Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review
Abstract
:1. Introduction
2. Methodology
3. Essential Oils: Main Compounds and Applications
4. Modes of Action of Essential Oil Molecules
5. Types of Essential Oils and Antimicrobial Activity
6. Essential Oils on Microbes from the Digestive Tract of Broilers
7. Influence of Essential Oil Molecules on Broiler Chicken Production
8. Research Perspectives on Essential Oils in the Production of Broiler Chickens
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aarestrup, F.M.; Bager, F.; Jensen, N.E.; Madsen, M.; Meyling, A.; Wegener, H.C. Surveillance of Antimicrobial Resistance in Bacteria Isolated from Food Animals to Antimicrobial Growth Promoters and Related Therapeutic Agents in Denmark. APMIS 1998, 106, 606–622. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Zarazaga, M. Antibióticos Como Promotores Del Crecimiento En Animales: ¿Vamos Por El Buen Camino? Gac. Sanit. 2002, 16, 109–112. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (WOAH). Uso de Antimicrobianos Como Promotores de Crecimiento. 2023. Available online: https://www.woah.org/app/uploads/2024/01/es-omsa-declaraciondeposicion-agp.pdf (accessed on 20 October 2024).
- Toso, F.; Mestorino, N.; Ardoino, S. Aceites Esenciales Como Alternativa a Los Antibióticos Promotores de Crecimiento En Pollos de Engorde. Investig. Joven 2023, 10, 444–445. [Google Scholar]
- Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef]
- Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S.G.; Velge, P.; Rychlik, I.; Volf, J.; Creach, P.; Smith, A.; Colles, F.; Leterrier, C. Influence of the Microbiota-Gut-Brain Axis on Behavior and Welfare in Farm Animals: A Review. Physiol. Behav. 2019, 210, 112658. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.; Waheed, J.; Hamza, A.; Mohyuddin, S.G.; Lu, Z.; Namula, Z.; Chenand, Z.; Chen, J.J. The Role of Intestinal of Microbiota in Chicken Health, Intestinal Physiology and Immunity. J. Anim. Plant Sci. 2020, 31, 342–351. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils–A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Kimbaris, A.C.; Plessas, S.; Mantzourani, I.; Theodoridou, I.; Stavropoulou, E.; Polissiou, M.G.; Bezirtzoglou, E. Antibacterial Activities of Essential Oils from Eight Greek Aromatic Plants against Clinical Isolates of Staphylococcus Aureus. Anaerobe 2011, 17, 399–402. [Google Scholar] [CrossRef]
- Aziz, Z.A.; Ahmad, A.; Setapar, S.H.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential-A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Ding, W.; Liping, N.; Xing, H.; Wei, Z.; Zhoua, Q.; Nong, R.; Chen, J. Essential Oil Extracted from Leaf of Phoebe Bournei (Hemsl.) Yang: Chemical Constituents, Antitumor, Antibacterial, Hypoglycemic Activities. Nat. Prod. Res. 2020, 34, 2524–2527. [Google Scholar] [CrossRef]
- Pérez Zamora, C.; Torres, C.A.; Nuñez, M.B. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef] [PubMed]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Ates, B.; Erdogan, S.; Cenet, M.; Karaaslan, M.G. Chemical Composition, Antimicrobial, Insecticidal, Phytotoxic and Antioxidant Activities of Mediterranean Pinus Brutia and Pinus Pinea Resin Essential Oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Janacua-Vidales, H.; Alarcón-Rojo, A.; Elisea, J.Q.; Cardona-Hernández, M. Aceites Esenciales de Orégano En La Dieta de Cerdos Para Mejorar Las Características de La Canal. Cult. Cient. Y Tecnol. 2018, 15, 85–90. [Google Scholar]
- Stelter, K.; Frahm, J.; Berk, A.; Dänicke, S.; Hernández, A. Efecto Del Orégano Seco En Dietas Para Transición Sobre El Rendimiento y Los Factores Inmunomoduladores. Albéitar Publ. Vet. Indep. 2015, 186, 36–37. [Google Scholar]
- Martínez, R.M.; Cerrilla, M.E.O.; Haro, J.G.H.; Garza, J.R.K.; Ramos, J.Z.; Soriano, R.R. Uso de Aceites Esenciales En Animales de Granja. Interciencia 2015, 40, 744–754. [Google Scholar]
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Freires, I.A.; Denny, C.; Benso, B.; Alencar, S.M.D.; Rosalen, P.L. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Rota, C.; Carraminana, J.J.; Burillo, J.; Herrera, A. In Vitro Antimicrobial Activity of Essential Oils from Aromatic Plants against Selected Foodborne Pathogens. J. Food Prot. 2004, 67, 1252–1256. [Google Scholar] [CrossRef]
- Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J. Increase in Activity of Essential Oil Components Carvacrol and Thymol against Escherichia Coli O157:H7 by Addition of Food Stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef]
- Porazinska, D.L.; Farrer, E.C.; Spasojevic, M.J.; Bueno de Mesquita, C.P.; Sartwell, S.A.; Smith, J.G.; White, C.T.; King, A.J.; Suding, K.N.; Schmidt, S.K. Plant Diversity and Density Predict Belowground Diversity and Function in an Early Successional Alpine Ecosystem. Ecology 2018, 99, 1942–1952. [Google Scholar] [CrossRef]
