Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements
Abstract
:1. Introduction
2. Major Cultivars, Quality Variations, and Harvesting Requirements of Chili Pepper
3. Intelligent Perception and Recognition Technologies for Chili Pepper Crops
3.1. Traditional Image Processing Methods and Their Limitations
3.2. Deep Learning-Based Object Detection and Segmentation
3.3. Advances in Fine-Grained Chili Pepper Recognition Research
4. Key Technologies and Equipment for Automated Chili Pepper Operations
4.1. Mechanized Chili Pepper Harvesting Technologies and Devices
4.2. Motion Planning and Control for Harvesting Robots
4.3. Chili Pepper Seed Cleaning and Separation Technologies
5. Challenges and Future Prospects
5.1. Major Challenges in Current Research
5.2. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiao, L.; Zhao, B.; Zong, Y.; Kou, C.; Dong, Y. Development Current Situation, Tendency, and Countermeasure for China’s Pepper Industry. China Veg. 2023, 9–15. [Google Scholar] [CrossRef]
- Zou, X.; Ma, Y.; Dai, X.; Li, X.; Yang, S. Spread and industry development of pepper in China. Acta Hortic. Sin. 2020, 47, 1715–1726. [Google Scholar] [CrossRef]
- Yong, S.S.; Cho, Y.; Kim, S.-B.; Chul, K.D. Field performance analysis of a card cleaner type separating system for a self-propelled pepper harvester. Korean J. Agric. Sci. 2020, 47, 921–931. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, D.-C.; Cho, Y. Performance Comparison and Evaluation of Two Small Chili Pepper Harvester Prototypes That Attach to Walking Cultivators. Appl. Sci. 2020, 10, 2570. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Wu, K. Research Progress of Breeading of Pepper in Guizhou. Tillage Cultiv. 2022, 42, 56–58. [Google Scholar] [CrossRef]
- People’s Daily Online. Guizhou: Transitioning from a Major Pepper Province to a Leading Pepper Powerhouse. China Veg. 2020, 105. [Google Scholar]
- Zhang, H.; Yang, S. Research on the current ctatus and countermeasures of vegetable industry development in Guizhou under the background of rural revitalization. China Cucurbits Veg. 2024, 37, 177–183. [Google Scholar] [CrossRef]
- Mao, D.; Jiang, H.; Tong, X.; Hu, J. Zunyi Chaotian Pepper Industry: Current Status and Development Considerations. China Veg. 2021, 7–9. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Available online: https://data.stats.gov.cn/ (accessed on 22 April 2025).
- Fu, M.; Li, C.; Zheng, Z. Design and analysis of semi-automatic screw type pineapple picking-collecting machine. Chin. J. Eng. Des. 2020, 27, 487–497. [Google Scholar]
- Wang, S.; Wang, L. Pepper Harvester (CN201220199869.X); China National Intellectual Property Administration: Beijing, China, 2012. [Google Scholar]
- Liu, G.; Lin, S.; Wu, D.; Tang, Y.; Xu, W. Chaotian Pepper Harvesting Device: Design, Analysis, and Verification Machinery. 2021, 59, 29–33+62. Available online: https://m.fx361.com/news/2021/0122/20440717.html (accessed on 22 April 2025).
- Xu, L.; Li, Y.; Wang, X. Research development of grain damage during threshing. Trans. CSAE 2009, 25, 303–307. [Google Scholar]
- Chen, Y.; Wang, X.; Yang, W.; Peng, G.; Chen, J.; Yin, Y.; Yan, J. An efficient method for chili pepper variety classification and origin tracing based on an electronic nose and deep learning. Food Chem. 2025, 479, 143850. [Google Scholar] [CrossRef] [PubMed]
- Orobiyi, A.; Loko, Y.L.; Sanoussi, F.; Adjatin, A.; Gbaguidi, A.; Dansi, A.; Sanni, A. Horticultural practices and varietal diversity of chili pepper (Capsicum annuum L.) in Central and Northern Benin. Genet. Resour. Crop Evol. 2017, 64, 419–436. [Google Scholar] [CrossRef]
- Onishi, Y.; Yoshida, T.; Kurita, H.; Fukao, T.; Arihara, H.; Iwai, A. An automated fruit harvesting robot by using deep learning. ROBOMECH J. 2019, 6, 13. [Google Scholar] [CrossRef]
- Li, L.; Yang, H. Revised Detection and Localization Algorithm for Camellia oleifera FruitsBased on Convex Hull Theory. Trans. Chin. Soc. Agric. Mach. 2016, 47, 285–292+346. [Google Scholar]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellstrom, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T.; et al. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef]
- Cheng, Y.; Tseng, C.-Y.; Nguyen, D.-M.; Lin, Y. YOLOv4-Driven Appearance Grading Filing Mechanism: Toward a High-Accuracy Tomato Grading Model through a Deep-Learning Framework. Mathematics 2022, 10, 3398. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, X.; Gao, F.; Wen, X.; Jin, S.; Zhang, Y. Recognizing and detecting the strawberry at multi-stages usingimproved lightweight YOLOv5s. Trans. CSAE 2023, 39, 181–187. [Google Scholar]
- Xu, L.; Li, Y.; Li, Y.; Chai, X.; Qiu, J. Research Progress on Cleaning Technology and Device of Grain Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2019, 50, 1–16. [Google Scholar]
- Shen, Y.; Wu, M.; Guan, C.; Xie, W. Present Situation of Research and Expectation on Picking up Mechanism ofPlastic Film Collectors. J. Agric. Mech. Res. 2016, 38, 263–268. [Google Scholar] [CrossRef]
