The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Growth Parameters
2.3. Pigments Analysis
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Kintetic Growth of Nephroselmis
3.2. Pigments
3.3. Biosynthesis of Biochemical Compounds
4. Discussion
4.1. Growth of Nephroselmis
4.2. Light Quality Effect on Pigments Biosynthesis
4.3. Macromolecule Modulation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
d.f. | Degree of freedom |
D.W | Dry weight |
d | Day |
ROS | Reactive Oxygen Species |
References
- Esteves, A.F.; Salgado, E.M.; Vilar, V.J.P.; Gonçalves, A.L.; Pires, J.C.M. A Growth Phase Analysis on the Influence of Light Intensity on Microalgal Stress and Potential Biofuel Production. Energy Convers. Manag. 2024, 311, 118511. [Google Scholar] [CrossRef]
- Hotos, G.N. Quantity and Quality of Light on Growth and Pigment Content of Dunaliella sp. and Anabaena sp. Cultures and the Use of Their Absorption Spectra as a Proxy Method for Assessment. JMSE 2023, 11, 1673. [Google Scholar] [CrossRef]
- Ángeles, R.; Carvalho, J.; Hernández-Martínez, I.; Morales-Ibarría, M.; Fradinho, J.C.; Reis, M.A.M.; Lebrero, R. Harnessing Nature’s Palette: Exploring Photosynthetic Pigments for Sustainable Biotechnology. New Biotechnol. 2025, 85, 84–102. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Z.; Sun, J.; Wei, J.; Ma, Q.; Gao, X. Recent Advances in Microbial Synthesis of Free Heme. Appl. Microbiol. Biotechnol. 2024, 108, 68. [Google Scholar] [CrossRef]
- Costa, M.M.; Spínola, M.P.; Prates, J.A.M. Microalgae as an Alternative Mineral Source in Poultry Nutrition. Vet. Sci. 2024, 11, 44. [Google Scholar] [CrossRef]
- Razzak, S.A. Comprehensive Overview of Microalgae-Derived Carotenoids and Their Applications in Diverse Industries. Algal Res. 2024, 78, 103422. [Google Scholar] [CrossRef]
- Guermazi, W.; Masmoudi, S.; Trabelsi, N.A.; Gammoudi, S.; Ayadi, H.; Morant-Manceau, A.; Hotos, G.N. Physiological and Biochemical Responses in Microalgae Dunaliella Salina, Cylindrotheca Closterium and Phormidium Versicolor NCC466 Exposed to High Salinity and Irradiation. Life 2023, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Aljabory, M.N.; Alhaboubi, N.A. Green Solutions for CO2 Mitigation: Exploring Microalgae-Based Carbon Capture and Utilization Technologies. J. Biotechnol. Res. Cent. 2025, 19, 52–64. [Google Scholar] [CrossRef]
- Akubude, V.C.; Nwaigwe, K.N.; Dintwa, E. Production of Biodiesel from Microalgae via Nanocatalyzed Transesterification Process: A Review. Mater. Sci. Energy Technol. 2019, 2, 216–225. [Google Scholar] [CrossRef]
- Abuhasheesh, Y.; Ghazal, A.; Tang, D.Y.Y.; Banat, F.; Hasan, S.W.; Show, P.L. Advances in Chlorella Microalgae for Sustainable Wastewater Treatment and Bioproduction. Chem. Eng. J. Adv. 2025, 22, 100715. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef]
- Yu, K.L.; Ong, H.C.; Zaman, H.B. Integrated Energy Informatics Technology on Microalgae-Based Wastewater Treatment to Bioenergy Production: A Review. J. Environ. Manag. 2024, 368, 122085. [Google Scholar] [CrossRef]
- Dai, C.; Wang, F. Potential Applications of Microalgae–Bacteria Consortia in Wastewater Treatment and Biorefinery. Bioresour. Technol. 2024, 393, 130019. [Google Scholar] [CrossRef]
