Comparing the Effect of Osseodensification Versus Conventional Drilling Technique on Implant Stability and Bone Width in the Alveolar Ridge Split Procedure: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
- Test group (n = 133 implants): Ridge split and implant placement using osseodensification (OD) burs (Densah™, Versah LLC, Jackson, MI, USA).
- Control group (n = 135 implants): Ridge split and implant placement using the conventional Esset kit (Osstem Implant Co., Seoul, Republic of Korea) and standard drills.
2.2. Surgical Protocol
- Test group (OD): A pilot osteotomy was initiated with a Densah bur at 800 rpm in clockwise mode. Subsequently, osseodensification was performed in counterclockwise mode at 1200 rpm using burs of increasing diameters (2.3–3.3 mm) [Figure 1].
- Control group: Osteotomies were prepared with twist and expansion burs from the Osstem Esset ridge split kit (1.6–4.1 mm) at 800–1200 rpm, using conventional cutting and pumping motions (Figure 2).
2.3. Clinical Measurements
- Bone width: CBCT scans (KaVo OP 3D Vision, Imaging Sciences International LLC, Hatfield, PA, USA) were obtained preoperatively and at 4 months. Measurements were performed at coronal and apical levels using OnDemand 3D App v1.0 (Cybermed Inc., Daejeon, Republic of Korea). The difference between baseline and 4 months was recorded as “bone gain” (Figure 3). All measurements were performed twice by a single examiner, with intra-observer reliability exceeding 90%.
- Implant stability: Primary stability (at placement) and secondary stability (at 4 months, during healing abutment connection) were assessed using resonance frequency analysis (RFA) with the Osstell device (Osstell AB, Göteborg, Sweden) and implant-specific SmartPeg transducers. ISQ values were recorded in both mesiodistal and buccolingual directions, each measured twice and averaged.
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Implant Stability (ISQ)
3.3. Bone Width and Bone Gain
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OD | Osseodensification |
CGF | Concentrated Growth Factor |
RFA | Resonance Frequency analysis |
CBCT | Cone-Beam Computed Tomography |
ISQ | Implant Stability Quotient |
References
- Clark, D.; Levin, L. Dental implant management and maintenance: How to improve long-term implant success. Quintessence Int. 2016, 47, 417–423. [Google Scholar]
- Bandela, V.; Shetty, N.; Munagapati, B.; Basany, R.B.; Kanaparthi, S. Comparative Evaluation of Osseodensification Versus Conventional Osteotomy Technique on Dental Implant Primary Stability: An Ex Vivo Study. Cureus 2022, 14, e30843. [Google Scholar] [CrossRef]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef]
- Sennerby, L.; Roos, J. Surgical determinants of clinical success of osseointegrated oral implants: A review of the literature. Int. J. Prosthodont. 1998, 11, 408–420. [Google Scholar]
- Nulty, A. A literature review on prosthetically designed guided implant placement and the factors influencing dental implant success. Br. Dent. J. 2024, 236, 169–180. [Google Scholar] [CrossRef]
- Aghaloo, T.L.; Moy, P.K. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int. J. Oral Maxillofac. Implant. 2007, 22, 49–70. [Google Scholar]
- Ramanauskaite, A.; Sader, R. Esthetic complications in implant dentistry. Periodontology 2000 2022, 88, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Brånemark, P.-I.; Breine, U.; Adell, R.; Hansson, B.O.; Lindström, J.; Ohlsson, Å. Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Andersson, P.; Pagliani, L.; Verrocchi, D.; Volpe, S.; Sahlin, H.; Sennerby, L. Factors Influencing Resonance Frequency Analysis (RFA) Measurements and 5-Year Survival of Neoss Dental Implants. Int. J. Dent. 2019, 2019, 3209872. [Google Scholar] [CrossRef]
- Albrektsson, T. Direct bone anchorage of dental implants. J. Prosthet. Dent. 1983, 50, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1998, 11, 491–501. [Google Scholar]