- Wei, Z.; Su, G.; Li, X.; Wang, F.; Sun, C.; Meng, P. Parameter Optimization and Test of Potato Harvester Wavy Sieve Based on EDEM. Trans. Chin. Soc. Agric. Mach. 2020, 51, 109–122. [Google Scholar]
- Wang, B.; Yu, Z.; Hu, Z.; Cao, M.; Zhang, P.; Wang, B. Numerical Simulation and Experiment of Flow Field in Three Air Systems of Air Separation System of Peanut Pickup Harvester. Trans. Chin. Soc. Agric. Mach. 2021, 52, 103–114. [Google Scholar]
- Liu, D.; Lu, W.; Wang, X.; Li, X.; Xie, F. Research Status and Development Trend of Cyclone Separating Cleaning Unit of Combine Harvesters. Agric. Equip. Veh. Eng. 2016, 54, 8–13. [Google Scholar]
- Zhou, M.; Sun, H.; Xu, X.; Yang, J.; Wang, G.; Wei, Z.; Xu, T.; Yin, J. Study on the Method and Mechanism of Seedling Picking for Pepper (Capsicum annuum L.) Plug Seedlings. Agriculture 2024, 14, 11. [Google Scholar] [CrossRef]
- Wang, G.; He, B.; Han, D.; Zhang, H.; Wang, X.; Chen, Y.; Chen, X.; Zhao, R.; Li, G. Investigation of Collision Damage Mechanisms and Reduction Methods for Pod Pepper. Agriculture 2024, 14, 117. [Google Scholar] [CrossRef]
- Du, C.; Fang, W.; Han, D.; Chen, X.; Wang, X. Design and Experimental Study of a Biomimetic Pod-Pepper-Picking Drum Based on Multi-Finger Collaboration. Agriculture 2024, 14, 314. [Google Scholar] [CrossRef]
- Han, D.; Zhang, H.; Li, G.; Wang, G.; Wang, X.; Chen, Y.; Chen, X.; Wen, X.; Yang, Q.; Zhao, R. Development of a Bionic Picking Device for High Harvest and Low Loss Rate Pod Pepper Harvesting and Related Working Parameter Optimization Details. Agriculture 2024, 14, 859. [Google Scholar] [CrossRef]
- Song, Z.; Du, C.; Chen, Y.; Han, D.; Wang, X. Development and test of a spring-finger roller-type hot pepper picking header. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Guan, C.; Fu, J.; Cui, Z.; Wang, S.; Gao, Q.; Yang, Y. Evaluation of the tribological and anti-adhesive properties of different materials coated rotary tillage blades. Soil Tillage Res. 2021, 209, 104933. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, E.; Mao, H.; Zuo, Z.; Peng, H.; Zhao, M.; Yu, Y.; Li, Z. Design and Testing of an Electric Side-Mounted Cabbage Harvester. Agriculture 2024, 14, 1741. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Z.; Li, Y.; Song, Z.; Yu, J.; Li, Y.; Xu, L. Study of the grain particle-conveying performance of a bionic non-smooth-structure screw conveyor. Biosyst. Eng. 2024, 238, 94–104. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, Y.; Wu, Z.; Traore, S.N.; Chen, D.; Xing, L. BP neural network model for material distribution prediction based on variable amplitude anti-blocking screening DEM simulations. Int. J. Agric. Biol. Eng. 2023, 16, 190–199. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Y.; Xu, L.; Ma, Z. Screen oilseed rape (Brassica napus) suitable for low-loss mechanized harvesting. Agriculture 2021, 11, 504. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Y.; Yang, Y.; Xu, L.; Ma, Z. Development and experiments on reel with improved tine trajectory for harvesting oilseed rape. Biosyst. Eng. 2021, 206, 19–31. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Li, Y.; Ji, K. Research and experiment on variable-diameter threshing drum with movable radial plates for combine harvester. Agriculture 2023, 13, 1487. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Li, X.; Xue, Z.; Jin, M.; Deng, B. Near-Infrared-Based Measurement Method of Mass Flow Rate in Grain Vibration Feeding System. Agriculture 2024, 14, 1476. [Google Scholar] [CrossRef]
- Zhu, Z.; Chai, X.; Xu, L.; Quan, L.; Yuan, C.; Tian, S. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester. Biosyst. Eng. 2023, 236, 160–174. [Google Scholar] [CrossRef]
- Barboza, G.E.; Carrizo Garcia, C.; de Bem Bianchetti, L.; Romero, M.V.; Scaldaferro, M. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). Phytokeys 2022, 200, 1–423. [Google Scholar] [CrossRef]
- Sanchez, E.S.; Butzler, T.M.; Bogash, S.M.; Elkner, T.E.; Oesterling, R.E.; Orzolek, M.D.; Stivers, L.J. Pennsylvania Statewide Bell Pepper Cultivar Evaluation. Horttechnology 2011, 21, 384–390. [Google Scholar] [CrossRef]
- Duan, Y.; Li, J.; Zou, C. Research on Detection Method of Chaotian Pepper in Complex Field Environments Based on YOLOv8. Sensors 2024, 24, 5632. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Fragoso, A.; Saenz-Hernandez, C.M.; Welti-Chanes, J.; Mujica-Paz, H. Cherry pepper pickling: Mass transport and firmness parameters and stability indicators. J. Food Eng. 2009, 95, 648–655. [Google Scholar] [CrossRef]
- Martinez, M.; dos Santos, C.P.; Verruma-Bernardi, M.R.; Vasconcelos Martins Carrilho, E.N.; Moreira da Silva, P.P.; Fillet Spoto, M.H.; Ciarrocchi, I.R.; Sala, F.C. Agronomic, physical-chemical and sensory evaluation of pepper hybrids (Capsicum chinense Jacquin). Sci. Hortic. 2021, 277, 109819. [Google Scholar] [CrossRef]