- Shih, S.C.C.; Mufti, N.S.; Chamberlain, M.D.; Kim, J.; Wheeler, A.R. A Droplet-Based Screen for Wavelength-Dependent Lipid Production in Algae. Energy Environ. Sci. 2014, 7, 2366. [Google Scholar] [CrossRef]
- Rochet, M.; Legendre, L.; Demers, S. Photosynthetic and Pigment Responses of Sea-Ice Microalgae to Changes in Light Intensity and Quality. J. Exp. Mar. Biol. Ecol. 1986, 101, 211–226. [Google Scholar] [CrossRef]
- Kwon, H.K.; Oh, S.J.; Yang, H.; Kim, D.; Kang, I.J.; Oshima, Y. Laboratory Study for the Phytoremediation of Eutrophic Coastal Sediment Using Benthic Microalgae and Light Emitting Diode (LED). J. Fac. Agric. Kyushu Univ. 2013, 58, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-B.; Wu, J.-Y.; Wang, C.-F.; Fu, C.-C.; Shieh, C.-J.; Chen, C.-I.; Wang, C.-Y.; Liu, Y.-C. Modeling on Chlorophyll a and Phycocyanin Production by Spirulina platensis under Various Light-Emitting Diodes. Biochem. Eng. J. 2010, 53, 52–56. [Google Scholar] [CrossRef]
- Sharmila, D.; Suresh, A.; Indhumathi, J.; Gowtham, K.; Velmurugan, N. Impact of Various Color Filtered LED Lights on Microalgae Growth, Pigments and Lipid Production. Eur. J. Biotechnol. Biosci. 2018, 6, 1–7. [Google Scholar]
- Hotos, G.N.; Antoniadis, T.I. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life 2022, 12, 837. [Google Scholar] [CrossRef]
- Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó.S.; Palsson, B.Ø.; Brynjólfsson, S. Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella salina with Light-Emitting Diodes and Adaptive Laboratory Evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. [Google Scholar] [CrossRef]
- Pérez-Pazos, J.-V.; Fernández-Izquierdo, P. Synthesis of Neutral Lipids in Chlorella sp. under Different Light and Carbonate Conditions. CTF-Cienc. Tecnol. Y Futuro 2011, 4, 47–58. [Google Scholar] [CrossRef]
- Asuthkar, M.; Gunti, Y.; Rao, R.; Rao, C.S.; Yadavalli, R. Effect of Different Wavelengths of Light on the Growth of Chlorella pyrenoidosa. Int. J. Pharm. Sci. Res 2016, 7, 847–851. [Google Scholar]
- Markou, G. Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-Continuous Mode. Appl. Biochem. Biotechnol. 2014, 172, 2758–2768. [Google Scholar] [CrossRef]
- Wang, S.; Stiles, A.R.; Guo, C.; Liu, C. Microalgae Cultivation in Photobioreactors: An Overview of Light Characteristics. Eng. Life Sci. 2014, 14, 550–559. [Google Scholar] [CrossRef]
- Qilu, C.; Ligen, X.; Fangmin, C.; Gang, P.; Qifa, Z. Bicarbonate-Rich Wastewater as a Carbon Fertilizer for Culture of Dictyosphaerium sp. of a Giant Pyrenoid. J. Clean. Prod. 2018, 202, 439–443. [Google Scholar] [CrossRef]
- Hotos, G.N.; Avramidou, D. The Effect of Various Salinities and Light Intensities on the Growth Performance of Five Locally Isolated Microalgae [Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (Var. Red Pappas), Asteromonas gracilis and Dunaliella sp.] in Laboratory Batch Cultures. J. Mar. Sci. Eng. 2021, 9, 1275. [Google Scholar] [CrossRef]
- Hotos, G.; Avramidou, D.; Mastropetros, S.G.; Tsigkou, K.; Kouvara, K.; Makridis, P.; Kornaros, M. Isolation, Identification, and Chemical Composition Analysis of Nine Microalgal and Cyanobacterial Species Isolated in Lagoons of Western Greece. Algal Res. 2023, 69, 102935. [Google Scholar] [CrossRef]
- Laing, I. Cultivation of Marine Unicellular Algae; Ministry of Agriculture, Fisheries and Food Conwy: Conwy, UK, 1991.
