Acoustic Tracking of Sperm Whales (Physeter macrocephalus) in the Central Mediterranean Sea Using the NEMO-OνDE Deep-Sea Observatory
Abstract
:1. Introduction
1.1. Sperm Whale: Ecology, Distribution, and Sound Production
1.2. The NEMO-ODE Observatory
2. Methods
2.1. Algorithm for Sperm Whale Localization
2.2. Signal Processing and Selection of Sperm Whale Clicks
2.3. Determination of the Sound Source Direction
2.4. Determination of Sperm Whale Position
- The direct signal and its reflection must be close in time, with a maximum delay of 2.6 s.
- Only signals whose azimuthal arrival direction () differs from that of the direct signals () by a maximum of 30° are considered as possibly reflected signals. This is because the signal fluctuations of the angle of arrival of the reflected signal due to sea surface roughness is expected to be small [35].
- The arrival direction of the direct pulse () must be larger than the arrival direction of the corresponding reflected pulse ().
- The amplitude of the reflected signal must be lower than that of the direct signal due to reflection loss at the sea surface [36] and the longer path traveled by the reflected signal.
2.5. Estimation of Experimental Errors
- Hydrophone position uncertainty: The position of the hydrophones on the mechanical structure has an uncertainty of approximately ±1 cm.
- Temporal resolution: The temporal resolution affects the accuracy of estimating the peak in the cross-correlation function. Given the modulus of the Hilbert transform, the 95% amplitude of the peak corresponds to roughly 4 samples. With a resampling frequency of 192 kHz, this introduces an error of approximately 45.2 s.
- Sound velocity variations at the acoustic array: Changes in sound velocity due to depth, salinity, and temperature can introduce uncertainties. This variation is estimated to be around ±1 m/s based on historical vertical profiles near the station.
- Depth uncertainty of the NEMO-ODE station: The station’s depth has an estimated uncertainty of ±10 m.
3. Results
3.1. Distribution and Movements
3.2. Study of Movements over Several Hours
3.3. Interaction Between Sperm Whales and Vessels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norris, K.S. Whales, Dolphins, and Porpoises; University of California Press: Berkeley, CA, USA, 1966. [Google Scholar] [CrossRef]
- Zimmer, W.M. Passive Acoustic Monitoring of Cetaceans; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Eva-Marie Nosal, L.N.F. Track of a sperm whale from delays between direct and surface-reflected clicks. Appl. Acoust. 2006, 67, 1187–1201. [Google Scholar] [CrossRef]
- Wahlberg, M. The acoustic behaviour of diving sperm whales observed with a hydrophone array. J. Exp. Mar. Biol. Ecol. 2002, 281, 53–62. [Google Scholar] [CrossRef]
- Morrissey, R.; Ward, J.; DiMarzio, N.; Jarvis, S.; Moretti, D. Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean. Appl. Acoust. 2006, 67, 1091–1105. [Google Scholar] [CrossRef]
- Thode, A. Three-dimensional passive acoustic tracking of sperm whales (Physeter macrocephalus) in ray-refracting environments. J. Acoust. Soc. Am. 2005, 118, 3575–3584. [Google Scholar] [CrossRef]
- Miller, B.; Dawson, S.; Vennell, R. Underwater behavior of sperm whales off Kaikoura, New Zealand, as revealed by a three-dimensional hydrophone array. J. Acoust. Soc. Am. 2013, 134, 2690–2700. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, J.; Kingston, A.; Coram, A.; Oswald, M.; Swift, R.; Gillespie, D.; Northridge, S. Passive acoustic tracking of the three-dimensional movements and acoustic behaviour of toothed whales in close proximity to static nets. Methods Ecol. Evol. 2022, 13, 1250–1264. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Piperakis, G.S.; Orfanakis, E.; Papadakis, P.; Pavlidi, D.; Kalogerakis, M.A.; Alexiadou, P.; Frantzis, A. A Real-Time Acoustic Observatory for Sperm-Whale Localization in the Eastern Mediterranean Sea. Front. Mar. Sci. 2022, 9, 873888. [Google Scholar] [CrossRef]
- Desharnais, F.; Ebbeson, G.R.; Matthews, M.N.R.; Heard, G.J.; Thomson, D.J.; Brooke, G.H. A generalized beamformer for localization of marine mammals. Appl. Acoust. 2006, 67, 1213–1225. [Google Scholar] [CrossRef]
- Chiariotti, P.; Martarelli, M.; Castellini, P. Acoustic beamforming for noise source localization—Reviews, methodology and applications. Mech. Syst. Signal Process. 2019, 120, 422–448. [Google Scholar] [CrossRef]