- Lima, M.F.; Carvalho, S.I.C.; Ragassi, C.F.; Bianchetti, L.B.; Faleiro, F.G.; Reifschneider, F.J.B. Characterization of a pepper collection (Capsicum frutescens L.) from Brazil. Genet. Mol. Res. GMR 2017, 16, gmr16039704. [Google Scholar] [CrossRef]
- Guillen, N.G.; Tito, R.; Mendoza, N.G. Capsaicinoids and pungency in Capsicum chinense and Capsicum baccatum fruits1. Pesqui. Agropecuária Trop. 2018, 48, 237–244. [Google Scholar] [CrossRef]
- Perez-Reyes, T.Q.; Leyva-Mir, S.G.; Perez-Grajales, M.; Martinez-Damian, M.T.; Ramirez-Ramirez, I.; Castro-Brindis, R. Fruit quality of manzano pepper (Capsicum pubescens RUIZ & PAV.) Grafted on CM-334 (Capsicum annuum L.) Grown in Soil Infested With Phytophthora capsici Leonian. Rev. Fitotec. Mex. 2024, 47, 253–260. [Google Scholar] [CrossRef]
- Santos, R.M.C.; Nascimento, N.F.F.; Borem, A.; Finger, F.L.; Carvalho, G.C.; Nascimento, M.F.; Lemos, R.C.; Rego, E.R.; Rego, M.M. Ornamental Pepper Breeding: Could a Chili be a Flower Ornamental Plant? In Proceedings of the 7th International Symposium on New Floricultural Crops, Buenos Aires, Argentina, 22–25 November 2011; pp. 451–456. [Google Scholar]
- Lee, S.Y.; Sim, S.Y.; Seo, M.W.; Lee, S.W.; Lim, J.W.; Lee, Y.B. Changes in Fruit Characteristics after Brining of Pickling Pepper (Capsicum annuum L.) Cultivars. Hortic. Sci. Technol. 2006, 24, 168–176. [Google Scholar]
- Jiang, R.; Yang, S.; Yuan, L.; Xiao, H. Research progress of capsicum pigment in pepper fruit. Xinjiang Agric. Sci. 2024, 61, 2648–2657. [Google Scholar]
- Park, E.; Zhou, B.; Luo, Y.; Fonseca, J.M.; Stommel, J.R. Jalapeno Pepper Varieties Affect Fresh-Cut Product Qualities. Hortscience 2023, 58, S179. [Google Scholar]
- Bosland, P.W.; Coon, D.; Reeves, G. ‘Trinidad Moruga Scorpion’ Pepper is the World’s Hottest Measured Chile Pepper at More Than Two Million Scoville Heat Units. Horttechnology 2012, 22, 534–538. [Google Scholar] [CrossRef]
- Reis, R.C.; Castro, V.C.; Devilla, I.A.; Oliveira, C.A.; Barbosa, L.S.; Rodovalho, R. Effect Of Drying Temperature On The Nutritional And Antioxidant Qualities Of Cumari Peppers From Para (Capsicum chinense Jacqui). Braz. J. Chem. Eng. 2013, 30, 337–343. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Battino, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A comparative overview on chili pepper (capsicum genus) and sichuan pepper (zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Joukhadar, I.S.; Walker, S.J.; Funk, P.A. Comparative Mechanical Harvest Efficiency of Six New Mexico Pod-type Green Chile Pepper Cultivars. Horttechnology 2018, 28, 310–318. [Google Scholar] [CrossRef]
- Liao, J.; Wang, Y.; Yin, J.; Liu, L.; Zhang, S.; Zhu, D. Segmentation of Rice Seedlings Using the YCrCb Color Space and an Improved Otsu Method. Agronomy 2018, 8, 269. [Google Scholar] [CrossRef]
- Dong, F.; Guo, H.; Pan, J.; Han, Y. Study on safflower image segmentation based on an improved color difference model. For. Mach. Woodwork. Equip. 2023, 51, 68–74. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Li, Y. Recognition of Ripe Apples Images in Natural Growth Conditions. Sci. Technol. Eng. 2012, 12, 6889–6891+6896. [Google Scholar]
- Kupe, M.; Sayinci, B.; Demir, B.; Ercisli, S.; Baron, M.; Sochor, J. Morphological Characteristics of Grapevine Cultivars and Closed Contour Analysis with Elliptic Fourier Descriptors. Plants 2021, 10, 1350. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Occluded Citrus Fruit Recognition Algorithm Based on Color Model and Threshold Segmentation. Comput. Technol. Autom. 2022, 41, 136–140. [Google Scholar] [CrossRef]
- Lin, G.; Tang, Y.; Zou, X.; Cheng, J.; Xiong, J. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform. Precis. Agric. 2020, 21, 160–177. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J.P. Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards. J. Field Robot. 2017, 34, 1039–1060. [Google Scholar] [CrossRef]
- Xu, Y.; Imou, K.; Kaizu, Y.; Saga, K. Two-stage approach for detecting slightly overlapping strawberries using HOG descriptor. Biosyst. Eng. 2013, 115, 144–153. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016; IEEE: New York, NY, USA, 2017; pp. 6517–6525. [Google Scholar]
- Yang, J.; Qian, Z.; Zhang, Y.; Qin, Y.; Miao, H. Real-time recognition of tomatoes in complex environments based on improved YOLOv4-tiny. Trans. Chin. Soc. Agric. Eng. 2022, 38, 215–221. [Google Scholar]
- Zhu, Z.; Shan, J.; Yu, X.; Kong, D.; Wang, Q.; Xie, X. Target Detection Technology of Tomato Picking Robot Based on YOLOv5s. Transducer Microsyst. Technol. 2023, 42, 129–132. [Google Scholar] [CrossRef]
- Wei, T.; Liu, T.; Zhang, S.; Li, S.; Miao, H.; Liu, S. Research on Pepper Picking Robot Recognition and Positioning Method Based on Improved YOLOv5s. J. Yangzhou Univ. (Nat. Sci. Ed.) 2023, 26, 61–69. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, X.; Li, B.; Xu, S.; Yi, Z.; Zhao, J. Malformed Sweet Pepper Fruit Identification Algorithm Based on Improved YOLO v7 tiny. Trans. Chin. Soc. Agric. Mach. 2023, 54, 236–246. [Google Scholar]