- Bergamo, E.T.P.; Zahoui, A.; Barrera, R.B.; Huwais, S.; Coelho, P.G.; Karateew, E.D.; Bonfante, E.A. Osseodensification effect on implants primary and secondary stability: Multicenter controlled clinical trial. Clin. Implant Dent. Relat. Res. 2021, 23, 317–328. [Google Scholar] [CrossRef]
- Huwais, S.; Meyer, E. A Novel Osseous Densification Approach in Implant Osteotomy Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and Bone-to-Implant Contact. Int. J. Oral Maxillofac. Implant. 2017, 32, 27–36. [Google Scholar] [CrossRef]
- Slete, F.B.; Olin, P.; Prasad, H. Histomorphometric Comparison of 3 Osteotomy Techniques. Implant Dent. 2018, 27, 424–428. [Google Scholar] [CrossRef]
- Trisi, P.; Berardini, M.; Falco, A.; Podaliri Vulpiani, M. New osseodensification implant site preparation method to increase bone density in low-density bone: In vivo evaluation in sheep. Implant Dent. 2016, 25, 24–31. [Google Scholar] [CrossRef]
- Lahens, B.; Neiva, R.; Tovar, N.; Alifarag, A.M.; Jimbo, R.; Bonfante, E.A.; Bowers, M.M.; Cuppini, M.; Freitas, H.; Witek, L.; et al. Biomechanical and histologic basis of osseodensification drilling for endosteal implant placement in low density bone. An experimental study in sheep. J. Mech. Behav. Biomed. Mater. 2016, 63, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Elnayef, B.; Monje, A.; Lin, G.-H.; Gargallo-Albiol, J.; Chan, H.-L.; Wang, H.-L.; Hernández-Alfaro, F. Alveolar Ridge Split on Horizontal Bone Augmentation: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2015, 30, 596–606. [Google Scholar] [CrossRef]
- Tatum, H. Maxillary and sinus implant reconstructions. Dent. Clin. N. Am. 1986, 30, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F. Die modifizierte Alveolar-Extensions-plastik. Z. Zahnarztiimplantol. 1987, 3, 174–178. [Google Scholar]
- Summers, R.B. A new concept in maxillary implant surgery: The osteotome technique. Compendium 1994, 15, 152–162. [Google Scholar]
- Bassetti, M.A.; Bassetti, R.G.; Bosshardt, D.D. The alveolar ridge splitting/expansion technique: A systematic review. Clin. Oral Implant. Res. 2016, 27, 310–324. [Google Scholar] [CrossRef]
- Tolstunov, L.; Hamrick, J.F.E.; Broumand, V.; Shilo, D.; Rachmiel, A. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 163–191. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, A.; Spencer, P. Osseointegrated implant failures. J. Ir. Dent. Assoc. 1999, 45, 44–51. [Google Scholar] [PubMed]
- Branemark, P.-I. Osseointegration and its experimental background. J. Prosthet. Dent. 1983, 50, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Ravida, A.; Helms, J.A.; Brunski, J.B. Relationship Between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implant. 2019, 34, s7–s23. [Google Scholar] [CrossRef]
- McAllister, B.S.; Haghighat, K. Bone Augmentation Techniques. J. Periodontol. 2007, 78, 377–396. [Google Scholar] [CrossRef]
- Holtzclaw, D.J.; Toscano, N.J.; Rosen, P.S. Reconstruction of Posterior Mandibular Alveolar Ridge Deficiencies with the Piezoelectric Hinge–Assisted Ridge Split Technique: A Retrospective Observational Report. J. Periodontol. 2010, 81, 1580–1586. [Google Scholar] [CrossRef]
- Tolstunov, L.; Hicke, B. Horizontal augmentation through the ridge-split procedure: A predictable surgical modality in implant reconstruction. J. Oral Implantol. 2013, 39, 59–68. [Google Scholar] [CrossRef]
- Altiparmak, N.; Akdeniz, S.S.; Bayram, B.; Gulsever, S.; Uçkan, S. Alveolar ridge splitting versus autogenous onlay bone grafting: Complications and implant survival rates. Implant Dent. 2017, 26, 284–287. [Google Scholar] [CrossRef]
- Glauser, R.; Sennerby, L.; Meredith, N.; Rée, A.; Lundgren, A.; Gottlow, J.; Hämmerle, C.H.F. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Clin. Oral Implant. Res. 2004, 15, 428–434. [Google Scholar] [CrossRef]