- da Costa, J.S.; da Cruz, E.D.N.S.; Setzer, W.N.; da Silva, J.K.D.R.; Maia, J.G.S.; Figueiredo, P.L.B. Essentials Oils from Brazilian Eugenia and Syzygium Species and Their Biological Activities. Biomolecules 2020, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.H. Essential Oils. Z. Naturforschung C 2020, 75, 177. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.H.; Ye, M.; Wang, K.B.; Fan, L.M.; Su, F.W. Chemical Composition and Antifungal Activity of Essential Oil from Origanum Vulgare against Botrytis Cinerea. Food Chem. 2021, 365, 130506. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Khatiwora, E.; Bora, D.K. Estimation of Total Phenol and Flavonoid Contents of Citrus Limon L Burmf Leaves from North Eastern Region of India. J. Drug Deliv. Ther. 2019, 9, 40–42. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial Activity of Essential Oils from Eucalyptus and of Selected Components against Multidrug-Resistant Bacterial Pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Ben Marzoug, H.N.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Romdhane, M. Eucalyptus (Gracilis, Oleosa, Salubris, and Salmonophloia) Essential Oils: Their Chemical Composition and Antioxidant and Antimicrobial Activities. J. Med. Food 2010, 13, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fan, L.; Fan, S.; Wang, J.; Luo, T.; Tang, Y.; Chen, Z.; Yu, L. Cinnamomum Cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules 2019, 24, 3473. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018, 10, 1196. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Baek, K.H. Chemical Composition, Antioxidant, Lipid Peroxidation Inhibition and Free Radical Scavenging Activities of Microwave Extracted Essential Oil from Allium Sativum. J. Essent. Oil Bear. Plants 2015, 18, 300–313. [Google Scholar] [CrossRef]
- Santin, M.R.; dos Santos, A.O.; Nakamura, C.V.; Dias Filho, B.P.; Ferreira, I.C.P.; Ueda-Nakamura, T. In Vitro Activity of the Essential Oil of Cymbopogon Citratus and Its Major Component (Citral) on Leishmania Amazonensis. Parasitol. Res. 2009, 105, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Can Baser, K.H. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska, M.; Swarcewicz, M.; Dzięcioł, M.; Dobrowolska, A. Comparison of Chemical Composition and Antibacterial Activity of Lavender Varieties from Poland. Nat. Prod. Res. 2013, 27, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; El, S.N.; Karagözlü, N.; Şahin, S. Antioxidant and Antimicrobial Activities of Essential Oils Obtained from Oregano (Origanum vulgare Ssp. Hirtum) by Using Different Extraction Methods. J. Med. Food. 2011, 14, 645–652. [Google Scholar] [CrossRef]
- Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H. Chemical Compositions and Biological Activities of the Essential Oils of Beilschmiedia Madang Blume (Lauraceae). Arch. Pharm. Res. 2015, 38, 485–493. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Zheljazkov, V.D.; Radoukova, T.; Dincheva, I.; Piperkova, N.; Maneva, V.; Astatkie, T.; Kačániová, M. Biological Activity of Essential Oils of Four Juniper Species and Their Potential as Biopesticides. Molecules 2021, 26, 6358. [Google Scholar] [CrossRef]
- Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and Antioxidant Activities of Mexican Oregano Essential Oils (Lippia Graveolens H. B. K.) with Different Composition When Microencapsulated Inβ-Cyclodextrin. Lett. Appl. Microbiol. 2010, 50, 585–590. [Google Scholar] [CrossRef]
- Clavijo-Romero, A.; Quintanilla-Carvajal, M.X.; Ruiz, Y. Stability and Antimicrobial Activity of Eucalyptus Essential Oil Emulsions. Food Sci. Technol. Int. 2019, 25, 24–37. [Google Scholar] [CrossRef]
- Isabel, B.; Santos, Y. Efectos de Los Aceites Esenciales En La Alimentación de Los Pollos de Carne. Arch. Zootec. 2009, 58, 597–600. [Google Scholar]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of Rosemary, Oregano, and a Commercial Blend of Essential Oils in Broiler Chickens: In Vitro Antimicrobial Activities and Effects on Growth Performance1. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, R.; Ballini, A.; Jirillo, E.; Santacroce, L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics 2024, 13, 603. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Inhibition of Listeriolysin O and Phosphatidylcholine-Specific Production in Listeria Monocytogenes by Subinhibitory Concentrations of Plant Essential Oils. J. Med. Microbiol. 2002, 51, 567–608. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of Action of Carvacrol on the Food-Borne Pathogen Bacillus cereus. Appl. Envron. Microbiol. 1999, 65, 4606–4610. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial Activity of Carvacrol toward Bacillus Cereus on Rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Appl. Envron. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major Bioactivities and Mechanism of Action of Essential Oils and Their Components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The Mode of Antimicrobial Action of the Essential Oil of Melaleuca Alternifolia (Tea Tree Oil). J. Appl. Microbiol. 2001, 88, 170–175. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria Monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Envron. Microbiol. 2004, 70, 5750–5755. [Google Scholar] [CrossRef]
- Carrasco, F.R.; Schmidt, G.; Romero, A.L.; Sartoretto, J.L.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K.N. Immunomodulatory Activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. Essential Oils: Evidence for Humor- and Cell-Mediated Responses. J. Pharm. Pharmacol. 2010, 61, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial Activity of Essential Oils and Other Plant Extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Dewi, G.; Nair, D.V.; Peichel, C.; Johnson, T.J.; Noll, S.; Kollanoor, J.A. Effect of Lemongrass Essential Oil against Multidrug-Resistant Salmonella Heidelberg and Its Attachment to Chicken Skin and Meat. Poult. Sci. 2021, 100, 101116. [Google Scholar] [CrossRef]
- Lin, X.; Cao, S.; Sun, J.; Lu, D.; Zhong, B.; Chun, J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021, 26, 3412. [Google Scholar] [CrossRef]