- Zhao, P.; Qian, M.; Zhou, K.; Shan, Y.; Wu, H. Improvement of Sweet Pepper Fruit Detection in YOLOv7-Tiny Farming Environment. Comput. Eng. Appl. 2023, 59, 329–340. [Google Scholar]
- Li, M.; Xiao, Y.; Zong, W.; Song, B. Detecting chestnuts using improved lightweight YOLOv8. Trans. Chin. Soc. Agric. Eng. 2024, 40, 201–209. [Google Scholar]
- Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD. Phys. Chem. Earth Parts A/B/C 2019, 110, 176–184. [Google Scholar] [CrossRef]
- Hameed, K.; Chai, D.; Rassau, A. Score-based mask edge improvement of Mask-RCNN for segmentation of fruit and vegetables. Expert Syst. Appl. 2022, 190, 116205. [Google Scholar] [CrossRef]
- Xiang, R.; Zhang, M. Tomato Stem Classification Method Based on Improved Mask R-CNN. J. Hunan Univ. (Nat. Sci.) 2023, 50, 31–39. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, J.; Liu, T.; Gao, Z.; Liao, M. Sichuan Pepper Recognition in Complex Environments: A Comparison Study of Traditional Segmentation versus Deep Learning Methods. Agriculture 2022, 12, 1631. [Google Scholar] [CrossRef]
- Divyanth, L.G.; Soni, P.; Pareek, C.M.; Machavaram, R.; Nadimi, M.; Paliwal, J. Detection of Coconut Clusters Based on Occlusion Condition Using Attention-Guided Faster R-CNN for Robotic Harvesting. Foods 2022, 11, 3903. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, D. Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background. Comput. Electron. Agric. 2022, 196, 106864. [Google Scholar] [CrossRef]
- Wu, T.; Miao, Z.; Huang, W.; Han, W.; Guo, Z.; Li, T. SGW-YOLOv8n: An Improved YOLOv8n-Based Model for Apple Detection and Segmentation in Complex Orchard Environments. Agriculture 2024, 14, 1958. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Ali, S.; Yang, N.; Fu, S.; Zhang, Y. Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, R.; Cheng, J.; Liang, Z.; Wang, L. Hybrid defect detection model based on SimAM module and ResNet34 network. Mod. Manuf. Eng. 2023, 1–9. [Google Scholar] [CrossRef]
- Cai, Z.; Qiao, X.; Zhang, J.; Feng, Y.; Hu, X.; Jiang, N. RepVGG-SimAM: An Efficient Bad Image Classification Method Based on RepVGG with Simple Parameter-Free Attention Module. Appl. Sci. 2023, 13, 11925. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S. Shape-IoU: More Accurate Metric considering Bounding Box Shape and Scale. arXiv 2024, arXiv:2312.17663. [Google Scholar]
- Feng, Y.; Liang, S.; Tong, H. Research on Succulent Plant Classification and Recognition Method Based on Contrastive Learning. J. Henan Agric. Sci. 2023, 52, 154–162. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Liu, Y.; Lin, Z.; Xiang, Z.; He, M.; Sun, L. Identifying fine-grained vineyard pest using attribute knowledge graph. Trans. Chin. Soc. Agric. Eng. 2023, 39, 146–154. [Google Scholar]
- Huang, W.; Wang, J.; Yin, X. Few-Shot Detection of Apple Leaf Diseases Based on Feature Separation. Jiangsu Agric. Sci. 2023, 51, 195–202. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Y.; Wang, H.; Liang, D. Identification Method of Tomato Disease Period Based on Res2Net and Bilinear Attention Mechanism. Trans. Chin. Soc. Agric. Mach. 2022, 53, 259–266. [Google Scholar]
- Whitney, R.; Solie, J.; Motes, J. Pepper harvester from modified cotton stripper. Appl. Eng. Agric. 1997, 13, 435. [Google Scholar] [CrossRef]
- Shooter, S.B.; Buffinton, K.W. Design and development of the pik rite chili pepper harvester: A collaborative project with the University, industry, and government. In Proceedings of the FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011, San Juan, PR, USA, 10–13 November 1999; Volume 12, pp. 12B14/19–12B14/24. [Google Scholar]
- Zhang, J.; Alimu, M.; Li, Q.; Li, Y.; Xu, Y.; Gao, S.; Gao, B. Design of Moshine 4JZ-3600A Self-propelled Pepper Harvester. Xinjiang Agric. Mech. 2020, 3, 5–7. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Yuan, Y.; Han, L. The Present Research and Prospect of Pepper Harvester. J. Agric. Mech. Res. 2011, 33, 237–240. [Google Scholar] [CrossRef]
- Wang, J. Triple-Driven Integration of Machinery, Smart Technologies, and Cloud Computing Facilitates High-Quality Development in Agricultural Industry. China State Farm 2022, 26–27. [Google Scholar] [CrossRef]
- Xue, S.; Li, Q.; Huang, Q.; Du, Z. Analysis of Factors Affecting Mechanized Harvesting of Pepper. Xinjiang Agric. Mech. 2020, 9–11. [Google Scholar] [CrossRef]
- Lei, M. 4LS-1.6-Type Pepper Picking Device Sensitivity Analysis and Design Optimization. Master’s Thesis, Shihezi University, Shihezi, China, 2014. [Google Scholar]
- Yuan, X.; Yang, S.; Jin, R.; Zhao, L.; Dao, E.; Zheng, N.; Fu, W. Design and experiment of double helix pair roller pepper harvesting device. Trans. Chin. Soc. Agric. Eng. 2021, 37, 1–9. [Google Scholar]
- Norman, H.W. Pepper Harvesting Machine. U.S. Patent US2416050, 6 September 1983. [Google Scholar]
- Urich, O.D.; Urich, G.L.; Urich, R.L. Harvesting Apparatus. U.S. Patent US07/939447, 22 February 1994. [Google Scholar]