- Meredith, N.; Books, K.; Fribergs, B.; Jemt, T.; Sennerby, L. Resonance frequency measurements of implant stability in viva. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin. Oral Implant. Res. 1997, 8, 226–233. [Google Scholar] [CrossRef]
- Hsu, A.; Seong, W.J.; Wolff, R.; Zhang, L.; Hodges, J.; Olin, P.S.; Hinrichs, J.E. Comparison of Initial Implant Stability of Implants Placed Using Bicortical Fixation, Indirect Sinus Elevation, and Unicortical Fixation. Int. J. Oral Maxillofac. Implant. 2016, 31, 459–468. [Google Scholar] [CrossRef]
- Degidi, M.; Daprile, G.; Piattelli, A. Influence of Underpreparation on Primary Stability of Implants Inserted in Poor Quality Bone Sites: An In Vitro Study. J. Oral Maxillofac. Surg. 2015, 73, 1084–1088. [Google Scholar] [CrossRef]
- Ivanoff, C.J.; Gröndahl, K.; Bergström, C.; Lekholm, U.; Brånemark, P.I. Influence of bicortical or monocortical anchorage on maxillary implant stability: A 15-year retrospective study of Brånemark System implants. Int. J. Oral Maxillofac. Implant. 2000, 15, 103–110. [Google Scholar]
- Lopez, C.D.; Alifarag, A.M.; Neiva, R.; Tovar, N.; Witek, L.; Coelho, P.G. Osseodensification for enhancement of spinal surgical hardware fixation. J. Mech. Behav. Biomed. Mater. 2017, 69, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Lin, Y.; Xie, Q.; Li, J.; Wang, L.; Gu, Y. Osseodensification: A novel approach in implant site preparation for increasing primary stability and bone density—Histomorphometric study in animals. Clin. Implant Dent. Relat. Res. 2019, 21, 151–159. [Google Scholar]
- Gaikwad, A.M.; Joshi, A.A.; Nadgere, J.B. Biomechanical and histomorphometric analysis of endosteal implants placed by using the osseodensification technique in animal models: A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 127, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Jarikian, S.; Jaafo, M.H.; Al-Nerabieah, Z. Clinical evaluation of two techniques for narrow alveolar ridge expansion: Clinical study. Int. J. Dent. Oral Sci. 2021, 8, 1047–1052. [Google Scholar]
- Tofan, N.H.; Al-Hussaini, A.H.; Mustafa, N.S. Efficiency of osseodensification versus screw expansion technique for augmentation of narrow alveolar ridges: A comparative clinical study. J. Baghdad Coll. Dent. 2024, 36, 34–43. [Google Scholar] [CrossRef]
- Koutouzis, T.; Huwais, S.; Hasan, F.; Trahan, W.; Waldrop, T.; Neiva, R. Alveolar Ridge Expansion by Osseodensification-Mediated Plastic Deformation and Compaction Autografting. Implant Dent. 2019, 28, 349–355. [Google Scholar] [CrossRef]
- Mori, S.; Burr, D.B. Increased intracortical remodeling following fatigue damage. Bone 1993, 14, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Verborgt, O.; Gibson, G.J.; Schaffler, M.B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 2000, 15, 60–67. [Google Scholar] [CrossRef]
- Fontes Pereira, J.; Costa, R.; Nunes Vasques, M.; Relvas, M.; Braga, A.C.; Salazar, F.; Infante da Câmara, M. The effectiveness of osseodensification drilling versus the conventional surgical technique on implant stability: A clinical trial. J. Clin. Med. 2024, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Stacchi, C.; Troiano, G.; Montaruli, G.; Mozzati, M.; Lamazza, L.; Antonelli, A.; Giudice, A.; Lombardi, T. Changes in implant stability using different site preparation techniques: Osseodensification drills versus piezoelectric surgery. A multi-center prospective randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2023, 25, 133–140. [Google Scholar] [CrossRef]
- Fontes Pereira, J.; Costa, R.; Nunes Vasques, M.; Salazar, F.; Mendes, J.M.; Infante da Câmara, M. Osseodensification: An Alternative to Conventional Osteotomy in Implant Site Preparation: A Systematic Review. J. Clin. Med. 2023, 12, 7046. [Google Scholar] [CrossRef]
- Nocini, P.F.; Menchini Fabris, G.B.; Gelpi, F.; Lotti, J.; Favero, V.; Zanotti, G.; Jurlaro, A.; Rosskopf, I.; Lotti, T.; Barone, A.; et al. Treatment of skin defects with growth factors and biodegradable collagen carrier: Histological evaluation in animal model. J. Biol. Regul. Homeost. Agents 2017, 31 (Suppl. 2), 1–13. [Google Scholar] [PubMed]