- Wang, K.X.W.L.M. Sound source localization based on improved adaptive beamforming. J. Phys. Conf. Ser. 2021, 1971, 012063. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Xu, P.; Nan, M.; Lou, K.; Li, G. Underwater Acoustic Source Localization via Kernel Extreme Learning Machine. Front. Phys. 2021, 9, 653875. [Google Scholar] [CrossRef]
- Jin, P.; Wang, B.; Li, L.; Chao, P.; Xie, F. Semi-supervised underwater acoustic source localization based on residual convolutional autoencoder. EURASIP J. Adv. Signal Process. 2022, 2022, 107. [Google Scholar] [CrossRef]
- Li Zhen, L.N.; Liu, Z. BO-GRNN: Machine Learning for Underwater Acoustic Source Localization. Mar. Geod. 2024, 47, 574–605. [Google Scholar] [CrossRef]
- Peng, Y.W.H. Underwater acoustic source localization using generalized regression neural network. J. Acoust. Soc. Am. 2018, 143, 2321–2331. [Google Scholar] [CrossRef]
- Sapienza, P.; on behalf of the NEMO Collaboration. The NEMO project: Achievements and perspectives. J. Phys. Conf. Ser. 2008, 120, 062010. [Google Scholar] [CrossRef]
- Pavan, G.; La Manna, G.; Zardin, F.; Internullo, E.; Kloeti, S.; Cosentino, G.; Speziale, F.; Riccobene, G. Short term and long term bioacoustic monitoring of the marine environment. Results from NEMO ONDE experiment and way ahead. In Computational Bioacoustics for Assessing Biodiversity. Proceedings of the International Expert Meeting on IT-Based Detection of Bioacoustical Patterns, Bonn, Germany, 7–10 December 2007; Federal Agency for Nature Conservation: Bonn, Germany, 2008; pp. 7–14. [Google Scholar]
- Nosengo, N. Underwater acoustics: The neutrino and the whale. Nature 2009, 462, 560–561. [Google Scholar] [CrossRef]
- Caruso, F.; Sciacca, V.; Bellia, G.; De Domenico, E.; Larosa, G.; Papale, E.; Pellegrino, C.; Pulvirenti, S.; Riccobene, G.; Simeone, F.; et al. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea. PLoS ONE 2015, 10, e0144503. [Google Scholar] [CrossRef]
- Rice, D.W. Sperm whale, Physeter macrocephalus Linnaeus, 1758. In Handbook of Marine Mammals, Vol. 4: River Dolphins and the Larger Toothed Whales; Ridgway, S.H., Harrison, R., Eds.; Academic Press: London, UK, 1989; pp. 177–233. [Google Scholar]
- Drouot, V.; Berube, M.; Gannier, A.; Goold, J.C.; Reid, R.J.; Palsboll, P.J. A note on genetic isolation of Mediterranean sperm whales (Physeter macrocephalus) suggested by mitochondrial DNA. J. Cetacean Res. Manag. 2023, 6, 29–32. [Google Scholar] [CrossRef]
- Pirotta, E.; Carpinelli, E.; Frantzis, A.; Gauffier, P.; Lanfredi, C.; Pace, D.; Rendell, L. Physeter macrocephalus (Mediterranean Subpopulation); The IUCN Red List of Threatened Species 2021; IUCN: Fontainebleau, France, 2021; p. e.T16370739A50285671. [Google Scholar] [CrossRef]
- Clarke, M.R. The Head of the Sperm Whale. Sci. Am. 1979, 240, 128–141. [Google Scholar] [CrossRef]
- Watwood, S.L.; Miller, P.J.O.; Johnson, M.; Madsen, P.T.; Tyack, P.L. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). J. Anim. Ecol. 2006, 75, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J. The Behaviour and Ecology of Sperm Whales off Sri Lanka. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1987. [Google Scholar]
- Madsen, P.T.; Payne, R.; Kristiansen, N.U.; Wahlberg, M.; Kerr, I.; Møhl, B. Sperm whale sound production studied with ultrasound time/depth-recording tags. J. Exp. Biol. 2002, 205, 1899–1906. [Google Scholar] [CrossRef]
- Zimmer, W.M.X.; Madsen, P.T.; Teloni, V.; Johnson, M.P.; Tyack, P.L. Off-axis effects on the multipulse structure of sperm whale usual clicks with implications for sound production. J. Acoust. Soc. Am. 2005, 118, 3337–3345. [Google Scholar] [CrossRef] [PubMed]
- Goold, J.C.; Jones, S.E. Time and frequency domain characteristics of sperm whale clicks. J. Acoust. Soc. Am. 1995, 98, 1279–1291. [Google Scholar] [CrossRef]
- Møhl, B. Sound transmission in the nose of the sperm whale Physeter catodon. A post mortem study. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 2001, 187, 335–340. [Google Scholar] [CrossRef]
- Pavan, G.; Hayward, T.J.; Borsani, J.F.; Priano, M.; Manghi, M.; Fossati, C.; Gordon, J. Time patterns of sperm whale codas recorded in the Mediterranean Sea 1985–1996. J. Acoust. Soc. Am. 2000, 107, 3487–3495. [Google Scholar] [CrossRef]
- Riccobene, G. Long-term measurements of acoustic background noise in very deep sea. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 604, S149–S157. [Google Scholar] [CrossRef]
- MATLAB, Version 9.14.0.2306882 (R2023a); The MathWorks, Inc.: Natick, MA, USA, 2023.