- Lai, Q.; Yuan, H.; Hu, Z.; Su, W. Design and Experiment on Seedling Separation Device of Panax notoginseng Seedlings Based on Roller Zigzag Mechanism. Trans. Chin. Soc. Agric. Mach. 2018, 49, 121–129. [Google Scholar]
- Li, T.; Qiu, Q.; Zhao, C.; Xie, F. Task planning of multi-arm harvesting robots for high-density dwarf orchards. Trans. Chin. Soc. Agric. Eng. 2021, 37, 1–10. [Google Scholar]
- Zhang, S.; Li, R.; Dong, X.; Rosin, P.; Cai, Z.; Han, X.; Yang, D.; Huang, H.; Hu, S.; Soc, I.C. Pose2Seg: Detection Free Human Instance Segmentation. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 89–898. [Google Scholar]
- Li, S.; Ke, L.; Pratama, K.; Tai, Y.; Tang, C.; Cheng, K. Cascaded Deep Monocular 3D Human Pose Estimation with Evolutionary Training Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: New York, NY, USA, 2020; pp. 6172–6182. [Google Scholar]
- Kato, S.; Hotta, K.; Hatakeyama, Y.; Konishi, Y. Lite-HRNet Plus: Fast and Accurate Facial Landmark Detection. In Proceedings of the 30th IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; IEEE: New York, NY, USA, 2023; pp. 1500–1504. [Google Scholar]
- Tafuro, A.; Adewumi, A.; Parsa, S.; Amir, G.E.; Debnath, B. Strawberry picking point localization ripeness and weight estimation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: New York, NY, USA, 2022; pp. 2295–2302. [Google Scholar]
- Yuan, Y.; Bai, S.; Niu, K.; Zhou, L.; Zhao, B.; Wei, L.; Xiong, S.; Liu, L. Research progress on mechanized harvesting technology and equipment for forest fruit. Trans. Chin. Soc. Agric. Eng. 2022, 38, 53–63. [Google Scholar]
- Li, Y.; Cheng, W.; Gong, C.; Bian, J. Kinematics Analysis and Motion Trajectory Planning of 5-DOF Manipulator. J. Chin. Agric. Mech. 2018, 39, 16–21. [Google Scholar] [CrossRef]
- Boryga, M.; Grabos, A. Planning of manipulator motion trajectory with higher-degree polynomials use. Mech. Mach. Theory 2009, 44, 1400–1419. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Li, P. Present Situation and Prospect of End-effector for Harvesting Robot. J. Agric. Mech. Res. 2011, 33, 10–14. [Google Scholar] [CrossRef]
- Miao, J.; Yang, T.; Zeng, L. Intelligent Trajectory Planning of a Robot Manipulator with Six Degrees of Freedom. Modul. Mach. Tool Autom. Manuf. Tech. 2014, 73–76. [Google Scholar] [CrossRef]
- Roshanianfard, A.; Noguchi, N. Pumpkin harvesting robotic end-effector. Comput. Electron. Agric. 2020, 174, 105503. [Google Scholar] [CrossRef]
- Torielli, D.; Bertoni, L.; Fusaro, F.; Tsagarakis, N.; Muratore, L. ROS End-Effector: A Hardware-Agnostic Software and Control Framework for Robotic End-Effectors. J. Intell. Robot. Syst. 2023, 108. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, M. A Method of Segmental Interpolation Trajectory Planning for Robotic Arm. Mach. Des. Manuf. 2020, 3, 261–264. [Google Scholar] [CrossRef]
- Kim, J.; Croft, E.A. A Benchmark Study on the Planning and Control of Industrial Robots with Elastic Joints. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; IEEE: New York, NY, USA, 2015; pp. 1378–1383. [Google Scholar]
- Hao, H.; Wen, Z. Trajectory Optimization of 6-DOF Manipulator Based on Improved Genetic Algorithm. Modul. Mach. Tool Autom. Manuf. Tech. 2020, 56–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.-Y. Minimum time path planning of robotic manipulator in drilling/spot welding tasks. J. Comput. Des. Eng. 2016, 3, 132–139. [Google Scholar] [CrossRef]
- Han, S.; Shan, X.; Fu, J.; Xu, W.; Mi, H. Industrial robot trajectory planning based on improved pso algorithm. J. Phys. Conf. Ser. 2021, 1820, 012185. [Google Scholar] [CrossRef]
- Mao, X.; Song, S.; Ding, F. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with Levy flight. J. Energy Storage 2022, 49, 104139. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, M. Research on Trajectory Planning of Six freedom degree Picking Robot Based on Ant Colony Algorithm. J. Agric. Mech. Res. 2017, 39, 242–246. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Yu, S.; Hao, W. A simulated annealing algorithm with wave temperature control for thetraveling salesman problem. Control. Decis. 2023, 38, 911–920. [Google Scholar] [CrossRef]
- Liu, Y. Trajectory Optimization of Palletizing Robot Based on RBF Neural Network. Packag. Food Mach. 2019, 37, 62–65. [Google Scholar]
- Zhe, L.; Li, S.; Zhang, X.; Song, Q. Trajectory Optimization of Six Degree of Freedom Manipulator Based on RBF Neural Network. Modul. Mach. Tool Autom. Manuf. Tech. 2021, 17–20. [Google Scholar] [CrossRef]
- Deng, F.; Wei, Y.; Liu, Y.; Wang, T. Improvement and Application of Grey Wolf Optimization Algorithm. Stat. Decis. 2023, 39, 18–24. [Google Scholar] [CrossRef]
