Plant Growth Regulators on ‘Letícia’ Plum Fruit Set, Yield Performance and Fruit Quality Parameters in Southern Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Protocol
2.3. Fruit Set
2.4. Yield Performance
- (a)
- Yield and productivity were determined by counting the total number of fruits per plant and calculating the weight in kilograms (kg) and in tons per hectare (t ha−1), respectively, by multiplying the yield per plant by the number of plants per hectare;
- (b)
- Fresh mass (FM), expressed in grams (g) per fruit, was determined by weighing a sample of 80 fruits from each treatment;
- (c)
- Equatorial diameter and height (in centimeters, cm) were measured using a graduated ruler, by aligning the fruits side by side.
2.5. Fruit Quality Parameters
- (a)
- Pulp firmness (PF) was measured in Newtons (N) using a texture analyzer equipped with a 9 mm diameter probe. A portion of the fruit epidermis was removed from two opposite sides of the equatorial region using a ‘peeler’ to allow proper assessment of PF.
- (b)
- Soluble solids content (SSC), expressed in °Brix, was determined using a digital refractometer (model ITREFD-45). The readings were taken from juice extracted from median slices of fruits collected from each experimental plot.
- (c)
- Fruit color was measured using a Minolta colorimeter (model CR 400), and expressed in terms of lightness (L), chroma (C), and hue angle (Hue).
2.6. Experimental Design and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faostat. Food and Agriculture Organization of the United Nations—Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 29 October 2023).
- Epagri. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. Santa Catarina se Firma Como Segundo Maior Produtor de Ameixa do País. 2022. Available online: https://www.epagri.sc.gov.br/index.php/tag/analise-economica/page/2/ (accessed on 25 October 2023).
- Embrapa. Agência Embrapa de Informação Tecnológica. Ameixa: Pós-Produção—Mercado. 2023. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/ameixa/pos-producao/mercado (accessed on 5 November 2024).
- Milošević, N.; Glišić, I.; Đorđević, M.; Cerović, R.; Radičević, S.; Marić, S.; Milošević, T.; Nikolić, D. Influence of pollination treatments and temperature regimes on progamic phase and fruit set in three European plum (Prunus domestica L.) cultivars tollerant/resistant to Sharka virus. Eur. J. Agron. 2023, 149, 126909. [Google Scholar] [CrossRef]
- Pertille, R.H.; Citadin, I.; de Souza de Oliveira, L.; Broch, J.C.; Kvitschal, M.V.; Araujo, L. The influence of temperature on the phenology of apple trees grown in mild winter regions of Brazil, based on long-term records. Sci. Hort. 2022, 305, 111354. [Google Scholar] [CrossRef]
- Sabir, I.A.; Liu, X.; Jiu, S.; Whiting, M.; Zhang, C. Plant growth regulators modify fruit set, fruit quality, and return bloom in sweet cherry. HortScience 2021, 56, 922–931. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, N.; Singh, H.; Murria, S.; Jawanda, S.K. Efficacy of plant growth regulators and mineral nutrients on fruit drop and quality attributes of plum cv. Satluj purple. Plant Physiol. Rep. 2021, 26, 541–547. [Google Scholar] [CrossRef]
- Igwe, E.O.; Charlton, K.E. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother. Res. 2016, 30, 701–731. [Google Scholar] [CrossRef] [PubMed]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotechnol. 2020, 95, 137–146. [Google Scholar] [CrossRef]
- Jiang, T.; Luo, C.; Wan, W.; Liang, R.; Lu, T.; Li, Y.; Xie, F.; Chen, C.; Li, X.; Xie, X.; et al. Effects of thidiazuron on the quality and storage properties of mango fruit during postharvest. Food Qual. Saf. 2024, 8, fyad047. [Google Scholar] [CrossRef]
- Rufato, L.; Sander, G.F.; Welter, P.D.; Pereira, M.F.G.; da Silva, P.S.; Schultz, A.F.; Petry, D. New strategy using plant growth regulator AVG to increase fruit set on apples in mild climatic region in southern Brazil. Acta Hortic. 2022, 1346, 471–478. [Google Scholar] [CrossRef]
- Carra, B.; Pasa, M.S.; Abreu, E.S.; Dini, M.; Pasa, C.P.; Ciotta, M.N.; Herter, F.G.; Mello-Farias, P. Plant growth regulators to increase fruit set and yield of ‘Rocha’ pear trees in Southern Brazil. An. Acad. Bras. Cienc. 2021, 93, e20180680. [Google Scholar] [CrossRef] [PubMed]
- Attia, S.M. Enhancing fruit set, yield and quality of LeConte pear trees by preharvest foliar spray of some plant growth regu-lators. SVU-Int. J. Agric. Sci. 2022, 4, 1–7. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Agroconnect. Climatic Data for Lages, Santa Catarina, Brazil. 2024. Available online: https://ciram.epagri.sc.gov.br/agroconnect/ (accessed on 15 October 2025).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R. Brazilian Soil Classification System, 5th ed.; Embrapa, Ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2018; Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094001/brazilian-soil-classification-system (accessed on 2 November 2024).