OD Group | Control Group | p | ||||
---|---|---|---|---|---|---|
Mean ± Sd | Min–Max (Median) | Mean ± Sd | Min–Max (Median) | |||
Maxilla Anterior Region | T0 (Primary Stability) | 81.98 ± 4 | 73–90 (82) | 77.37 ± 5.5 | 65–86 (77) | a 0.001 ** |
T1 (Secondary Stability) | 82.37 ± 4.91 | 73–92 (82) | 77.27 ± 5.25 | 68–87 (77) | a 0.001 ** | |
Maxilla Posterior Region | T0 (Primary Stability) | 81.54 ± 3.68 | 71–89 (82) | 76 ± 5.63 | 62–86 (76) | a 0.001 ** |
T1 (Secondary Stability) | 81.39 ± 4.55 | 72–89 (82) | 74.61 ± 5.07 | 61–84 (75) | a 0.001 ** | |
Mandibula Anterior Region | T0 (Primary Stability) | 81.6 ± 6.24 | 68–88 (84) | 83.08 ± 4.81 | 74–88 (85) | b 0.507 |
T1 (Secondary Stability) | 82.7 ± 4.99 | 75–92 (83) | 85.17 ± 4.97 | 76–91 (86) | b 0.290 | |
Mandibula Posterior Region | T0 (Primary Stability) | 83.93 ± 3.4 | 76–89 (85) | 82.07 ± 5.25 | 71–90 (83) | a 0.061 |
T1 (Secondary Stability) | 86 ± 4.25 | 71–94 (87) | 81.41 ± 6.79 | 66–92 (83) | a 0.001 ** |
T0 (Primary Stability) | T1 (Secondary Stability) | p | ||||
---|---|---|---|---|---|---|
Mean ± Sd | Min–Max (Median) | Mean ± Sd | Min–Max (Median) | |||
Maxilla Anterior Region | OD Group | 81.98 ± 4.0 | 73–90 (82) | 82.37 ± 4.91 | 73–92 (82) | c 0.685 |
Control Group | 77.37 ± 5.5 | 65–86 (77) | 77.27 ± 5.25 | 68–87 (77) | c 0.934 | |
Maxilla Posterior Region | OD Group | 81.54 ± 3.68 | 71–89 (82) | 81.39 ± 4.55 | 72–89 (82) | c 0.845 |
Control Group | 76 ± 5.63 | 62–86 (76) | 74.61 ± 5.07 | 61–84 (75) | c 0.220 | |
Mandibula Anterior Region | OD Group | 81.6 ± 6.24 | 68–88 (84) | 82.7 ± 4.99 | 75–92 (83) | d 0.878 |
Control Group | 83.08 ± 4.81 | 74–88 (85) | 85.17 ± 4.97 | 76–91 (86) | d 0.271 | |
Mandibula Posterior Region | OD Group | 83.93 ± 3.4 | 76–89 (85) | 86.0 ± 4.25 | 71–94 (87) | c 0.021 * |
Control Group | 82.07 ± 5.25 | 71–90 (83) | 81.41 ± 6.79 | 66–92 (83) | c 0.631 |
Ridge Width (mm) | a p | |||||
---|---|---|---|---|---|---|
Coronal | Apical | |||||
Mean ± Sd | Min–Max (Median) | Mean ± Sd | Min–Max (Median) | |||
Preop | OD Group | 4.27 ± 1.03 | 3.1–5.8 (4.1) | 7.12 ± 0.69 | 5.8–7.9 (7.2) | 0.044 * |
Control Group | 3.78 ± 1.12 | 2.7–5.8 (3.3) | 6.52 ± 0.98 | 4.8–8.3 (6.7) | 0.045 * | |
b p | 0.350 | 0.156 | ||||
Postop | OD Group | 7.08 ± 0.58 | 6.3–7.9 (7.3) | 7.86 ± 0.86 | 6.2–8.8 (8.1) | 0.111 |
Control Group | 6.77 ± 0.97 | 5.9–8.7 (6.3) | 7.73 ± 0.72 | 6.7–8.7 (7.8) | 0.596 | |
b p | 0.248 | 0.748 | ||||
Bone Gain | OD Group | 2.81 ± 0.59 | 2–3.6 (3.1) | 0.73 ± 0.2 | 0.4–1 (0.8) | 0.001 ** |
Control Group | 2.99 ± 0.37 | 2.4–3.6 (3.1) | 1.37 ± 0.83 | 0.4–2.8 (1.2) | 0.001 ** | |
a p | 0.720 | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guner, Y.E.; Canakci, V. Comparing the Effect of Osseodensification Versus Conventional Drilling Technique on Implant Stability and Bone Width in the Alveolar Ridge Split Procedure: A Retrospective Study. J. Clin. Med. 2025, 14, 7431. https://doi.org/10.3390/jcm14207431
Guner YE, Canakci V. Comparing the Effect of Osseodensification Versus Conventional Drilling Technique on Implant Stability and Bone Width in the Alveolar Ridge Split Procedure: A Retrospective Study. Journal of Clinical Medicine. 2025; 14(20):7431. https://doi.org/10.3390/jcm14207431
Chicago/Turabian StyleGuner, Yunus Emre, and Varol Canakci. 2025. "Comparing the Effect of Osseodensification Versus Conventional Drilling Technique on Implant Stability and Bone Width in the Alveolar Ridge Split Procedure: A Retrospective Study" Journal of Clinical Medicine 14, no. 20: 7431. https://doi.org/10.3390/jcm14207431
APA StyleGuner, Y. E., & Canakci, V. (2025). Comparing the Effect of Osseodensification Versus Conventional Drilling Technique on Implant Stability and Bone Width in the Alveolar Ridge Split Procedure: A Retrospective Study. Journal of Clinical Medicine, 14(20), 7431. https://doi.org/10.3390/jcm14207431