- Chandio, F.A.; Li, Y.; Ma, Z.; Ahmad, F.; Syed, T.N.; Shaikh, S.A.; Tunio, M.H. Influences of moisture content and compressive loading speed on the mechanical properties of maize grain orientations. Int. J. Agric. Biol. Eng. 2021, 14, 41–49. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, Z.; Chen, S.; Chen, J. Improved piezoelectric grain cleaning loss sensor based on adaptive neuro-fuzzy inference system. Precis. Agric. 2022, 23, 1174–1188. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Gao, Z.; Lu, E.; Li, Y. Effect of vibration on rapeseed header loss and optimization of header frame. Trans. Asabe 2021, 64, 1247–1258. [Google Scholar] [CrossRef]
- Lian, Y.; Chen, J.; Guan, Z.; Song, J. Development of a monitoring system for grain loss of paddy rice based on a decision tree algorithm. Int. J. Agric. Biol. Eng. 2021, 14, 224–229. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Chen, L.; Zhang, T.; Liang, Z.; Huang, M.; Su, Z. Study on Performance of Concentric Threshing Device with Multi-Threshing Gaps for Rice Combines. Agriculture 2021, 11, 1000. [Google Scholar] [CrossRef]
- Qian, P.; Lu, T.; Shen, C.; Chen, S. Influence of vibration on the grain flow sensor during the harvest and the difference elimination method. Int. J. Agric. Biol. Eng. 2021, 14, 149–162. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Y.; Xu, L.; Ma, Z.; Tan, X.; Wang, Z. Oilseed rape (Brassica napus L.) pod shatter resistance and its relationship with whole plant and pod characteristics. Ind. Crops Prod. 2021, 166, 113459. [Google Scholar] [CrossRef]
- Liang, Z. Selecting the proper material for a grain loss sensor based on DEM simulation and structure optimization to improve monitoring ability. Precis. Agric. 2021, 22, 1120–1133. [Google Scholar] [CrossRef]
- Xing, D.; Chen, X.; Wu, Y.; Li, Z.; Khan, S. Changes in elastic modulus, leaf tensity and leaf density during dehydration of detached leaves in two plant species of Moraceae. Chil. J. Agric. Res. 2021, 81, 434–447. [Google Scholar] [CrossRef]
- Chen, S.; Qi, J.; Gao, J.; Chen, W.; Fei, J.; Meng, H.; Ma, Z. Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms. Agriculture 2025, 15, 115. [Google Scholar] [CrossRef]
- Chen, N.; Huang, D.; Chen, D.; Tian, X.; Zhang, J. Theory and Experiment on Non-uniform Air-flow Cleaning of Air-screen Cleaning Unit. Trans. Chin. Soc. Agric. Mach. 2009, 40, 73–77. [Google Scholar]
- Sun, G.; Li, Y.; Xu, L. Analysisthe Current Situation about Furrow Opener and its Performance Test Device. J. Agric. Mech. Res. 2014, 36, 242–246. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Y.; Li, H. Impact of the Main Structural Parameters on the Airflow Field the Air and Screen Cleaning Mechanism. J. Agric. Mech. Res. 2012, 34, 29–32. [Google Scholar] [CrossRef]
- Krzysiak, Z.; Samociuk, W.; Skic, A.; Bartnik, G.; Zarajczyk, J.; Szmigielski, M.; Dziki, D.; Wierzbicki, S.; Krzywonos, L. Effect Of Sieve Drum Inclination Angle On Wheat Grain Cleaning In A Novel Rotary Cleaning Device. Trans. Asabe 2017, 60, 1751–1758. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Tang, Z.; Xu, L.; Zhao, Z. Numerical simulation and analysis of vibration screening based on EDEM. Trans. Chin. Soc. Agric. Eng. 2011, 27, 117–121. [Google Scholar]
- Wang, L.; Wu, Z.; Feng, X.; Li, R.; Yu, Y. Design and Experiment of Curved Screen for Maize Grain Harvester. Trans. Chin. Soc. Agric. Mach. 2019, 50, 90–101. [Google Scholar]
- Chayalakshmi, C.; Jigalur, B.; Kori, P.; Karav, P.; Patil, R. Automated chilli seed extractor useful for Indian farmers. Int. J. Instrum. Control. Syst. (IJICS) 2017, 7, 7–13. [Google Scholar]
- Gao, H. A Pepper Seed Extraction Separator (CN202020051313.0); China National Intellectual Property Administration: Beijing, China, 2020. [Google Scholar]
- Gebrehiwot, M.G.; De Baerdemaeker, J.; Baelmans, M. Effect of a cross-flow opening on the performance of a centrifugal fan in a combine harvester: Computational and experimental study. Biosyst. Eng. 2010, 105, 247–256. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Wei, W.; Hu, Z.; Li, P. Optimization Design of Spray Cooling Fan Based on CFD Simulation and Field Experiment for Horticultural Crops. Agriculture 2021, 11, 566. [Google Scholar] [CrossRef]
- Ding, B.; Liang, Z.; Qi, Y.; Ye, Z.; Zhou, J. Improving Cleaning Performance of Rice Combine Harvesters by DEM-CFD Coupling Technology. Agriculture 2022, 12, 1457. [Google Scholar] [CrossRef]
- Ni, J.; Dong, J.; Ullah, I.; Mao, H. CFD simulation of sucrose flow field in the stem of greenhouse tomato seedling. Int. J. Agric. Biol. Eng. 2022, 15, 111–115. [Google Scholar] [CrossRef]
- El-Emam, M.A.; Zhou, L.; Omara, A.I. Predicting the performance of aero-type cyclone separators with different spiral inlets under macroscopic bio-granular flow using CFD-DEM modelling. Biosyst. Eng. 2023, 233, 125–150. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Guo, J.; Qiu, B. Numerical Simulation and Validation of Droplet Deposition on Tomato Leaf Surface under Air-Assisted Spraying. Agronomy 2024, 14, 1661. [Google Scholar] [CrossRef]
- Ou, M.; Zhang, Y.; Wu, M.; Wang, C.; Dai, S.; Wang, M.; Dong, X.; Jiang, L. Development and Experiment of an Air-Assisted Sprayer for Vineyard Pesticide Application. Agriculture 2024, 14, 2279. [Google Scholar] [CrossRef]