- Perni, S.; Andrew, P.W.; Shama, G. Estimating the Maximum Growth Rate from Microbial Growth Curves: Definition Is Everything. Food Microbiol. 2005, 22, 491–495. [Google Scholar] [CrossRef]
- Perrine, Z.; Negi, S.; Sayre, R.T. Optimization of Photosynthetic Light Energy Utilization by Microalgae. Algal Res. 2012, 1, 134–142. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Palanisamy, K.M.; Rahim, M.H.A.; Govindan, N.; Ramaraj, R.; Kuppusamy, P.; Maniam, G.P. Effect of Blue Light Intensity and Photoperiods on the Growth of Diatom Thalassiosira pseudonana. Bioresour. Technol. Rep. 2022, 19, 101152. [Google Scholar] [CrossRef]
- He, Q.; Yang, H.; Wu, L.; Hu, C. Effect of Light Intensity on Physiological Changes, Carbon Allocation and Neutral Lipid Accumulation in Oleaginous Microalgae. Bioresour. Technol. 2015, 191, 219–228. [Google Scholar] [CrossRef]
- De Mooij, T.; De Vries, G.; Latsos, C.; Wijffels, R.H.; Janssen, M. Impact of Light Color on Photobioreactor Productivity. Algal Res. 2016, 15, 32–42. [Google Scholar] [CrossRef]
- Das, P.; Lei, W.; Aziz, S.S.; Obbard, J.P. Enhanced Algae Growth in Both Phototrophic and Mixotrophic Culture under Blue Light. Bioresour. Technol. 2011, 102, 3883–3887. [Google Scholar] [CrossRef] [PubMed]
- Abiusi, F.; Sampietro, G.; Marturano, G.; Biondi, N.; Rodolfi, L.; D’Ottavio, M.; Tredici, M.R. Growth, Photosynthetic Efficiency, and Biochemical Composition of Tetraselmis suecica F&M-M33 Grown with LEDs of Different Colors. Biotech. Bioeng. 2014, 111, 956–964. [Google Scholar] [CrossRef]
- Wong, Y.K.; Ho, Y.H.; Ho, K.C.; Leung, H.M.; Chow, K.P.; Yung, K.K.L. Effect of Different Light Sources on Algal Biomass and Lipid Production in Internal Leds-Illuminated Photobioreactor. J. Mar. Biol. Aquac 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Willoughby, N. Luminescent Photobioreactor Design for Improved Algal Growth and Photosynthetic Pigment Production through Spectral Conversion of Light. Bioresour. Technol. 2013, 142, 147–153. [Google Scholar] [CrossRef]
- Choochote, W.; Suklampoo, L.; Ochaikul, D. Evaluation of Antioxidant Capacities of Green Microalgae. J. Appl. Phycol. 2014, 26, 43–48. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Recent Advances in Lutein Production from Microalgae. Renew. Sustain. Energy Rev. 2022, 153, 111795. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative Stress: Molecular Perception and Transduction of Signals Triggering Antioxidant Gene Defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Dalton, T.P.; Shertzer, H.G.; Puga, A. Regulation of Gene Expression by Reactive Oxygen. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 67–101. [Google Scholar] [CrossRef]
- Shi, T.-Q.; Wang, L.-R.; Zhang, Z.-X.; Sun, X.-M.; Huang, H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef]