- Geraci, A.; Di Stefano, V.; Di Martino, E.; Schillaci, D.; Schicchi, R. Essential Oil Components of Orange Peels and Antimicrobial Activity. Nat. Prod. Res. 2017, 31, 653–659. [Google Scholar] [CrossRef]
- Stojiljkovic, J.; Trajchev, M.; Nakov, D.; Petrovska, M. Antibacterial Activities of Rosemary Essential Oils and Their Components against Pathogenic Bacteria. Adv. Cytol. Pathol. 2018, 3, 93–96. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The Antimicrobial Activity of Lavender Essential Oil (Lavandula angustifolia) and Its Influence on the Production Performance of Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1020–1025. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Correa-Basurto, J.; Rodríguez-Valdez, L.M.; Sánchez-Torres, L.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. In Vitro and in Silico Studies of Terpenes, Terpenoids and Related Compounds with Larvicidal and Pupaecidal Activity against Culex Quinquefasciatus Say (Diptera: Culicidae). Chem. Cent. J. 2018, 12, 53. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Dietary Oregano Essential Oil Alleviates Experimentally Induced Coccidiosis in Broilers. Prev. Vet. Med. 2015, 120, 195–202. [Google Scholar] [CrossRef]
- Gordillo Jaramillo, F.X.; Kim, D.H.; Lee, S.H.; Kwon, S.K.; Jha, R.; Lee, K.W. Role of Oregano and Citrus Species-Based Essential Oil Preparation for the Control of Coccidiosis in Broiler Chickens. J. Anim. Sci. Biotechnol. 2021, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Hu, Y.; Yao, X.; He, Y.; Chen, J.; Wu, J.; Wu, S.; Zhang, H.; He, X.; Song, Z. Dietary Essential Oils Improves the Growth Performance, Antioxidant Properties and Intestinal Permeability by Inhibiting Bacterial Proliferation, and Altering the Gut Microbiota of Yellow-Feather Broilers. Poult. Sci. 2022, 101, 102087. [Google Scholar] [CrossRef]
- Avanço, G.B.; Ferreira, F.D.; Bomfim, N.S.; Santos, P.A.; Peralta, R.M.; Brugnari, T.; Mallmann, C.A.; Abreu, F.B.A.; Mikcha, J.M.; Machinski, M. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 2017, 73, 806–813. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A. Comparative Study of Chemical Composition and Antioxidant Activity of Fresh and Dry Rhizomes of Turmeric (Curcuma longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef]
- Witkowska, D.; Sowińska, J. The Effectiveness of Peppermint and Thyme Essential Oil Mist in Reducing Bacterial Contamination in Broiler Houses. Poult. Sci. 2013, 92, 2834–2843. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Rouis, Z.; Salem, N.A.; Mabrouk, S.; ben Salem, Y.; Salah, K.B.; Aouni, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; et al. Chemical Composition of 8 Eucalyptus Species’ Essential Oils and the Evaluation of Their Antibacterial, Antifungal and Antiviral Activities. BMC Complement. Altern. Med. 2012, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Marzoug, H.N.B.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Khouja, M.L.; Bouajila, J. Eucalyptus oleosa Essential Oils: Chemical Composition and Antimicrobial and Antioxidant Activities of the Oils from Different Plant Parts (Stems, Leaves, Flowers and Fruits). Molecules 2011, 16, 1695–1709. [Google Scholar] [CrossRef]
- Alali, W.Q.; Hofacre, C.L.; Mathis, G.F.; Faltys, G. Effect of Essential Oil Compound on Shedding and Colonization of Salmonella Enterica Serovar Heidelberg in Broilers. Poult. Sci. 2013, 92, 836–841. [Google Scholar] [CrossRef]
- Amiri, N.; Afsharmanesh, M.; Salarmoini, M.; Meimandipour, A.; Hosseini, S.A.; Ebrahimnejad, H. Nanoencapsulation (in Vitro and in Vivo) as an Efficient Technology to Boost the Potential of Garlic Essential Oil as Alternatives for Antibiotics in Broiler Nutrition. Animal 2021, 15, 100022. [Google Scholar] [CrossRef]
- Côté, H.; Pichette, A.; St-Gelais, A.; Legault, J. The Biological Activity of Monarda Didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken. Molecules 2021, 26, 3368. [Google Scholar] [CrossRef]
- Carrasco, A.; Tomas, V.; Tudela, J.; Miguel, M.G. Comparative Study of GC-MS Characterization, Antioxidant Activity and Hyaluronidase Inhibition of Different Species of Lavandula and Thymus Essential Oils. Flavour Fragr. J. 2016, 31, 57–69. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin. Animals 2021, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical Composition of the Essential Oils and Extracts of Achillea Species and Their Biological Activities: A Review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Dincheva, I.; Badjakov, I.; Gochev, V.; Tsolova, V. Chemical Composition, In Vitro Antioxidant Potential, and Antimicrobial Activities of Essential Oils and Hydrosols from Native American Muscadine Grapes. Molecules 2019, 24, 3355. [Google Scholar] [CrossRef]
- Bikanga, R.; Makani, T.; Agnaniet, H.; Obame, L.C.; Abdoul-Latif, F.M.; Lebibi, J.; Menut, C. Chemical Composition and Biological Activities of Santiria trimera (Burseraceae) Essential Oils from Gabon. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef]
- Cosge, B.; Turker, A.; Ipek, A.; Gurbuz, B.; Arslan, N. Chemical Compositions and Antibacterial Activities of the Essential Oils from Aerial Parts and Corollas of Origanum Acutidens (Hand.-Mazz.) Ietswaart, an Endemic Species to Turkey. Molecules 2009, 14, 1702–1712. [Google Scholar] [CrossRef]
- Ouknin, M.; Romane, A.; Costa, J.; Majidi, L. Comparative Study of the Chemical Profiling, Antioxidant and Antimicrobial Activities of Essential Oils of Different Parts of Thymus willdenowii Boiss & Reut. Nat. Prod. Res. 2019, 33, 2398–2401. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Huang, T.; Shi, K.; Wu, Z. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Psidium guajava L. Leaves from Different Geographic Regions in China. Chem. Biodivers. 2017, 14, e1700114. [Google Scholar] [CrossRef]