- Chen, X.; Hou, T.; Liu, S.; Guo, Y.; Hu, J.; Xu, G.; Ma, G.; Liu, W. Design of a Micro-Plant Factory Using a Validated CFD Model. Agriculture 2024, 14, 2227. [Google Scholar] [CrossRef]
- Miu, P.I.; Kutzbach, H.-D. Modeling and simulation of grain threshing and separation in threshing units-Part I. Comput. Electron. Agric. 2008, 60, 96–104. [Google Scholar] [CrossRef]
- Shi, R.; Dai, F.; Zhao, W.; Zhang, F.; Shi, L.; Guo, J. Establishment of Discrete Element Flexible Model and Verification of Contact Parameters of Flax Stem. Trans. Chin. Soc. Agric. Mach. 2022, 53, 146–155. [Google Scholar]
- Chen, X.; Bai, J.; Wang, X.; Fang, W.; Hong, T.; Zang, N.; Fang, L.; Wang, G. Calibration and Testing of Discrete Elemental Simulation Parameters for Pod Pepper Seeds. Agriculture 2024, 14, 831. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Bai, J.; Fang, W.; Hong, T.; Zang, N.; Wang, G. Virtual parameter calibration of pod pepper seeds based on discrete element simulation. Heliyon 2024, 10, e31686. [Google Scholar] [CrossRef]
- Du, C.; Han, D.; Song, Z.; Chen, Y.; Chen, X.; Wang, X. Calibration of contact parameters for complex shaped fruits based on discrete element method: The case of pod pepper (Capsicum annuum). Biosyst. Eng. 2023, 226, 43–54. [Google Scholar] [CrossRef]
- Fang, W.; Wang, X.; Han, D.; Chen, X. Review of material parameter calibration method. Agriculture 2022, 12, 706. [Google Scholar] [CrossRef]
- Liang, Z.; Li, J.; Liang, J.; Shao, Y.; Zhou, T.; Si, Z.; Li, Y. Investigation into experimental and DEM simulation of guide blade optimum arrangement in multi-rotor combine harvesters. Agriculture 2022, 12, 435. [Google Scholar] [CrossRef]
- Wang, L.; Chai, X.; Huang, J.; Hu, J.; Cui, Z. Efficient and Low-Loss Cleaning Method for Non-Uniform Distribution of Threshed Materials Based on Multi-Wing Curved Combination Air Screen in Computational Fluid Dynamics/Discrete Element Method Simulations. Agriculture 2024, 14, 895. [Google Scholar] [CrossRef]
- Yuan, H.; Cai, Y.; Liang, S.; Ku, J.; Qin, Y. Numerical simulation and analysis of feeding uniformity of viscous miscellaneous fish bait based on EDEM software. Agriculture 2023, 13, 356. [Google Scholar] [CrossRef]
- Yuan, H.; Liang, S.; Wang, J.; Lu, Y. Numerical simulation and analysis of vibrating rice filling based on EDEM software. Agriculture 2022, 12, 2013. [Google Scholar] [CrossRef]
- Liang, Z.; Huang, Y.; Li, D.; Wada, M.E. Parameter determination of a viscoelastic-plastic contact model for potatoes during transient collisions. Biosyst. Eng. 2023, 234, 156–171. [Google Scholar] [CrossRef]
- Fang, W.; Wang, X.; Zhu, C.; Han, D.; Zang, N.; Chen, X. Analysis of Film Unloading Mechanism and Parameter Optimization of Air Suction-Type Cotton Plough Residual Film Recovery Machine Based on CFD-DEM Coupling. Agriculture 2024, 14, 1021. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, L.; Xu, L.; Zhang, Q.; Liu, J.; Cai, Q.; Zhang, W. Stereo-vision-based multi-crop harvesting edge detection for precise automatic steering of combine harvester. Biosyst. Eng. 2022, 215, 115–128. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Mo, M.; Ma, H.; Kumi, F.; Mao, H. Development and Evaluation of a Walking Type Two-row Semi-automatic Transplanter for Vegetable Plug Seedlings. Ama Agric. Mech. Asia Afr. Lat. Am. 2023, 54, 57–67. [Google Scholar]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Development of a robotic harvesting mechanism for button mushrooms. Trans. Asabe 2021, 64, 565–575. [Google Scholar] [CrossRef]
- Ji, W.; He, G.; Xu, B.; Zhang, H.; Yu, X. A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Zhao, S.; Jiang, Y.; Wang, J.; Jin, Y. Design of a Virtual Multi-Interaction Operation System for Hand-Eye Coordination of Grape Harvesting Robots. Agronomy 2023, 13, 829. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, H.; Zhu, Z.; Gao, Y.; Chen, L. Structural Design and Simulation of Pneumatic Conveying Line for a Paddy Side-Deep Fertilisation System. Agriculture 2022, 12, 867. [Google Scholar] [CrossRef]
- Chai, X.; Hu, J.; Ma, T.; Liu, P.; Shi, M.; Zhu, L.; Zhang, M.; Xu, L. Construction and Characteristic Analysis of Dynamic Stress Coupling Simulation Models for the Attitude-Adjustable Chassis of a Combine Harvester. Agronomy 2024, 14, 1874. [Google Scholar] [CrossRef]
Chili Pepper Type/Category | Key Physical Characteristics | Harvesting Consequences and Automation Considerations |
---|---|---|
Bell peppers | Large, blocky, thick-fleshed, non-pungent to mildly pungent, various mature colors (red, yellow, green). | Harvested at full size; susceptible to bruising. Requires gentle handling. Suited for robotic picking with soft grippers; open-helix harvesters may cause damage. |
Chaotian peppers | Small to medium, upward-fruiting, intensely pungent, often dried. | Upward orientation may favor specific harvester designs (e.g., approaching from below, stripping actions). Drum-finger type harvesters are commonly used. |