- Baba, M.; Kikuta, F.; Suzuki, I.; Watanabe, M.M.; Shiraiwa, Y. Wavelength Specificity of Growth, Photosynthesis, and Hydrocarbon Production in the Oil-Producing Green Alga Botryococcus braunii. Bioresour. Technol. 2012, 109, 266–270. [Google Scholar] [CrossRef]
- Zhu, S.-H.; Guo, J.; Maldonado, M.T.; Green, B.R. Effects of Iron and Copper Deficiency on the Expression of Members of the Light-Harvesting Family in the Diatom Thalassiosira pseudonana (Bacillariophyceae)1: Fe-Cu Deficiency and Lhc Expression. J. Phycol. 2010, 46, 974–981. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Lin, S. Enhancement of Non-Photochemical Quenching as an Adaptive Strategy under Phosphorus Deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 2017, 8, 404. [Google Scholar] [CrossRef]
- Ravelonandro, P.H.; Ratianarivo, D.H.; Joannis-Cassan, C.; Isambert, A.; Raherimandimby, M. Influence of Light Quality and Intensity in the Cultivation of Spirulina platensis from Toliara (Madagascar) in a Closed System. J. Chem. Tech. Biotech. 2008, 83, 842–848. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, Y.-C.; Huang, H.-C.; Huang, C.-C.; Lee, W.-L.; Chang, J.-S. Engineering Strategies for Enhancing the Production of Eicosapentaenoic Acid (EPA) from an Isolated Microalga Nannochloropsis oceanica CY2. Bioresour. Technol. 2013, 147, 160–167. [Google Scholar] [CrossRef]
- Raqiba, H.; Sibi, G. Light Emitting Diode (LED) Illumination for Enhanced Growth and Cellular Composition in Three Microalgae. Adv. Microbiol. Res. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Doron, L.; Segal, N.; Shapira, M. Transgene Expression in Microalgae—From Tools to Applications. Front. Plant Sci. 2016, 7, 505. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Lee, Y.; Nam, O.; Park, S.; Sim, S.J.; Jin, E. Introducing Dunaliella LIP Promoter Containing Light-inducible Motifs Improves Transgenic Expression in Chlamydomonas reinhardtii. Biotechnol. J. 2016, 11, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Liu, P.; Xia, J.; Rosenberg, J.N.; Oyler, G.A.; Betenbaugh, M.J.; Nie, Z.; Qiu, G. The Effect of Mixotrophy on Microalgal Growth, Lipid Content, and Expression Levels of Three Pathway Genes in Chlorella sorokiniana. Appl. Microbiol. Biotechnol. 2011, 91, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Iida, S.; Miyagi, A.; Aoki, S.; Ito, M.; Kadono, Y.; Kosuge, K. Molecular Adaptation of rbcL in the Heterophyllous Aquatic Plant Potamogeton. PLoS ONE 2009, 4, e4633. [Google Scholar] [CrossRef]
- Portis, A.R.; Parry, M.A.J. Discoveries in Rubisco (Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase): A Historical Perspective. Photosynth Res. 2007, 94, 121–143. [Google Scholar] [CrossRef]