- Kazemi, M.; Rostami, H. Chemical Composition and Biological Activities of Iranian Achillea wilhelmsii L. Essential Oil: A High Effectiveness against Candida Spp. and Escherichia Strains. Nat. Prod. Res. 2015, 29, 286–288. [Google Scholar] [CrossRef]
- Agunos, A.; Léger, D.; Carson, C. Review of Antimicrobial Therapy of Selected Bacterial Diseases in Broiler Chickens in Canada. Can. Vet. J. 2012, 53, 1289–1300. [Google Scholar]
- Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A. The Role of the Commensal Gut Microbial Community in Broiler Chickens. Worlds Poult. Sci. J. 2005, 61, 95–104. [Google Scholar] [CrossRef]
- Rinttilä, T.; Apajalahti, J. Intestinal Microbiota and Metabolites—Implications for Broiler Chicken Health and Performance. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhong, T.; Pandya, Y.; Joerger, R.D. 16S RRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens. Appl. Envron. Microbiol. 2002, 68, 124–137. [Google Scholar] [CrossRef]
- Torok, V.A.; Hughes, R.J.; Mikkelsen, L.L.; Perez-Maldonado, R.; Balding, K.; MacAlpine, R.; Percy, N.J.; Ophel-Keller, K. Identification and Characterization of Potential Performance-Related Gut Microbiotas in Broiler Chickens across Various Feeding Trials. Appl. Envron. Microbiol. 2011, 77, 5868–5878. [Google Scholar] [CrossRef]
- Bailey, J.S.; Fletcher, D.L.; Cox, N.A. Listeria Monocytogenes Colonization of Broiler Chickens. Poult. Sci. 1990, 69, 457–461. [Google Scholar] [CrossRef]
- Davidović, V.; Joksimović, M.T.; Stojanović, B.; Relić, R. Plant Usage in Protecting the Farm Animal Health. Biotechnol. Anim. Husb. 2012, 28, 87–98. [Google Scholar] [CrossRef]
- Ndlovu, W.; Ronald, M.N.; Mwale, M.; Mellda, N.T.; Segun, O.; Francis, J. Ethnoveterinary Practices for Indigenous Poultry Health Management by Smallholder Farmers. In Herbs and Spices-New Advances; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Jang, I.S.; Ko, Y.H.; Kang, S.Y.; Lee, C.Y. Effect of a Commercial Essential Oil on Growth Performance, Digestive Enzyme Activity and Intestinal Microflora Population in Broiler Chickens. Anim. Feed Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of Thymol and Carvacrol Feed Supplementation on Performance, Antioxidant Enzyme Activities, Fatty Acid Composition, Digestive Enzyme Activities, and Immune Response in Broiler Chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of Dietary Essential Oil Components on Growth Performance, Digestive Enzymes and Lipid Metabolism in Female Broiler Chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of Encapsulated Organic Acids and Essential Oils on Intestinal Barrier, Microbial Count, and Bacterial Metabolites in Broiler Chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mandal, G.P.; Patra, A.K.; Kumar, P.; Samanta, I.; Pradhan, S.; Samanta, A.K. Different Essential Oils in Diets of Broiler Chickens: 2. Gut Microbes and Morphology, Immune Response, and Some Blood Profile and Antioxidant Enzymes. Anim. Feed. Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Tiihonen, K.; Kettunen, H.; Bento, M.H.L.; Saarinen, M.; Lahtinen, S.; Ouwehand, A.C.; Schulze, H.; Rautonen, N. The Effect of Feeding Essential Oils on Broiler Performance and Gut Microbiota. Br. Poult. Sci. 2010, 51, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. Use of Essential Oils in Broiler Chicken Production–a Review. Ann. Anim. Sci. 2017, 17, 317–335. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Beynen, A.C. Essential Oils in Broiler Nutrition. Int. J. Poult. Sci. 2004, 3, 738–752. [Google Scholar]
- Dieumou, F.E.; Teguia, A.; Kuiate, J.R.; Tamokou, J.D.; Fonge, N.B.; Dongmo, M.C. Effects of Ginger (Zingiber Officinale) and Garlic (Allium sativum) Essential Oils on Growth Performance and Gut Microbial Population of Broiler Chickens. Livest. Res. Rural Dev. 2009, 21, 23–32. [Google Scholar]
- Falaki, M.; Shargh, M.S.; Dastar, B.; Hashemi, S.R.; Mahoonak, A.S. Growth Performance, Carcass Characteristics and Intestinal Microflora of Broiler Chickens Fed Diets Containing Carum Copticum Essential Oil. Poult. Sci. J. 2016, 4, 37–46. [Google Scholar]
- Cristo, A.B.D.; Schmidt, J.M.; Benito, C.E.; Buzim, R.; Pinto, L.A.D.M.; Fernandes, J.I.M. Effect of the Supplementation of Plant Extracts Based Additive in Broiler Chicken Diets on Productive Performance, Carcass Yield, and Meat Quality. Braz. J. Poult. Sci. 2022, 24, eRBCA-2021-1528. [Google Scholar] [CrossRef]
- Cao, P.H.; Li, F.D.; Li, Y.F.; Ru, Y.J.; Peron, A.; Schulze, H.; Bento, H. Effect of Essential Oils and Feed Enzymes on Performance and Nutrient Utilization in Broilers Fed a Corn/Soy-Based Diet. Int. J. Poult. Sci. 2010, 9, 749–755. [Google Scholar] [CrossRef]
- Attia, Y.; Al-Harthi, M.; El-Kelawy, M. Utilisation of Essential Oils as a Natural Growth Promoter for Broiler Chickens. Ital. J. Anim. Sci. 2019, 18, 1005–1012. [Google Scholar] [CrossRef]
- Su, G.; Wang, L.; Zhou, X.; Wu, X.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Mao, X.; Zheng, P.; et al. Effects of Essential Oil on Growth Performance, Digestibility, Immunity, and Intestinal Health in Broilers. Poult. Sci. 2021, 100, 101242. [Google Scholar] [CrossRef]