- RStudio IDE. A The RStudio Integrated Development Environment (IDE). Available online: https://www.r-project.org (accessed on 15 October 2025).
- Anzanello, R.; Pasa, M.S.; Revers, L.F. Bud dormancy evolution in apple genotypes with contrasting chilling requirement. Rev. Bras. Frutic. 2022, 44, e-868. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, A. Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. Plants 2021, 10, 2061. [Google Scholar] [CrossRef] [PubMed]
- Trejo, E.J.O.; Brizzolara, S.; Cardillo, V.; Ruperti, B.; Bonghi, C.; Tonutti, P. The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Sci. Hortic. 2023, 318, 112103. [Google Scholar] [CrossRef]
- Liu, J.; Islam Md, T.; Sherif, M.S. Effects of Aminoethoxyvinylglycine (AVG) and 1-Methylcyclopropene (1-MCP) on the Pre-Harvest Drop Rate, Fruit Quality, and Stem-End Splitting in ‘Gala’ Apples. Horticulturae 2022, 8, 1100. [Google Scholar] [CrossRef]
- Gao, J.; Zhuang, S.; Zhang, W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. Plants 2024, 13, 2523. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni-Putman, S.M.; Brumos, J.; Zhao, C.; Alonso, J.M.; Stepanova, A.N. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb. Perspect. Biol. 2021, 13, a039990. [Google Scholar] [CrossRef]
- Barać, G.; Mastilović, J.; Kevrešan, Z.; Milić, B.; Kovač, R.; Milović, M.; Kalajdžić, J.; Bajić, A.; Magazin, N.; Keserović, Z. Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period. Horticulturae 2022, 8, 621. [Google Scholar] [CrossRef]
- Rajput, V.; Sehrawat, S.K.; Bhatia, S.K. Growth regulators and nutrient application reduces fruit drop and improves fruit quality in Prunus salicina Lindl. Cv. Kala amritsari. Int. J. Pure Appl. Biosci. 2017, 5, 735–743. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Sas-Paszt, L.; Ayoub, A.; Abada, H.S.; Mosa, W.F.A. Improving the Productivity and Reducing the Drop Per-centages of Fruits in Pear by the External Application of Some Plant Growth Regulators. BioResources 2024, 19, 5880–5894. [Google Scholar] [CrossRef]




| Treatments | Fruit Set 30 DAA * | Fruits per Plant | Production | Yield |
|---|---|---|---|---|
| (%) | n plant−1 | kg plant−1 | t ha−1 | |
| Control | 3.82 ± 0.31 | 291 ± 23 | 21.37 ± 1.71 | 42.73 ± 3 |
| 31.3 mg L−1 (AVG) | 3.81 ± 0.30 | 277 ± 22 | 16.96 ± 1.36 | 33.92 ± 2 |
| 62.5 mg L−1 (AVG) | 3.61 ± 0.29 | 255 ± 20 | 18.79 ± 1.50 | 37.57 ± 3 |
| 93.6 mg L−1 (AVG) | 3.19 ± 0.26 | 203 ± 16 | 15.29 ± 1.22 | 30.59 ± 2 |
| 125.0 mg L−1 (AVG) | 4.07 ± 0.33 | 270 ± 22 | 20.41 ± 1.63 | 40.83 ± 3 |
| 64.3 mg L−1 (1-MCP) | 3.42 ± 0.27 | 256 ± 20 | 19.46 ± 1.56 | 38.91 ± 3 |
| 42.9 mg L−1 (1-MCP) | 4.76 ± 0.38 | 235 ± 19 | 17.34 ± 1.39 | 34.68 ± 2 |
| 21.4 mg L−1 (1-MCP) | 3.48 ± 0.28 | 214 ± 17 | 17.11 ± 1.37 | 34.21 ± 2 |
| 182.0 mg L−1 (TDZ) | 4.98 ± 0.40 | 251 ± 20 | 20.50 ± 1.65 | 41.01 ± 3 |
| Treatments | Fresh Fruit Mass | Fruit Height | Fruit Diameter |