- Lopez, J.M.; Bennett, M.K.; Sanchez, H.B.; Rosenfeld, J.M.; Osborne, T.E. Sterol Regulation of Acetyl Coenzyme A Carboxylase: A Mechanism for Coordinate Control of Cellular Lipid. Proc. Natl. Acad. Sci. USA 1996, 93, 1049–1053. [Google Scholar] [CrossRef]
- Bianchi, A.; Evans, J.L.; Nordlund, A.; Watts, T.D.; Witters, L.A. Acetyl-CoA Carboxylase in Reuber Hepatoma Cells: Variation in Enzyme Activity, Insulin Regulation, and Cellular Lipid Content. J. Cell. Biochem. 1992, 48, 86–97. [Google Scholar] [CrossRef]
- Modiri, S.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Evaluation of Transcription Profile of Acetyl-CoA Carboxylase (ACCase) and Acyl-ACP Synthetase (AAS) to Reveal Their Roles in Induced Lipid Accumulation of Synechococcus sp. HS01. Renew. Energy 2018, 129, 347–356. [Google Scholar] [CrossRef]
- Faraloni, C.; Di Lorenzo, T.; Bonetti, A. Impact of Light Stress on the Synthesis of Both Antioxidants Polyphenols and Carotenoids, as Fast Photoprotective Response in Chlamydomonas reinhardtii: New Prospective for Biotechnological Potential of This Microalga. Symmetry 2021, 13, 2220. [Google Scholar] [CrossRef]
Light Color | White | Blue | Yellow | ||||||
---|---|---|---|---|---|---|---|---|---|
Light intensity (Lux) | 3000 | 8000 | 15,000 | 3000 | 8000 | 15,000 | 3000 | 8000 | 15,000 |
Growth parameters | |||||||||
Specific growth rate (day−1) | 1.47 ± 0.00 aA | 1.55 ± 0.0 bE | 2.09 ± 0.09 cIJ | 1.79 ± 0.07 dC | 1.88 ± 0.01 dF | 2.02 ± 0.00 eJ | 1.93 ± 0.01 fC | 2.06 ± 0.03 gH | 2.15 ± 0.03 gI |
Generation time (h) | 0.47 ± 0.00 aA | 0.45 ± 0.00 bD | 0.33 ± 0.01 cHI | 0.39 ± 0.01 dB | 0.37 ± 0.00 dE | 0.34 ± 0.00 eH | 0.36 ± 0.00 fB | 0.34 ± 0.00 gG | 0.32 ± 0.00 gI |
Maximum yield (× 106 cells mL−1) | 13 ± 0.52 aA | 28 ± 0.86 aD | 33 ± 11.70 aG | 2 ± 1.14 bB | 5 ± 1.71 bE | 13 ± 0.41 cG | 6 ± 0.69 dC | 18 ± 2.32 gDF | 35 ± 1.90 hG |
Productivity (g mL−1day−1) | 0.19 ± 0.08 aA | 0.21 ± 0.05 aB | 0.12 ± 0.02 aC | 0.02 ± 0.00 bA | 0.12 ± 0.02 bB | 0.05 ± 0.01 bC | 0.02 ± 0.00 cA | 0.21 ± 0.09 cB | 0.02 ± 0.04 cC |
Biochemical parameters | |||||||||
Protein (%) | 37.55 ± 1.63 aA | 64.33 ± 0.43 bE | 46.40 ± 0.64 bH | 12.72 ± 1.21 cB | 19.12 ± 2.20 cF | 33.83 ± 0.71 dI | 15.85 ± 0.50 eBC | 26.5± 0.57 fG | 40.29 ± 0.92 gJ |
Carbohydrate (%) | 20.15 ± 0.78 aAB | 31.23 ± 0.22 bC | 29.01 ± 2.84 abF | 18.10± 0.91 cA | 21.90 ± 0.23 dD | 23.90 ± 0.05 eF | 24.60± 1.11 fB | 21.66 ± 1.91 fhD | 18.76 ± 0.98 gG |
Lipids (%) | 13.00 ± 3.00 aAB | 10.85 ± 0.15 aC | 13.00 ±1.00 aFH | 16.50 ± 0.71 bA | 19.00 ±1.41 bD | 15.50 ± 0.71 bFG | 11.00 ± 1.41 cB | 13.50 ± 0.71 cE | 13.50 ± 0.71 cF |
Polyphenols (%) | 0.43 ± 0.11 aA | 0.61 ± 0.13 aC | 0.29 ± 0.06 aF | 0.03 ± 0.02 bB | 0.06 ± 0.01 bD | 0.33 ± 0.06 cF | 0.39 ± 0.14 dA | 0.42 ± 0.06 dCE | 0.60 ± 0.15 dF |