- Gheisar, M.M.; Hosseindoust, A.; Kim, I.H. Evaluating the Effect of Microencapsulated Blends of Organic Acids and Essential Oils in Broiler Chickens Diet. J. Appl. Poult. Res. 2015, 24, 511–519. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Zhang, X.L.; Xu, L.H.; Peng, H.; Wang, C.K.; Bi, Y.Z. Encapsulated Blends of Essential Oils and Organic Acids Improved Performance, Intestinal Morphology, Cecal Microflora, and Jejunal Enzyme Activity of Broilers. Czech J. Anim. Sci. 2019, 64, 189–198. [Google Scholar] [CrossRef]
- Amouei, H.; Ferronato, G.; Qotbi, A.A.A.; Bouyeh, M.; Dunne, P.G.; Prandini, A.; Seidavi, A. Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers. Animals 2021, 11, 3330. [Google Scholar] [CrossRef]
- Gumus, R.; Gelen, S.U. Effects of Dietary Thyme and Rosemary Essential Oils on Performance Parameters with Lipid Oxidation, Water Activity, PH, Colour and Microbial Quality of Breast and Drumstick Meats in Broiler Chickens. Arch. Anim. Breed. 2023, 66, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Pournazari, M.; Qotbi, A.A.; Seidavi, A.; Corazzin, M. Prebiotics, Probiotics and Thyme (Thymus vulgaris) for Broilers: Performance, Carcass Traits and Blood Variables. Rev. Colomb. Cienc. Pecu. 2017, 30, 3–10. [Google Scholar] [CrossRef]
- Bravo, D.; Utterback, P.; Parsons, C.M. Evaluation of a Mixture of Carvacrol, Cinnamaldehyde, and Capsicum Oleoresin for Improving Growth Performance and Metabolizable Energy in Broiler Chicks Fed Corn and Soybean Meal. J. Appl. Poult. Res. 2011, 20, 115–120. [Google Scholar] [CrossRef]
- Bravo, D.; Pirgozliev, V.; Rose, S.P. A Mixture of Carvacrol, Cinnamaldehyde, and Capsicum Oleoresin Improves Energy Utilization and Growth Performance of Broiler Chickens Fed Maize-Based Diet. J. Anim. Sci. 2014, 92, 1531–1536. [Google Scholar] [CrossRef]
- Choi, J.; Singh, A.K.; Chen, X.; Lv, J.; Kim, W.K. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals 2022, 12, 2178. [Google Scholar] [CrossRef]
- Xue, F.; Shi, L.; Li, Y.; Ni, A.; Ma, H.; Sun, Y.; Chen, J. Effects of Replacing Dietary Aureomycin with a Combination of Plant Essential Oils on Production Performance and Gastrointestinal Health of Broilers. Poult. Sci. 2020, 99, 4521–4529. [Google Scholar] [CrossRef]
- Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of Blending Encapsulated Essential Oils and Organic Acids as an Antibiotic Growth Promoter Alternative on Growth Performance and Intestinal Health in Broilers with Necrotic Enteritis. Poult. Sci. 2022, 101, 101563. [Google Scholar] [CrossRef]
- Pham, V.H.; Abbas, W.; Huang, J.; Guo, F.; Zhang, K.; Kong, L.; Zhen, W.; Guo, Y.; Wang, Z. Dietary Coated Essential Oil and Organic Acid Mixture Supplementation Improves Health of Broilers Infected with Avian Pathogenic Escherichia Coli. Anim. Nutr. 2023, 12, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected Blend of Organic Acids and Essential Oils Improves Growth Performance, Nutrient Digestibility, and Intestinal Health of Broiler Chickens Undergoing an Intestinal Challenge. Front. Veter. Sci 2020, 6, 491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, N.K.; Kheravii, S.K.; Keerqin, C.; Ionescu, C.; Blanchard, A.; Wu, S.B. Potential of a Mixture of Eugenol and Garlic Tincture to Improve Performance and Intestinal Health in Broilers under Necrotic Enteritis Challenge. Anim. Nutr. 2022, 8, 26–37. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, L.; Guo, F.; Huang, J.; Qiao, J.; Bi, R.; Huang, J.; Zhang, K.; Guo, Y.; Wang, Z. Dietary Supplemental Coated Essential Oils and Organic Acids Mixture Improves Growth Performance and Gut Health along with Reduces Salmonella Load of Broiler Chickens Infected with Salmonella Enteritidis. J. Anim. Sci. Biotechnol. 2023, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Eldemery, F.; Metwally, A.S.; Abd-Allah, E.M.; Mohamed, D.T.; Ismail, T.A.; Hamed, T.A.; Al Sadik, G.M.; Neamat-Allah, A.N.F.; Abd El-Hamid, M.I. Dietary Eugenol Nanoemulsion Potentiated Performance of Broiler Chickens: Orchestration of Digestive Enzymes, Intestinal Barrier Functions and Cytokines Related Gene Expression With a Consequence of Attenuating the Severity of E. coli O78 Infection. Front. Veter Sci. 2022, 9, 847580. [Google Scholar] [CrossRef]
- Alali, W.Q.; Hofacre, C.L.; Mathis, G.F.; Faltys, G.; Ricke, S.C.; Doyle, M.P. Effect of Non-Pharmaceutical Compounds on Shedding and Colonization of Salmonella Enterica Serovar Heidelberg in Broilers. Food Control 2013, 31, 125–128. [Google Scholar] [CrossRef]
- Peng, F.; Duan, J.; He, X.; Xie, K.; Song, Z. Effects of Dietary Water-Soluble Extract of Rosemary Supplementation on Growth Performance and Intestinal Health of Broilers Infected with Eimeria tenella. J. Anim. Sci. 2024, 102, skae118. [Google Scholar] [CrossRef]
- Alp, M.; Midilli, M.; Kocabağlı, N.; Yılmaz, H.; Turan, N.; Gargılı, A.; Acar, N. The Effects of Dietary Oregano Essential Oil on Live Performance, Carcass Yield, Serum Immunoglobulin G Level, and Oocyst Count in Broilers. J. Appl. Poult. Res. 2012, 21, 630–636. [Google Scholar] [CrossRef]
- Ruan, D.; Fan, Q.; Fouad, A.M.; Sun, Y.; Huang, S.; Wu, A.; Lin, C.; Kuang, Z.; Zhang, C.; Jiang, S. Effects of Dietary Oregano Essential Oil Supplementation on Growth Performance, Intestinal Antioxidative Capacity, Immunity, and Intestinal Microbiota in Yellow-Feathered Chickens. J. Anim. Sci. 2021, 99, skab033. [Google Scholar] [CrossRef]
- Silva-Vázquez, R.; Duran-Meléndez, L.A.; Hernández-Martínez, C.A.; Gutiérrez-Soto, J.G.; Hume, M.E.; Méndez-Zamora, G. Effects of Two Sources of Mexican Oregano Oil on Performance, Blood Profile, Carcass Variables, and Meat of Broilers. Rev. Bras. Zootec. 2018, 47, e20170198. [Google Scholar] [CrossRef]