Xian peppers (linear) | Long, rod-shaped, often dried for spice, moderate to high pungency. | Harvested at biological maturity for drying. Drum-finger harvesters are suitable. Susceptible to damage/breakage if the harvesting mechanism is too aggressive. |
Niujiao peppers (Ox-horn) | Elongated, ox-horn shape, typically mild to moderately pungent. | Similar harvesting considerations to Xian peppers, though their potentially larger size might influence the end-effector choice for robotic systems. |
Cherry peppers | Small, round, intensely pungent. | Dense clusters can be challenging for individual robotic picking. Belt-comb type or stripping harvesters might be more efficient for bulk harvesting. |
Capsicum chinense (e.g., Habanero, Carolina Reaper) | Often lantern-shaped or wrinkled, extremely high pungency, relatively thin-walled. | Fruits can be delicate. Precise robotic picking with controlled force is ideal. Mechanical harvesting risks high damage rates. |
Capsicum frutescens (e.g., Xiaomila) | Small, erect fruits, very high pungency. | Similar to Chaotian; upward growth habit. Mechanical harvesting often involves stripping. |
Luosijiao (spiral peppers) | Thin skin (pericarp), distinct spiral shape, intense pungency, tender-crisp texture. | Extremely fragile; requires very gentle handling. Robotic harvesting necessitates sophisticated soft grippers and precise force control to avoid damage. Manual harvesting is common. |
Pickling peppers | Firm flesh, various shapes, harvested at mature green or colored stage. | Firmness allows for somewhat more robust handling than very delicate types, but care is still needed to the maintain quality for pickling. |
Pigment peppers | Cultivated for drying and colorant extraction (e.g., paprika oleoresin), often red at maturity. | Often harvested mechanically in a single pass by combine harvesters when dried on plant. Non-selective harvesting can lead to mixed maturity and impurities. |
Ornamental peppers | Diverse shapes, sizes, and multiple colors on a single plant at maturity. | Not typically harvested for consumption on a large scale; if automated, challenges would be small fruit size and dense, varied presentation. |
Model Type | Primary Task(s) | Key Performance Metrics and Reported Values | Advantages | Challenges and Considerations for Chili Peppers |
---|---|---|---|---|
Traditional image processing (e.g., color thresholding, edge detection, SVM with HOG) | Segmentation, detection | Variable accuracy; highly dependent on controlled conditions. Lower mAP/IoU compared with deep learning. | Simple to implement for specific, constrained scenarios. | Poor robustness to illumination changes, occlusion, color similarity (green peppers/leaves), complex backgrounds. Not suitable for real-time in dynamic fields. |
YOLO series (e.g., YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, YOLOv8) | Object detection | mAP often > 90–95% in specific studies; real-time capable (e.g., >30 FPS on suitable GPUs). | Fast inference speed, good balance of speed and accuracy, suitable for mobile platforms. | Accuracy can degrade with severe occlusion or very small/distant objects. Requires large, diverse datasets for generalization. |
Faster R-CNN | Object detection | Potentially higher mAP than single-stage detectors in some cases. | Generally high accuracy. | Slower inference speed compared with YOLO, more computationally intensive, less suitable for real-time applications without optimization. |
Mask R-CNN | Instance segmentation | High IoU (e.g., >0.85 for fruit masks); pixel-level accuracy. | Provides detailed fruit boundaries, useful for precise localization and robotic grasping. | Computationally expensive, slower inference, challenging for real-time on-board deployment without significant optimization or powerful hardware. |
U-Net | Semantic segmentation | High mPA and IoU for segmenting unoccluded peppers. | Good for pixel-wise classification, effective for foreground-background separation. | May struggle with instance-level separation in dense clusters without modifications. Performance can degrade with significant occlusion. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, S.; Tang, Z.; Li, B.; Wang, S.; Guo, X. Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements. Agriculture 2025, 15, 1200. https://doi.org/10.3390/agriculture15111200
Tai S, Tang Z, Li B, Wang S, Guo X. Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements. Agriculture. 2025; 15(11):1200. https://doi.org/10.3390/agriculture15111200
Chicago/Turabian StyleTai, Sheng, Zhong Tang, Bin Li, Shiguo Wang, and Xiaohu Guo. 2025. "Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements" Agriculture 15, no. 11: 1200. https://doi.org/10.3390/agriculture15111200
APA StyleTai, S., Tang, Z., Li, B., Wang, S., & Guo, X. (2025). Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements. Agriculture, 15(11), 1200. https://doi.org/10.3390/agriculture15111200