- Møhl, B.; Wahlberg, M.; Madsen, P.T.; Heerfordt, A.; Lund, A. The monopulsed nature of sperm whale clicks. J. Acoust. Soc. Am. 2003, 114, 1143–1154. [Google Scholar] [CrossRef]
- Heitsenrether, R.M.; Badiey, M. Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness. AIP Conf. Proc. 2004, 728, 214–221. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Bellhop Acoustic Propagation Model, Version 1.0; Heat, Light & Sound Research, Inc.: La Jolla, CA, USA, 2011. Available online: http://oalib.hlsresearch.com/Rays/index.html (accessed on 27 March 2025).
- Salon, S.; Crise, A.; Picco, P.; de Marinis, E.; Gasparini, O. Sound speed in the Mediterranean Sea: An analysis from a climatological data set. Ann. Geophys. 2003, 21, 833–846. [Google Scholar] [CrossRef]
- Watkins, W.A.; Daher, M.A.; Dimarzio, N.A.; Samuels, A.; Wartzok, D.; Fristrup, K.M.; Howey, P.W.; Maiefski, R.R. Sperm whale dives tracked by radio tag telemetry. Mar. Mammal Sci. 2002, 18, 55–68. [Google Scholar] [CrossRef]
- Laist, D.W.; Knowlton, A.R.; Mead, J.G.; Collet, A.S.; Podesta, M. Collisions Between Ships and Whales. Mar. Mammal Sci. 2001, 17, 35–75. [Google Scholar] [CrossRef]
- Viola, S.; Riccobene, G. 15 years of acoustic detection studies at INFN. EPJ Web Conf. 2019, 216, 01002. [Google Scholar] [CrossRef]
- Di Mauro, L.S.; Diego-Tortosa, D.; Riccobene, G.; D’Amato, C.; Leonora, E.; Longhitano, F.; Orlando, A.; Viola, S. The IPANEMA Project: Underwater Acoustic Structure for Volcanic Activity and Natural CO2 Emissions Monitoring. Eng. Proc. 2023, 58, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mauro, L.S.; Diego-Tortosa, D.; Sciacca, V.; Riccobene, G.; Viola, S. Acoustic Tracking of Sperm Whales (Physeter macrocephalus) in the Central Mediterranean Sea Using the NEMO-OνDE Deep-Sea Observatory. J. Mar. Sci. Eng. 2025, 13, 682. https://doi.org/10.3390/jmse13040682
Di Mauro LS, Diego-Tortosa D, Sciacca V, Riccobene G, Viola S. Acoustic Tracking of Sperm Whales (Physeter macrocephalus) in the Central Mediterranean Sea Using the NEMO-OνDE Deep-Sea Observatory. Journal of Marine Science and Engineering. 2025; 13(4):682. https://doi.org/10.3390/jmse13040682
Chicago/Turabian StyleDi Mauro, Letizia Stella, Dídac Diego-Tortosa, Virginia Sciacca, Giorgio Riccobene, and Salvatore Viola. 2025. "Acoustic Tracking of Sperm Whales (Physeter macrocephalus) in the Central Mediterranean Sea Using the NEMO-OνDE Deep-Sea Observatory" Journal of Marine Science and Engineering 13, no. 4: 682. https://doi.org/10.3390/jmse13040682
APA StyleDi Mauro, L. S., Diego-Tortosa, D., Sciacca, V., Riccobene, G., & Viola, S. (2025). Acoustic Tracking of Sperm Whales (Physeter macrocephalus) in the Central Mediterranean Sea Using the NEMO-OνDE Deep-Sea Observatory. Journal of Marine Science and Engineering, 13(4), 682. https://doi.org/10.3390/jmse13040682