- Betancourt, L.; Ariza, C.; Gonzalo, D.G.; Germán, A.T. Efecto de Diferentes Niveles de Aceites Esenciales de Lippia Origanoides Kunth En Pollos de Engorde. Rev. MVZ Cordoba 2012, 17, 3033–3040. [Google Scholar] [CrossRef]
- Ruff, J.; Tellez, G., Jr.; Forga, A.J.; Señas-Cuesta, R.; Vuong, C.N.; Greene, E.S.; Hernandez-Velasco, X.; Uribe, Á.J.; Martínez, B.C.; Angel-Isaza, J.A.; et al. Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals 2021, 11, 1084. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of Oregano Essential Oil as an Antibiotic Growth Promoter Alternative on Growth Performance, Antioxidant Status, and Intestinal Health of Broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef]
- Ghazi, S.; Amjadian, T.; Norouzi, S. Single and Combined Effects of Vitamin C and Oregano Essential Oil in Diet, on Growth Performance, and Blood Parameters of Broiler Chicks Reared under Heat Stress Condition. Int. J. Biometeorol. 2015, 59, 1019–1024. [Google Scholar] [CrossRef]
- Tekce, E.; Gül, M. Effects of Origanum Syriacum Essential Oil Added in Different Levels to the Diet of Broilers under Heat Stress on Performance and Intestinal Histology. Eur. Poult. Sci. (EPS) 2016, 80. [Google Scholar] [CrossRef]
- Iqbal, H.; Rahman, A.; Khanum, S.; Arshad, M.; Badar, I.H.; Asif, A.R.; Hayat, Z.; Iqbal, M.A. Effect of Essential Oil and Organic Acid on Performance, Gut Health, Bacterial Count and Serological Parameters in Broiler. Braz. J. Poult. Sci. 2021, 23, eRBCA-2021-1443. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Florou-Paneri, P.; Christaki, E.; Fletouris, D.J.; Spais, A.B. Effect of Dietary Oregano Essential Oil on Performance of Chickens and on Iron-Induced Lipid Oxidation of Breast, Thigh and Abdominal Fat Tissues. Br. Poult. Sci. 2002, 43, 223–230. [Google Scholar] [CrossRef]
- Turcu, R.P.; Tabuc, C.; Vlaicu, P.A.; Panaite, T.D.; Buleandra, M.; Saracila, M. Effect of the Dietary Oregano (Origanum vulgare L.) Powder and Oil on the Balance of the Intestinal Microflora of Broilers Reared under Heat Stress (32 °C). Sci. Papers. Ser. D. Anim. Sci. 2018, LXI, 77–86. [Google Scholar]
- Yang, Y.F.; Zhao, L.L.; Shao, Y.X.; Liao, X.D.; Zhang, L.Y.; Lin, L.U.; Luo, X.G. Effects of Dietary Graded Levels of Cinnamon Essential Oil and Its Combination with Bamboo Leaf Flavonoid on Immune Function, Antioxidative Ability and Intestinal Microbiota of Broilers. J. Integr. Agric. 2019, 18, 2123–2132. [Google Scholar] [CrossRef]
- Yang, C.; Diarra, M.S.; Choi, J.; Rodas-Gonzalez, A.; Lepp, D.; Liu, S.; Lu, P.; Mogire, M.; Gong, J.; Wang, Q.; et al. Effects of Encapsulated Cinnamaldehyde on Growth Performance, Intestinal Digestive and Absorptive Functions, Meat Quality and Gut Microbiota in Broiler Chickens. Transl. Anim. Sci. 2021, 5, txab099. [Google Scholar] [CrossRef]
- Yang, C.; Kennes, Y.M.; Lepp, D.; Yin, X.; Wang, Q.; Yu, H.; Yang, C.; Gong, J.; Diarra, M.S. Effects of Encapsulated Cinnamaldehyde and Citral on the Performance and Cecal Microbiota of Broilers Vaccinated or Not Vaccinated against Coccidiosis. Poult. Sci. 2020, 99, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, G.E.; Griebler, L.; Aniecevski, E.; Facchi, C.S.; Baggio, C.; Rossatto, G.; Leite, F.; Valentini, F.D.A.; Santo, A.D.; Pagnussatt, H.; et al. Microencapsulated Carvacrol and Cinnamaldehyde Replace Growth-Promoting Antibiotics: Effect on Performance and Meat Quality in Broiler Chickens. Acad. Bras. Cienc. 2020, 92, e20200343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, Z.; Yan, X.; Xiao, G.; Qiu, T.; Ou, J.; Cen, M.; Li, W.; Huang, Y.; Cao, Y.; et al. Effects of a Combination of Lauric Acid Monoglyceride and Cinnamaldehyde on Growth Performance, Gut Morphology, and Gut Microbiota of Yellow-Feathered Broilers. Poult. Sci. 2023, 102, 102825. [Google Scholar] [CrossRef]
- Nouri, A. Chitosan Nano-Encapsulation Improves the Effects of Mint, Thyme, and Cinnamon Essential Oils in Broiler Chickens. Br. Poult. Sci. 2019, 60, 530–538. [Google Scholar] [CrossRef]
- Pathak, M.; Mandal, G.P.; Patra, A.K.; Samanta, I.; Pradhan, S.; Haldar, S. Effects of Dietary Supplementation of Cinnamaldehyde and Formic Acid on Growth Performance, Intestinal Microbiota and Immune Response in Broiler Chickens. Anim. Prod. Sci. 2017, 57, 821. [Google Scholar] [CrossRef]
- Fritzlen, C.J.; Wilson, K.M.; Samper, J.M.; Persia, M.E. Effects of Essential Oils and Betaine on Male Broilers Raised on Used Litter Seeded with Coccidia Oocysts. J. Appl. Poult. Res. 2024, 33, 100417. [Google Scholar] [CrossRef]
- Kang, H.; Wang, Q.; Yu, H.; Guo, Q.; Weber, L.; Wu, W.; Lepp, D.; Cui, S.W.; Diarra, M.S.; Liu, H.; et al. Validating the Use of a Newly Developed Cinnamaldehyde Product in Commercial Broiler Production. Poult. Sci. 2024, 103, 103625. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The Effect of Lavender (Lavandula angustifolia) Essential Oil as a Drinking Water Supplement on the Production Performance, Blood Biochemical Parameters, and Ileal Microflora in Broiler Chickens. Poult. Sci. 2019, 98, 358–365. [Google Scholar] [CrossRef]
- Barbarestani, S.Y.; Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Toghyani, M. Effects of Dietary Lavender Essential Oil on Growth Performance, Intestinal Function, and Antioxidant Status of Broiler Chickens. Livest. Sci. 2020, 233, 103958. [Google Scholar] [CrossRef]
- Amer, S.A.; Abdel-Wareth, A.A.; Gouda, A.; Saleh, G.K.; Nassar, A.H.; Sherief, W.R.; Albogami, S.; Shalaby, S.I.; Abdelazim, A.M.; Abomughaid, M.M. Impact of Dietary Lavender Essential Oil on the Growth and Fatty Acid Profile of Breast Muscles, Antioxidant Activity, and Inflammatory Responses in Broiler Chickens. Antioxidants 2022, 11, 1798. [Google Scholar] [CrossRef]
- Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q.M.I.; Kadim, I.; Laudadio, V.; Tufarelli, V. Effects of Feed Supplementation with Lavender (Lavandula Angustifolia) Essence on Growth Performance, Carcass Traits, Blood Constituents and Caecal Microbiota of Broiler Chickens. Eur. Poult. Sci. (EPS) 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Mousapour, A.; Salarmoini, M.; Afsharmanesh, M.; Ebrahimnejad, H.; Meimandipour, A.; Amiri, N. Encapsulation of Essential Oils of Rosemary. Anim. Prod. Sci. 2022, 62, 851–859. [Google Scholar] [CrossRef]
- Adil, S.; Banday, M.T.; Hussain, S.A.; Wani, M.A.; Al-Olayan, E.; Patra, A.K.; Rasool, S.; Gani, A.; Sheikh, I.U.; Khan, A.A.; et al. Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken. Foods 2024, 13, 1515. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, M.; UG, S.; MA, A.; IH, C.; TONBAK, F. The Effects of Dietary Rosemary (Rosmarinus officinalis L.) Oil Supplementation on Performance, Carcass Traits and Some Blood Parameters of Japanese Quail Under Heat Stressed Condition. Kafkas Univ. Veter. Fak. Derg. 2013, 19, 595–599. [Google Scholar] [CrossRef]
- Cetin, E.; Anar, B.; Temelli, S.; Cengiz, S.S.; Eren, M. Effect of Dietary Oregano and Rosemary Essential Oil Supplementation on Growth Performance and Cecal Microbiota of Broilers. J. Hell. Veter. Med. Soc. 2023, 73, 4965–4970. [Google Scholar] [CrossRef]
- Madkour, M.; Alaqaly, A.M.; Soliman, S.S.; Ali, S.I.; Aboelazab, O. Growth Performance, Blood Biochemistry, and MRNA Expression of Hepatic Heat Shock Proteins of Heat-Stressed Broilers in Response to Rosemary and Oregano Extracts. J. Therm. Biol. 2024, 119, 103791. [Google Scholar] [CrossRef]
- Kırkpınar, F.; Ünlü, H.B.; Özdemir, G. Effects of Oregano and Garlic Essential Oils on Performance, Carcase, Organ and Blood Characteristics and Intestinal Microflora of Broilers. Livest. Sci. 2011, 137, 219–225. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ashmawy, E.S.; Salama, A.A.; Abdel-Moneim, A.M.; Badri, F.B.; Thabet, H.A. Effects of Garlic and Lemon Essential Oils on Performance, Digestibility, Plasma Metabolite, and Intestinal Health in Broilers under Environmental Heat Stress. BMC Veter. Res. 2022, 18, 430. [Google Scholar] [CrossRef]
- Ghazanfari, S.; Mohammadi, Z.; Adib Moradi, M. Effects of Coriander Essential Oil on the Performance, Blood Characteristics, Intestinal Microbiota and Histological of Broilers. Rev. Bras. Cienc. Avic. 2015, 17, 419–426. [Google Scholar] [CrossRef]
- Ali, U.; Qaisrani, S.; Mahmud, A.; Hayat, Z.; Toyomizu, M. Effects of Supplemented Coriander, Ajwain, and Dill Seed Essential Oils on Growth Performance, Carcass Characteristics, Gut Health, Meat Quality, and Immune Status in Broilers. J. Poult. Sci. 2024, 61, 2024006. [Google Scholar] [CrossRef]
- Almremdhy, H.A.A.E. The Effect of Coriander Oil in Drinking Water of Broiler Chickens in Growth Performance and Immune Response. Plant Arch. 2020, 20, 1999–2002. [Google Scholar]
- El-Deek, A.A.; Al-Harthi, M.A.; Osman, M.; Al-Jassas, F.; Nassar, R. Hot Pepper (Capsicum annum) as an Alternative to Oxytetracycline in Broiler Diets and Effects on Productive Traits, Meat Quality, Immunological Responses and Plasma Lipids. Eur. Poult. Sci. 2012, 76, 73–80. [Google Scholar]
- Liu, S.J.; Wang, J.; He, T.F.; Liu, H.S.; Piao, X.S. Effects of Natural Capsicum Extract on Growth Performance, Nutrient Utilization, Antioxidant Status, Immune Function, and Meat Quality in Broilers. Poult. Sci. 2021, 100, 101301. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Ghazanfari, S.; Moradi, M.A. Effect of Supplementing Clove Essential Oil to the Diet on Microflora Population, Intestinal Morphology, Blood Parameters and Performance of Broilers. Eur. Poult. Sci. (EPS) 2014, 78. [Google Scholar] [CrossRef]
- Mohammadi, F. Effect of Different Levels of Clove (Syzygium aromaticum L.) Essential Oil on Growth Performance and Oxidative/Nitrosative Stress Biomarkers in Broilers under Heat Stress. Trop. Anim. Health Prod. 2021, 53, 84. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Al-Khalaifah, H.S.; Nada, H.S.; Roushdy, E.M.; Zaglool, A.W.; Ahmed Ismail, T.; Ibrahim, S.M.; Ibrahim, D. Black Pepper or Radish Seed Oils in a New Combination of Essential Oils Modulated Broiler Chickens’ Performance and Expression of Digestive Enzymes, Lipogenesis, Immunity, and Autophagy-Related Genes. Veter. Sci. 2022, 9, 43. [Google Scholar] [CrossRef]
Compound | Part Used | Plant | References |
---|---|---|---|
Carvacol | Aerialparts | Origanum vulgare | [25] |
Phenols, flavonoids | Leaves | Citrus lemon | [26] |
Monoterpene | Leaves | Rosemary officinalis | [27] |
Aromadendrene | Fruit | Eucalyptus globules | [28] |
Terpene Monoterpene Sesquiterpene | Immature flowers, Stem, fruit | Eucalyptus oleosa | [29] |
Cinnamaldehyde | Cassia leaves | Cinnamomum cassia | [30] |
Sesquiterpenes Monoterpenes | Rhizome | Curcuma spp. | [31] |
Trisulfid, Disulfide | Rhizomes | Allium sativum | [32] |
Sesquiterpene hydrocarbons Oxygenated sesquiterpenes | Leaves | Eugenia | [22] |
Monoterpene citral | Leaves | Cymbopogon citratus | [33] |
Carvacol | Dried herb | Thymus sp., Thymbra sp. Satureja sp., Lippia sp. Coridothymus sp. | [34] |
α-copaeno, α-muuroleno δ-cadineno, 1s-calameneno | Leaves | Phoebe bournei | [11] |
Linalool, estragole | Leaves | Ocimum basilicum | [5] |
Linalool acetate, linalool | Leaves | Lavandula angustifolia | [35] |
Plants | Activity Against | MIC | References |
---|---|---|---|
Cymbopogon citratus | Acinetobacter baumanii Aeromonas veronii biogroup sobria Candida albicans Enterococcus faecalis Escherichia coli Klebsiella pneumoniae | 0.03% v/v 0.12% 0.06% 0.12% 0.06% 0.25% | [53] |
Origanum vulgare | Pseudomonas aeruginosa Salmonella entericas Serratia marcescens Staphylococcus aureus | 2.00% v/v 0.12% 0.25% 0.12% | |
Cymbopogon sp. | Salmonella Heidelberg | 0.5% v/v | [54] |
Citrus japonica | Bacillus subtilis E. coli Salmonella typhimurium | 1.56 µL/mL 1.56 100 | [55] |
Citrus sinensis | Listeria monocytogenes Staphylococcus aureus Pseudomonas aeruginosa | 10 mg/mL 10 10 | [56] |
Origanum vulgare | Escherichia coli Salmonella Indiana Listeria innocua | 0.9 mg/mL 0.9 0.9 | [42] |
Origanum spp. | Bacillus subtilis | 0.15 mg/g | [46] |
Oreganum vulgare ssp. Hirtum | Listeria monocytogenes, Salmonella typhimurium Escherichia coli O157:H7 | 4.5 mm a 10 10 | [36] |
Rosmarinus officinalis | Escherichia coli Salmonella indiana Listeria innocua | 0.9 mg/mL 0.9 0.9 | [42] |
Rosmarinus officinalis | Eschericia coli MDR Shigella sonei Salmonella typhi Salmonella enteritidis Staphylococcus aureus S. epidermidis | 18.6 b 19.4 18 26.6 17.2 18.2 | [27] |
Escherichia coli Salmonella indiana Listeria innocua | 5 mL/mL 10 mL/mL 5 mL/mL | [57] | |
Phoebe bournei | Epidermophyton floccosum Microsporum gypseum | 74.2 µg/mL 32 | [11] |
Beilschmiedia madang | Bacillus subtilis Staphylococcus aureus Aspergillus niger Aspergillus fumigatus | 125 µg/mL 125 62.5 62.5 | [37] |
Curcuma spp. | Bacillus cereus B. coagulans B. subtilis S. aureus E. coli Psudomona aeruginosa | 100 ppm c 50 100 100 200 200 | [58] |
Eucalyptus spp. | E. coli S. aureus P. aeruginosa | 28.5% d 67.5 36.8 | [40] |
Lavandula angustifolia | Salmonella pullorum S. enteritidis S. typhimurium Staphylococcus aureus P. aeruginosa Candida albicans | 0.50% v/v 0.625 1.50 0.25 2.0 0.625 | [59] |
EO or Molecule, Doses, and Duration | Active Compound | Net Effect of EO on Production | References |
---|---|---|---|
EO commercial product. (25 and 50 mg/kg) in diet. Trial of 35 d | Thymol | No effect on BWG, FI, or FCR | [89] |
EO commercial product (100 and 150 g/ton) in diet. Trial of 42 d | Carvacrol, cinnamaldehyde eugenol | No effect on BWG, FI, or FCR | [99] |
EO commercial product (100 g/ton) in diet. Trial of 42 d | Cinnamaldehyde thymol | No effect on BWG FI or FCR; the EO. | [100] |
EO commercial product (25, 50, 100, and 150 mg/kg) in diet. Trial of 36 d | Cinnamaldehyde thymol | EO improved BWG (11.5%) and FCR | [101] |
EO commercial product (50, 100, 200, and 400 mg/kg) in diet. Trial of 42 d | Thymol, carvacrol, cinnamaldehyde, and carrier is dextrin | EO had quadratic. improvement for ADG (6.4%) at 1 to 21d with EO. N other effects of EO on bird production | [102] |
Commercial product of EO plus organic acids (0, 0.05, and 0.075%) in diet. Trial of 35 d | Thymol and vanillin plus organic acids | EO had linear improvement for BWG (3.8%) and FCR (3.4%) with EO plus organic acids | [103] |
Commercial product of EO plus organic acids (150, 200, or 250 mg/kg) in diet. Trial of 70 d | Thymol and vanillin plus organic acids | EO had linear improvement for ADG (2.9%) and FCR (2.1%) at 1 to organic acids | [104] |
EO commercial product (0.075%) in diet. Trial of 42 d | Thyme extract | EO improved BWG (13%) and FCR (22%) | [105] |
EO of thyme (150 or 300 mg/kg); EO of rosemary (100 or 200 mg/kg) in diet. Trial of 42 d | Thyme EO Rosemary EO | No effect on BWG, FI, or FCR | [106] |
EO of thyme (0.5 and 1.0 g/kg) in diet. Trial of 42 d | Thyme EO (14.2 and 18.7%) | EO improved ADG and FCR (5.7 and 7.8% at 0.5 and 1.0 g/kg) | [107] |
EO commercial product (0 or 100 mg/kg) in diet. From 9 to 35 d of age. Values for low and high ME in diet | Carvacrol, cinnamaldehyde, and capsicum oleoresin | EO improved ADG (2.1 and 2.7%) and FE (1.8% and 2.8%) | [108] |
EO commercial product (0, 60, 100, and 200 mg/kg) in diet. Trial of 42 d | Thymol and carvacrol improvement for | EO had linear ADG (4%) and FE (6.3%) | [90] |
EO commercial product. (0 or 100 mg/kg) in diet. From 9 to 35 d of age. | Carvacrol cinnamaldehyde capsicum oleoresin | EO improved ADG (14.5%) and FE (9.8%) | [109] |
Commercial product of EO plus organic acids (0.30 g/kg) in diet. Trial of 42 d | Thymol plus | EO improved FCR | [92] |
Commercial product of EO (300 mg/kg) in diet. Trial of 42 d | Cinnamaldehyde, carvacrol, thymol, eugenol | EO only improved FCR in the starter phase | [110] |
Commercial product of EO (100 g/t) in diet. Trial of 42 d | Eucalyptus oil, carvacrol, cinnamyl | No effect on BWG, FI, or FCR aldehyde, capsaicin | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Chavira, J.; Barrios-García, H.B. Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review. Agriculture 2024, 14, 1864. https://doi.org/10.3390/agriculture14111864
Salinas-Chavira J, Barrios-García HB. Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review. Agriculture. 2024; 14(11):1864. https://doi.org/10.3390/agriculture14111864
Chicago/Turabian StyleSalinas-Chavira, Jaime, and Hugo Brígido Barrios-García. 2024. "Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review" Agriculture 14, no. 11: 1864. https://doi.org/10.3390/agriculture14111864
APA StyleSalinas-Chavira, J., & Barrios-García, H. B. (2024). Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review. Agriculture, 14(11), 1864. https://doi.org/10.3390/agriculture14111864