Protein/Carbohydrate | 0.72 | 0.81 | 1.60 | 0.70 | 0.90 | 0.99 | 0.64 | 1.22 | 2.15 |
Protein/Lipids | 1.60 | 3.34 | 3.57 | 0.77 | 1.01 | 2.18 | 1.44 | 1.96 | 2.98 |
Carbohydrate/Lipids | 2.21 | 4.11 | 2.23 | 0.20 | 1.65 | 1.54 | 2.24 | 1.00 | 1.39 |
Chl(a)/Chl(b) | 5.73 | 1.77 | 4.22 | 0.00 | 6.63 | 2.80 | 2.86 | 2.18 | 1.00 |
Light color | Red | Green | |||||||
Light intensity (Lux) | 3000 | 8000 | 15,000 | 3000 | 8000 | 15,000 | |||
Growth parameters | |||||||||
Specific growth rate (d−1) | 1.12 ± 0.03 hB | 1.24 ± 0.0 ikG | 1.33 ± 0.01 jK | 1.80 ± 0.01 kC | 1.99 ± 0.04 lH | 2.15 ± 0.00 mI | |||
Doubling time (h) | 0.62 ± 0.01 hC | 0.56 ± 0.00 iF | 0.52 ± 0.00 jJ | 0.39 ± 0.00 kB | 0.35 ± 0.01 lG | 0.32 ± 0.00 mI | |||
Maximum yield (× 106 cells mL−1) | 3 ± 1.28 iBC | 10 ± 1.26 jEF | 32 ± 0.34 kG | 3 ± 0.19 lB | 12 ± 2.58 mEF | 34 ± 0.08 nG | |||
Productivity (g mL−1d−1) | 0.06 ± 0.02 dA | 0.01 ± 0.00 eB | 0.02 ± 0.01 deC | 0.06 ± 0.00 fA | 0.07 ± 0.00 fB | 0.08 ± 0.02 fC | |||
Biochemical parameters | |||||||||
Protein (%) | 25.44 ± 0.71 hD | 36.74 ± 1.92 iF | 38.37 ± 1.28 iIJ | 18.55 ± 0.64 jC | 35.96 ± 0.57 kG | 43.85 ± 0.07 lK | |||
Carbohydrate (%) | 23.52± 0.20 iB | 16.01 ± 0.32 jE | 18.67 ± 0.38 kG | 21.43 ± 0.13 lAB | 21.33 ± 1.06 lmD | 18.69 ± 0.18 mG | |||
Lipids (%) | 14.50 ± 0.71 dA | 17.50 ± 2.12 dDE | 21.00 ± 2.83 dG | 12.50 ± 0.71 eB | 11.00 ± 2.83 eCE | 9.00 ± 1.41 eH | |||
Polyphenols (%) | 0.31 ± 0.09 eA | 0.18 ± 0.02 eDE | 0.68 ± 0.33 eF | 0.23 ± 0.05 fA | 0.21 ± 0.09 fDE | 0.29 ± 0.16 fF | |||
Protein/Carbohydrate | 1.08 | 2.29 | 2.06 | 0.87 | 1.69 | 2.35 | |||
Protein/Lipids | 1.75 | 2.10 | 1.83 | 1.48 | 3.24 | 4.87 | |||
Carbohydrate/Lipids | 1.62 | 0.91 | 0.89 | 1.71 | 1.94 | 2.08 | |||
Chl(a)/Chl(b) | 0.00 | 4.94 | 2.72 | 5.41 | 2.65 | 2.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekri, I.; Guermazi, W.; El-khateeb, M.; Hotos, G.N.; Ayadi, H. The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp. J. Mar. Sci. Eng. 2025, 13, 1452. https://doi.org/10.3390/jmse13081452
Sekri I, Guermazi W, El-khateeb M, Hotos GN, Ayadi H. The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp. Journal of Marine Science and Engineering. 2025; 13(8):1452. https://doi.org/10.3390/jmse13081452
Chicago/Turabian StyleSekri, Ichrak, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos, and Habib Ayadi. 2025. "The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp." Journal of Marine Science and Engineering 13, no. 8: 1452. https://doi.org/10.3390/jmse13081452
APA StyleSekri, I., Guermazi, W., El-khateeb, M., Hotos, G. N., & Ayadi, H. (2025). The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp. Journal of Marine Science and Engineering, 13(8), 1452. https://doi.org/10.3390/jmse13081452