|---|---|---|---|
| g | cm | cm | |
| Control | 73.22 ± 5.85 | 4.72 ± 0.09 | 4.82 ± 0.10 |
| 31.3 mg L−1 (AVG) | 75.74 ± 6.06 | 4.69 ± 0.09 | 4.79 ± 0.10 |
| 62.5 mg L−1 (AVG) | 73.87 ± 5.91 | 4.68 ± 0.09 | 4.73 ± 0.09 |
| 93.6 mg L−1 (AVG) | 76.00 ± 6.08 | 4.76 ± 0.09 | 4.31 ± 0.08 |
| 125.0 mg L−1 (AVG) | 77.35 ± 6.19 | 4.76 ± 0.09 | 4.87 ± 0.10 |
| 64.3 mg L−1 (1-MCP) | 76.64 ± 6.13 | 4.69 ± 0.09 | 4.75 ± 0.08 |
| 42.9 mg L−1 (1-MCP) | 75.09 ± 6.01 | 4.77 ± 0.10 | 4.81 ± 0.10 |
| 21.4 mg L−1 (1-MCP) | 81.66 ± 6.53 | 4.91 ± 0.10 | 4.96 ± 0.10 |
| 182.0 mg L−1 (TDZ) | 80.89 ± 6.47 | 4.85 ± 0.10 | 4.91 ± 0.10 |
| Treatments | Colorimetry | Flesh Firmness | Soluble Solids | ||
|---|---|---|---|---|---|
| EL | EC | EH | N | °Brix | |
| Control | 43.92 ± 3.07 | 29.05 ± 2.09 | 36.28 ± 2.90 | 11.66 ± 0.93 | 10.94 ± 0.44 |
| 31.3 mg L−1 (AVG) | 44.95 ± 3.16 | 28.75 ± 2.06 | 35.23 ± 2.82 | 16.11 ± 1.29 | 10.85 ± 0.43 |
| 62.5 mg L−1 (AVG) | 45.05 ± 3.17 | 29.46 ± 2.12 | 36.04 ± 2.88 | 21.98 ± 1.76 | 10.35 ± 0.41 |
| 93.6 mg L−1 (AVG) | 46.84 ± 3.35 | 28.85 ± 2.07 | 46.20 ± 3.70 | 23.78 ± 1.90 | 10.90 ± 0.44 |
| 125.0 mg L−1 (AVG) | 42.82 ± 3.07 | 28.60 ± 2.05 | 36.02 ± 2.88 | 16.16 ± 1.29 | 10.35 ± 0.41 |
| 64.3 mg L−1 (1-MCP) | 44.47 ± 3.20 | 29.86 ± 2.16 | 35.75 ± 2.86 | 14.59 ± 1.17 | 10.75 ± 0.43 |
| 42.9 mg L−1 (1-MCP) | 44.71 ± 3.22 | 28.36 ± 2.03 | 35.05 ± 2.80 | 21.74 ± 1.74 | 10.60 ± 0.42 |
| 21.4 mg L−1 (1-MCP) | 43.17 ± 3.09 | 29.43 ± 2.12 | 32.73 ± 2.62 | 16.07 ± 1.28 | 10.99 ± 0.44 |
| 182.0 mg L−1 (TDZ) | 44.81 ± 3.22 | 28.91 ± 2.07 | 37.67 ± 3.01 | 19.95 ± 1.60 | 10.46 ± 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldissera, S.; Dias, A.F.; Rufato, D.P.; da Silva, F.L.; Armbrust, A.B.; Bogo, A.; Rufato, L. Plant Growth Regulators on ‘Letícia’ Plum Fruit Set, Yield Performance and Fruit Quality Parameters in Southern Brazil. Agriculture 2025, 15, 2348. https://doi.org/10.3390/agriculture15222348
Baldissera S, Dias AF, Rufato DP, da Silva FL, Armbrust AB, Bogo A, Rufato L. Plant Growth Regulators on ‘Letícia’ Plum Fruit Set, Yield Performance and Fruit Quality Parameters in Southern Brazil. Agriculture. 2025; 15(22):2348. https://doi.org/10.3390/agriculture15222348
Chicago/Turabian StyleBaldissera, Sabrina, Alex Felix Dias, Daiana Petry Rufato, Flávia Lourenço da Silva, André Berner Armbrust, Amauri Bogo, and Leo Rufato. 2025. "Plant Growth Regulators on ‘Letícia’ Plum Fruit Set, Yield Performance and Fruit Quality Parameters in Southern Brazil" Agriculture 15, no. 22: 2348. https://doi.org/10.3390/agriculture15222348
APA StyleBaldissera, S., Dias, A. F., Rufato, D. P., da Silva, F. L., Armbrust, A. B., Bogo, A., & Rufato, L. (2025). Plant Growth Regulators on ‘Letícia’ Plum Fruit Set, Yield Performance and Fruit Quality Parameters in Southern Brazil. Agriculture, 15(22), 2348. https://doi.org/10.3390/agriculture15222348

