-terphenyl)thio-dione substituents, along with a detailed exploration of its structural, spectroscopic, and binding characteristics. The key precursor, 4-[(4′′-mercapto-[1,1′:4′,1′′-terphenyl]-4-yl)thio]phthalonitrile (compound 3), was first obtained and subsequently used to construct [...] Read more.
This study introduces a newly synthesized Co(II) phthalocyanine complex (Co-Pc, 4) incorporating two (mercapto-terphenyl)thio-dione substituents, along with a detailed exploration of its structural, spectroscopic, and binding characteristics. The key precursor, 4-[(4′′-mercapto-[1,1′:4′,1′′-terphenyl]-4-yl)thio]phthalonitrile (compound 3), was first obtained and subsequently used to construct the phthalocyanine macrocycle through cyclotetramerization in the presence of cobalt and zinc salts under heat and vacuum in dimethylformamide. The resulting compounds (3 and 4) were characterized using a comprehensive array of analytical techniques, including elemental analysis, UV–Vis spectroscopy, FT-IR, 1H-NMR, and Q-TOF mass spectrometry. Additionally, density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to elucidate the electronic structure and geometrical features of Co-Pc 4, providing theoretical support for the experimental findings. The integration of theoretical and experimental findings provides in-depth insight into the electronic behavior and reactivity of compound 4, highlighting its promise as a candidate for photovoltaic applications. Further studies may investigate how structural modifications influence these properties, potentially leading to improved device performance. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

25 pages, 8234 KiB  
Article
Preparation of Cu-Containing Substances via an Ultrasonic-Assisted Solvothermal Approach and Their Catalytic Effects on the Thermal Decomposition of Ammonium Perchlorate
by Cheng-Hsiung Peng, Pin-Hsien Su, Jin-Shuh Li and Yan-Jun Ke
Materials 2025, 18(13), 2928; https://doi.org/10.3390/ma18132928 - 20 Jun 2025
Viewed by 328
Abstract
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable [...] Read more.
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable production. The characteristics of the resulting products were analyzed using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area measurement along with pore size distribution, and thermogravimetric analysis–differential scanning calorimetry (TG-DSC). Additionally, the catalytic effects of these products on the thermal decomposition of ammonium perchlorate (AP) were evaluated. All three substances were found to lower the thermal decomposition temperature of AP and enhance heat release. Cu3(BTC)2 demonstrated exceptional catalytic performance and compatibility with AP, as shown using the vacuum stability test (VST). The thermal analysis results indicated that the thermal decomposition temperature and apparent activation energy of AP decreased from ~442 °C to around 340 °C and from ~207 kJ mol−1 to approximately 128 kJ mol−1, respectively, when 3 wt% Cu3(BTC)2 was contained in AP. Moreover, the heat released via the exothermic decomposition of AP increased from 740 J g−1 to1716 J g−1. A possible reaction mechanism is proposed based on the evolved gas analysis (EGA) findings to explain the observed catalytic effects. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

20 pages, 19694 KiB  
Article
Design and Optimization of a Large-Air-Gap Voice Coil Motor with Enhanced Thermal Management for Magnetic Levitation Vibration Isolation in a Vacuum
by Junren Mu and He Zhang
Actuators 2025, 14(6), 301; https://doi.org/10.3390/act14060301 - 19 Jun 2025
Viewed by 444
Abstract
This study presents the design, optimization, and experimental validation of a large-air-gap voice coil motor (LAG-VCM) for high-precision magnetic levitation vibration isolation in vacuum environments. Key challenges arising from a large air gap, including pronounced leakage flux and a reduced flux density, were [...] Read more.
This study presents the design, optimization, and experimental validation of a large-air-gap voice coil motor (LAG-VCM) for high-precision magnetic levitation vibration isolation in vacuum environments. Key challenges arising from a large air gap, including pronounced leakage flux and a reduced flux density, were addressed by employing the equivalent magnetic charge method and the image method for the modeling of permanent magnets. Finite element analysis was applied to refine the motor geometry and obtain high thrust, low ripple, and strong linearity. To mitigate the severe thermal conditions of a vacuum, a heat pipe-based cooling strategy was introduced to efficiently dissipate heat from the coil windings. The experimental results demonstrate that the optimized LAG-VCM delivers a thrust of 277 N with low ripple while effectively maintaining coil temperatures below critical limits for prolonged operation. These findings confirm the suitability of the proposed LAG-VCM for vacuum applications with stringent requirements for both a large travel range and stable, high-force output. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

33 pages, 1265 KiB  
Article
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
by Abdoulaye Sarr, Joël Jézégou and Pierre de Saqui-Sannes
Aerospace 2025, 12(6), 554; https://doi.org/10.3390/aerospace12060554 - 17 Jun 2025
Viewed by 731
Abstract
Hydrogen-powered aircraft constitute a transformative innovation in aviation, motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion [...] Read more.
Hydrogen-powered aircraft constitute a transformative innovation in aviation, motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially, the requirements for powertrain design are formalized, and a use-case-driven analysis is conducted to determine the functional and physical architectures. Subsequently, for each component pertinent to preliminary design, an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A double-wall pipe model, incorporating foam and vacuum multi-layer insulation, was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study, following current standards and using data available in the literature. Furthermore, models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified, which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop