Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,121)

Search Parameters:
Keywords = dental implants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1161 KB  
Article
Electrochemical Interactions of Titanium and Cobalt–Chromium–Molybdenum Alloy in Different Solutions
by Anja Ivica, Matea Nimac, Ivica Pelivan, Matija Roglić, Tomislav Kovačević, Mario Cifrek and Jurica Matijević
Materials 2026, 19(2), 367; https://doi.org/10.3390/ma19020367 - 16 Jan 2026
Abstract
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and [...] Read more.
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and between a novel Ti–magnesium composite (BIACOM TiMg) and CoCrMo, when immersed in everyday solutions representing beverage or oral hygiene exposure. Test solutions included Coca-Cola®, lemon juice, Elmex® fluoride gel, Listerine® Cool Mint, and Sensodyne® fluoride paste. Immersion experiments paired Ti sticks with CoCrMo sticks and, separately, BIACOM TiMg with CoCrMo sticks, with three measurements per configuration. When galvanically coupled with CoCrMo, immersion in Coca-Cola produced galvanic potential differences of ~983 mV for the BIACOM TiMg-CoCrMo couple and 830 mV for the commercially pure grade 4 (CP4) Ti-CoCrMo couple, indicating significant electrochemical instability. Both materials showed significant potential increases in Elmex fluoride gel. Listerine Cool Mint and Sensodyne fluoride exposure produced electrochemical interactions exceeding 200 mV. Significant differences in corrosion stability were observed between CP4 Ti and BIACOM TiMg. These findings indicate that material pairing and electrolyte environment significantly influence galvanic behavior, with the Ti-Mg composite showing greater susceptibility than CP4 Ti, informing dental/biomedical material selection in oral environments. Full article
Show Figures

Graphical abstract

12 pages, 964 KB  
Review
Jawbone Cavitations: Current Understanding and Conceptual Introduction of Covered Socket Residuum (CSR)
by Shahram Ghanaati, Anja Heselich, Johann Lechner, Robert Sader, Jerry E. Bouquot and Sarah Al-Maawi
Bioengineering 2026, 13(1), 106; https://doi.org/10.3390/bioengineering13010106 - 16 Jan 2026
Abstract
Jawbone cavitations have been described for decades under various terminologies, including neuralgia-inducing cavitational osteonecrosis (NICO) and fatty degenerative osteolysis of the jawbone (FDOJ). Their biological nature and clinical relevance remain controversial. The present review aimed to summarize the current understanding of jawbone cavitations, [...] Read more.
Jawbone cavitations have been described for decades under various terminologies, including neuralgia-inducing cavitational osteonecrosis (NICO) and fatty degenerative osteolysis of the jawbone (FDOJ). Their biological nature and clinical relevance remain controversial. The present review aimed to summarize the current understanding of jawbone cavitations, identify relevant research gaps, and propose a unified descriptive terminology. This narrative literature review was conducted using PubMed/MEDLINE, Google Scholar, and manual searches of relevant journals. The available evidence was qualitatively synthesized. The results indicate that most published data on jawbone cavitations are derived from observational, retrospective, and cohort studies, with etiological concepts largely based on histopathological findings. Recent three-dimensional radiological analyses suggest that intraosseous non-mineralized areas frequently observed at former extraction sites may represent a physiological outcome of socket collapse and incomplete ossification rather than a pathological condition. This review introduces Covered Socket Residuum (CSR) as a radiological descriptive term and clearly distinguishes it from pathological entities such as NICO and FDOJ. Recognition of CSR is clinically relevant, particularly in dental implant planning, where unrecognized non-mineralized areas may compromise primary stability. The findings emphasize the role of three-dimensional radiological assessment for diagnosis and implant planning and discuss preventive and therapeutic strategies, including Guided Open Wound Healing (GOWHTM). Prospective controlled clinical studies are required to validate this concept and determine its clinical relevance. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

14 pages, 792 KB  
Article
Clinical Success Rates of Dental Implants with Bone Grafting in a Large-Scale National Dataset
by Mordechai Findler, Haim Doron, Jonathan Mann, Tali Chackartchi and Guy Tobias
J. Funct. Biomater. 2026, 17(1), 46; https://doi.org/10.3390/jfb17010046 - 15 Jan 2026
Abstract
Objective: To evaluate the clinical success outcomes and risk factors associated with dental implants placed with simultaneous bone augmentation in a large-scale, real-world cohort. Methods: A retrospective analysis was conducted on 158,824 implants, including 45,715 Dental Bone Grafts, placed between 2014 and 2022 [...] Read more.
Objective: To evaluate the clinical success outcomes and risk factors associated with dental implants placed with simultaneous bone augmentation in a large-scale, real-world cohort. Methods: A retrospective analysis was conducted on 158,824 implants, including 45,715 Dental Bone Grafts, placed between 2014 and 2022 within a national healthcare network. Multivariate Generalized Estimating Equations were utilized to assess the impact of demographic, anatomical, and procedural variables on implant failure. Results: The augmented cohort demonstrated a high clinical success rate of 97.83% (2.17% failure), statistically comparable to the general implant population. Failures were predominantly early (<1 year), accounting for 70% of losses. Significant independent risk factors included immediate implant placement (3.08% failure vs. 2.07% for delayed), male gender, and maxillary location. Notably, low socioeconomic status (SES) emerged as a significant predictor, with a failure rate of 3.07% compared to 2.06% in high-SES groups. Conclusions: Simultaneous bone augmentation is a predictable modality that does not inherently increase implant failure risk, supporting the stabilization hypothesis. However, failure is modulated by specific variables. The identification of lower SES, male gender, and immediate placement as significant risk indicators highlights the necessity for personalized risk assessment and targeted protocols to optimize outcomes in augmented sites. Full article
(This article belongs to the Special Issue Biomaterials for Periodontal and Peri-Implant Regeneration)
14 pages, 1191 KB  
Article
Cross-Sectional Clinical Evaluation of Subantral Augmentation Using Nano Graft Composite: Implications for Implant Success
by Olexiy Kosinov, Olesya Manukhina, Kristina Volchykhina, Oleg Mishchenko, Andrii Liutyi, Agne Ramanaviciute, Vilma Ratautaite and Arunas Ramanavicius
Dent. J. 2026, 14(1), 57; https://doi.org/10.3390/dj14010057 - 15 Jan 2026
Abstract
Objectives: This study aims to evaluate the efficacy of hydroxyapatite-tricalcium phosphate (HAP-TCP) as a bone substitute in subantral augmentation for dental implants. Specifically, it investigates the effects of HAP-TCP on bone quality, density, and integration with implants over time. Methods: A prospective controlled [...] Read more.
Objectives: This study aims to evaluate the efficacy of hydroxyapatite-tricalcium phosphate (HAP-TCP) as a bone substitute in subantral augmentation for dental implants. Specifically, it investigates the effects of HAP-TCP on bone quality, density, and integration with implants over time. Methods: A prospective controlled longitudinal study was conducted on 22 patients (39–75 years of age) undergoing subantral augmentation and dental implantation. A total of 52 sites of augmented bone and 67 sites of native bone were analyzed using computed tomography (CT) to assess bone density in Hounsfield Units (HU), insertion torque measurements, and the Misch classification for bone quality. Augmented and native bone measurements were compared within each patient. Results: The augmented bone exhibited an average density of 1132.6 ± 334.9 HU, which is significantly higher (45.9%) than the average density of native bone at 519.3 ± 395.0 HU. Insertion torque values in the HAP-TCP augmented sites averaged 35 N·cm, showing a 71.4% increase compared to adjacent native bone sites (25 N·cm). The study found notable improvements in bone homogeneity and vascularization within the augmented zones. Conclusion: HAP-TCP demonstrates significant potential as a reliable and effective synthetic bone substitute for subantral augmentation in dental implants. It yields higher radiodensity and insertion torque than adjacent native bone, while mitigating complications associated with autogenous grafts. These observational findings support the potential clinical use of HAP-TCP for sinus augmentation. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Figure 1

27 pages, 1477 KB  
Review
From Biological Mechanisms to Clinical Outcomes: A Scoping Review Comparing Immediate and Delayed Dental Implant Placement Protocols
by Nuttaya Phrai-in, Pimduen Rungsiyakull, Aetas Amponnawarat and Apichai Yavirach
J. Clin. Med. 2026, 15(2), 682; https://doi.org/10.3390/jcm15020682 - 14 Jan 2026
Viewed by 22
Abstract
Background/Objectives: Dental implant placement protocols including immediate (IIP) and delayed implant placement (DIP) are likely to affect bone tissue repair and regeneration after the surgery. Despite many benefits of IIP, it has remained unclear whether IIP demonstrates comparable healing processes and outcomes to [...] Read more.
Background/Objectives: Dental implant placement protocols including immediate (IIP) and delayed implant placement (DIP) are likely to affect bone tissue repair and regeneration after the surgery. Despite many benefits of IIP, it has remained unclear whether IIP demonstrates comparable healing processes and outcomes to those observed in DIP. This review aims to summarize and compare biological and clinical outcomes of IIP and DIP, focusing on success and survival rates, periodontal status, esthetics and radiographic outcomes, and biochemical markers. Methods: A literature search of electronic databases was conducted using PubMed/MEDLINE, Embase, and the Scopus databases (January 1983–February 2025). 109 articles published in English, consisting of in vitro, in vivo, and clinical studies met the inclusion criteria. Results: This review shows that both IIP and DIP show similar implant survival rates, but IIP may lead to a higher risk of mid-facial recession in esthetic areas. DIP, on the other hand, can result in better soft tissue and bone healing. Histological and radiographic evidence shows comparable bone to implant contact (BIC) between the two methods, although peri-implant bone loss tends to be higher with IIP. Lastly, although specific molecular markers are well-established in all phases of osseointegration following DIP, there is no available literature comparing differences in biomarkers during healing periods between IIP and DIP. Conclusions: This review highlights the similarities and differences in the outcomes of IIP and DIP, as well as the knowledge gaps that require further investigation, providing valuable insights for predicting treatment outcomes and managing complications associated with dental implant placement. Full article
(This article belongs to the Special Issue Clinical Updates on Prosthodontics)
Show Figures

Figure 1

13 pages, 3662 KB  
Article
Accuracy of Fully Guided Implant Placement Using Bone-Supported Stackable Surgical Guides in Completely Edentulous Patients—A Retrospective Study
by Roko Bjelica, Igor Smojver, Luka Stojić, Marko Vuletić, Tomislav Katanec and Dragana Gabrić
J. Clin. Med. 2026, 15(2), 652; https://doi.org/10.3390/jcm15020652 - 14 Jan 2026
Viewed by 43
Abstract
Background/Objectives: Precise implant positioning is critical for successful prosthetic rehabilitation, particularly in completely edentulous patients where anatomical landmarks are lost. The aim of this study was to assess the accuracy of implant placement in the edentulous maxilla and mandible using computer-assisted planning [...] Read more.
Background/Objectives: Precise implant positioning is critical for successful prosthetic rehabilitation, particularly in completely edentulous patients where anatomical landmarks are lost. The aim of this study was to assess the accuracy of implant placement in the edentulous maxilla and mandible using computer-assisted planning and a bone-supported stackable surgical guide protocol. Methods: This retrospective clinical study included 15 completely edentulous patients who received a total of 60 implants. A dual-scan protocol was utilized for planning. The surgical protocol involved a base guide fixed to the bone with pins, serving as a rigid foundation for stackable components used for osteotomy and implant insertion. Postoperative CBCT scans were superimposed onto the preoperative plan to calculate angular deviations, 3D linear deviations at the implant neck and apex, and depth deviations. Results: The analysis demonstrated high accuracy with a mean angular deviation of 1.25° ± 0.80°. The mean 3D linear deviation was 0.96 ± 0.57 mm at the implant neck and 1.07 ± 0.56 mm at the apex. Depth deviation showed a mean discrepancy of 0.37 ± 0.58 mm. All measured parameters were statistically significantly lower (p < 0.05) than the pre-established clinical safety thresholds. Conclusions: Within the limitations of this study, the bone-supported stackable surgical guide protocol proved to be a highly accurate method for full-arch rehabilitation. By eliminating mucosal resilience and ensuring rigid fixation, this approach enables predictable implant placement and facilitates the passive fit of screw-retained bar-supported prostheses, representing a reliable alternative to dynamic navigation in daily clinical practice. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

20 pages, 1210 KB  
Systematic Review
Microbiological Effects of Laser-Assisted Non-Surgical Treatment of Peri-Implantitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Chariklia Neophytou, Elpiniki Vlachodimou, Eleftherios G. Kaklamanos, Dimitra Sakellari and Konstantinos Papadimitriou
Dent. J. 2026, 14(1), 49; https://doi.org/10.3390/dj14010049 - 12 Jan 2026
Viewed by 186
Abstract
Background: Peri-implantitis, a condition characterized by inflammation and progressive bone loss around dental implants, presents a significant challenge in contemporary dentistry. Conventional non-surgical treatments often fail to fully eliminate bacterial biofilms, particularly on complex implant surfaces. Laser therapies have emerged as potential [...] Read more.
Background: Peri-implantitis, a condition characterized by inflammation and progressive bone loss around dental implants, presents a significant challenge in contemporary dentistry. Conventional non-surgical treatments often fail to fully eliminate bacterial biofilms, particularly on complex implant surfaces. Laser therapies have emerged as potential adjuncts due to their antimicrobial and bio-modulatory properties. However, their microbiological effectiveness and suitability for individualized patient treatment planning remain unclear. Objective: Τhis study aims to systematically assess and synthesize the microbiological effects of various laser-assisted non-surgical treatments for peri-implantitis compared to conventional mechanical debridement. Methods: This systematic review and meta-analysis followed PRISMA guidelines and was registered in PROSPERO (CRD420251035354). Randomized controlled trials (RCTs) evaluating microbiological changes following laser-assisted non-surgical treatment of peri-implantitis, with a minimum follow-up of one month, were identified through searches in multiple databases and registries up to February 2025. The ncluded studies used lasers such as diode, Er: YAG, and photodynamic therapy (PDT) either alone or as adjuncts to mechanical debridement. Outcomes of interest included bacterial counts. Risk of bias was assessed using the RoB2 tool, and certainty of evidence was evaluated via GRADE. Quantitative synthesis used random-effects meta-analysis, with standardized mean differences (SMDs) calculated. Results: Eight RCTs involving 266 patients and 335 implants were included in the systematic review. Quantitative synthesis of three pathogens (counts of Fusobacterium nucleatum, P. gingivalis, T. denticola) across three studies displayed no statistically significant differences between laser and control groups at 3 and 6 months (p > 0.05 for all comparisons). When examining individual study findings, PDT, particularly in patients with diabetes or acute abscess, showed short-term reductions in red complex bacteria (e.g., Porphyromonas gingivalis and Treponema denticola). In contrast, diode and Er: YAG lasers demonstrated inconsistent or transient effects. The quality of evidence was rated as very low according to GRADE. Conclusions: Laser-assisted therapies, especially PDT, may provide targeted microbiological benefit in selected patient groups, supporting their adjunctive use within personalized treatment planning rather than as replacements for mechanical debridement, which remains the gold standard. Further high-quality RCTs incorporating well-defined patient risk profiles, such as systemic conditions and behavioral factors, and precision treatment algorithms are needed. Full article
(This article belongs to the Section Dental Implantology)
Show Figures

Figure 1

11 pages, 1149 KB  
Article
Time- and Cost-Efficient, Minimally Invasive Comparative Assessment of Implant Stability: Reliability and Inter-Examiner Agreement of IST Versus ISQ Across Different Bone Quality Models
by Sung-Joon Kim and Se Hoon Kahm
Bioengineering 2026, 13(1), 86; https://doi.org/10.3390/bioengineering13010086 - 12 Jan 2026
Viewed by 158
Abstract
This study evaluated the reliability and inter-examiner agreement of the Implant Stability Test (IST) by Anycheck compared to the established Implant Stability Quotient (ISQ) by Osstell across different bone quality types. Seven dental hygienists with varying experience levels performed stability measurements using both [...] Read more.
This study evaluated the reliability and inter-examiner agreement of the Implant Stability Test (IST) by Anycheck compared to the established Implant Stability Quotient (ISQ) by Osstell across different bone quality types. Seven dental hygienists with varying experience levels performed stability measurements using both devices on standardized implant models representing hard, normal, and soft bone qualities. Both IST and ISQ demonstrated excellent inter-examiner reliability (ICC > 0.90) across all bone quality types, with strong positive correlations (r > 0.85) between measurements regardless of bone density. No significant differences were found in measurement consistency between examiners with different experience levels for either device. The results demonstrate that IST provides comparable reliability to ISQ for implant stability assessment, with excellent inter-examiner agreement and accessibility for practitioners with varying experience levels. The IST system offers practical advantages including elimination of SmartPeg requirements, reduced abutment manipulation, and simplified measurement protocols, supporting its potential as a reliable and cost-effective alternative to traditional ISQ measurements under standardized experimental conditions. Full article
(This article belongs to the Special Issue Advanced Restorative Dental Materials and Implant Technologies)
Show Figures

Figure 1

17 pages, 2270 KB  
Article
Guided Implant Surgery in Oral Cancer Patients: Initial Clinical Experience from an Academic Point-of-Care Manufacturing Unit
by Manuel Tousidonis, Jose-Ignacio Salmeron, Santiago Ochandiano, Ruben Perez-Mañanes, Estela Gomez-Larren, Elena Aguilera-Jimenez, Carla de Gregorio-Bermejo, Diego Fernández-Acosta, Borja Gonzalez-Moure, Saad Khayat and Carlos Navarro-Cuellar
Medicina 2026, 62(1), 151; https://doi.org/10.3390/medicina62010151 - 12 Jan 2026
Viewed by 159
Abstract
Background and Objectives: Implant-supported rehabilitation after oral cancer surgery remains technically and biologically demanding due to altered anatomy, scar tissue, and prior radiotherapy. Digital workflows and hospital-based point-of-care (POC) manufacturing now enable personalized, prosthetically driven implant placement with static surgical guides fabricated [...] Read more.
Background and Objectives: Implant-supported rehabilitation after oral cancer surgery remains technically and biologically demanding due to altered anatomy, scar tissue, and prior radiotherapy. Digital workflows and hospital-based point-of-care (POC) manufacturing now enable personalized, prosthetically driven implant placement with static surgical guides fabricated within the clinical environment. This study reports the initial clinical experience of an academic POC manufacturing unit (UPAM3D) implementing static guided implant surgery in oral cancer patients and compares this approach with conventional outsourcing and dynamic navigation methods. Materials and Methods: A retrospective review of 30 consecutive cases (2021–2024) treated with POC-manufactured static guides was conducted using data from the UPAM3D registry. Each record included design, fabrication, and sterilization parameters compliant with ISO 13485 standards. Demographic, surgical, and prosthetic variables were analyzed, including anatomical site (maxilla or mandible), guide type, material, radiotherapy history, number of Ticare Implants®, and loading strategy. Results: All surgical guides were designed and 3D printed in-house using biocompatible resins (BioMed Clear, Dental SG, or LT Clear). The annual number of POC procedures increased progressively (2 → 6 → 6 → 16). Most cases involved oncologic reconstructions of the maxilla or mandible, including irradiated fields. When recorded, primary stability values (mean ISQ ≈ 79) allowed immediate or early loading (ISQ ≥ 70). No major intraoperative or postoperative complications occurred, and all guides met sterilization and traceability standards. Conclusions: Point-of-care manufacturing enables efficient, accurate, and patient-specific guided implant rehabilitation after oral cancer surgery, optimizing functional and esthetic outcomes while reducing procedural time and dependence on external providers. Integrating this process into clinical workflows supports personalized treatment planning and broadens access to advanced implant reconstruction within multidisciplinary oncology care. Full article
(This article belongs to the Special Issue Research on Oral and Maxillofacial Surgery)
Show Figures

Figure 1

23 pages, 835 KB  
Systematic Review
Clinical Outcomes of the Magnetic Mallet in Oral and Implant Surgery: A Systematic Review of Comparative Studies
by Domenico Baldi, Camilla Canepa, Francesco Bagnasco, Adrien Naveau, Francesca Baldi, Paolo Pesce and Maria Menini
Appl. Sci. 2026, 16(2), 749; https://doi.org/10.3390/app16020749 - 11 Jan 2026
Viewed by 130
Abstract
Traditional surgical techniques are based on the manual application of force using mallets and osteotomes, which often result in uncontrolled impact forces, procedural inconsistencies, and patient discomfort. Magnetic mallets (MMs), magnetodynamic devices, provide a controlled application of force using electromagnetism, aiming to achieve [...] Read more.
Traditional surgical techniques are based on the manual application of force using mallets and osteotomes, which often result in uncontrolled impact forces, procedural inconsistencies, and patient discomfort. Magnetic mallets (MMs), magnetodynamic devices, provide a controlled application of force using electromagnetism, aiming to achieve greater precision, reduced operating time, and improved surgical outcomes. The aim of the present systematic review was to evaluate the effectiveness of MMs compared to conventional surgical techniques in oral and implant surgery. The focused question was as follows: “Do magnetic mallets improve clinical outcomes in oral and implant surgery compared to traditional instruments?” Only clinical studies comparing the use of MMs with traditional techniques in oral surgery were included. The following databases were searched up to 27 November 2025: Pubmed, Scopus, Web of Science. For quality assessment, the Cochrane Risk of Bias 2 (RoB 2) tool was applied for randomized controlled trials (RCTs), while the Newcastle–Ottawa Scale (NOS) was used for non-randomized studies. Data were screened and synthesized by two reviewers. The systematic review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. In total, 347 studies were initially found and 6 matched the inclusion criteria and were included in the review, for a total of 282 patients. Five RCTs were included, as well as one retrospective study. The studies investigated were as follows: implant site preparation (two studies with a total of 86 patients), sinus lift and contextual implant insertion (three studies, total: 102 patients), dental extraction (two studies, total: 70 patients), and split-crest (one study with 46 patients). The outcomes suggest that MMs may serve as a potential alternative to traditional techniques, exhibiting promising although preliminary outcomes. The studies included reported a lower incidence of benign paroxysmal positional vertigo with the use of MMs compared to hand osteotomes. Regarding quality assessment, RCTs raised some concerns, while the retrospective study had a moderate risk of bias. Despite the promising results, the paucity of high-quality controlled trials limits definitive conclusions on the superiority of MM over conventional techniques. Further well-designed comparative trials are needed to confirm the clinical benefits, optimize protocols across different indications, and evaluate MMs’ potential role in the management of critical bone conditions and complex surgery. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

26 pages, 780 KB  
Review
Next-Generation Biomaterials: Advanced Coatings and Smart Interfaces for Implant Technology: A Narrative Review
by Arun K. Movva, Michael O. Sohn, Connor P. McCloskey, Joshua M. Tennyson, Kishen Mitra, Samuel B. Adams and Albert T. Anastasio
Coatings 2026, 16(1), 87; https://doi.org/10.3390/coatings16010087 - 10 Jan 2026
Viewed by 213
Abstract
Contemporary advances in bioengineering and materials science have substantially improved the viability of medical implants. The demand for optimized implant technologies has led to the development of advanced coatings that enhance biocompatibility, antimicrobial activity, and durability. Implant manufacturers and surgeons must anticipate both [...] Read more.
Contemporary advances in bioengineering and materials science have substantially improved the viability of medical implants. The demand for optimized implant technologies has led to the development of advanced coatings that enhance biocompatibility, antimicrobial activity, and durability. Implant manufacturers and surgeons must anticipate both biological and mechanical challenges when implementing devices for patient use. Key areas of concern include infection, corrosion, wear, immune response, and implant rejection; regulatory and economic considerations must also be addressed. Materials science developments are optimizing the integration of established materials such as biometrics, composites, and nanomaterials, while also advancing fabrication-based innovations including plasma functionalization, anodization, and self-assembled monolayers. Emerging smart and stimuli-responsive surface technologies enable controlled drug delivery and real-time implant status communication. These innovations enhance osseointegration, antimicrobial performance, and overall device functionality across orthopedic, dental, and cardiovascular applications. As implant design continues to shift toward personalized, responsive systems, advanced coating technologies are poised to deliver significantly improved long-term clinical outcomes for patients. Full article
(This article belongs to the Special Issue Advanced Coatings and Materials for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2956 KB  
Article
Self-Supervised Learning of Deep Embeddings for Classification and Identification of Dental Implants
by Amani Almalki, Abdulrahman Almalki and Longin Jan Latecki
J. Imaging 2026, 12(1), 39; https://doi.org/10.3390/jimaging12010039 - 9 Jan 2026
Viewed by 133
Abstract
This study proposes an automated system using deep learning-based object detection to identify implant systems, leveraging recent progress in self-supervised learning, specifically masked image modeling (MIM). We advocate for self-pre-training, emphasizing that its advantages when acquiring suitable pre-training data is challenging. The proposed [...] Read more.
This study proposes an automated system using deep learning-based object detection to identify implant systems, leveraging recent progress in self-supervised learning, specifically masked image modeling (MIM). We advocate for self-pre-training, emphasizing that its advantages when acquiring suitable pre-training data is challenging. The proposed Masked Deep Embedding (MDE) pre-training method, extending the masked autoencoder (MAE) transformer, significantly enhances dental implant detection performance compared to baselines. Specifically, the proposed method achieves a best detection performance of AP = 96.1, outperforming supervised ViT and MAE baselines by up to +2.9 AP. In addition, we address the absence of a comprehensive dataset for implant design, enhancing an existing dataset under dental expert supervision. This augmentation includes annotations for implant design, such as coronal, middle, and apical parts, resulting in a unique Implant Design Dataset (IDD). The contributions encompass employing self-supervised learning for limited dental radiograph data, replacing MAE’s patch reconstruction with patch embeddings, achieving substantial performance improvement in implant detection, and expanding possibilities through the labeling of implant design. This study paves the way for AI-driven solutions in implant dentistry, providing valuable tools for dentists and patients facing implant-related challenges. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

13 pages, 1200 KB  
Article
Efficiency and Risk Assessment of Dental Bridge Removal Tools on Implant Abutments
by Gianmario Schierano, Domenico Baldi, Cristina Bignardi, Mara Terzini and Andrea Tancredi Lugas
J. Funct. Biomater. 2026, 17(1), 33; https://doi.org/10.3390/jfb17010033 - 8 Jan 2026
Viewed by 305
Abstract
This study evaluated the efficiency and potential risks associated with three clinical tools for removing cement-retained implant-supported prostheses: Magnetic Mallet, sliding hammer, and Coronaflex. The tests consisted of: cementation of three-unit bridge models onto titanium abutments with different geometries using Zinc Oxide non-eugenol [...] Read more.
This study evaluated the efficiency and potential risks associated with three clinical tools for removing cement-retained implant-supported prostheses: Magnetic Mallet, sliding hammer, and Coronaflex. The tests consisted of: cementation of three-unit bridge models onto titanium abutments with different geometries using Zinc Oxide non-eugenol or Zinc Phosphate cement. Seven different geometries of three-unit bridges were tested; therefore, a total of 7 bridges × 2 luting agents × 3 tools were combined in a full factorial analysis. Five test replicates were performed for each combination, resulting in a total of 5 × 7 × 2 × 3 = 210 retrieval tests. The 70 tests regarding the Coronaflex were taken from a previously conducted experiment on the topic, using the same dental bridge models and the same experimental conditions. Efficiency was assessed by the percentage of successful removals and the maximum force recorded with a piezoelectric load cell. For temporary cementations, the sliding hammer achieved the highest retrieval rate, while the Magnetic Mallet demonstrated comparable efficiency with lower forces. Coronaflex showed lower success rates and higher forces than Magnetic Mallet. For permanent cementations, most bridges were not removable, and attempts with the sliding hammer occasionally resulted in abutment screw damage. Within the limitations of this study, the Magnetic Mallet appears to be an effective option for removing bridges cemented with temporary cement, potentially in combination with a sliding hammer for highly retentive geometries. Zinc phosphate cement should be avoided when retrievability is desired, except for abutments with very low retention capability. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry (2nd Edition))
Show Figures

Graphical abstract

19 pages, 690 KB  
Review
Methodologies for Assessing the Dimensional Accuracy of Computer-Guided Static Implant Surgery in Clinical Settings: A Scoping Review
by Sorana Nicoleta Rosu, Monica Silvia Tatarciuc, Anca Mihaela Vitalariu, Roxana-Ionela Vasluianu, Irina Gradinaru, Nicoleta Ioanid, Catalina Cioloca Holban, Livia Bobu, Adina Oana Armencia, Alice Murariu, Elena-Odette Luca and Ana Maria Dima
Dent. J. 2026, 14(1), 43; https://doi.org/10.3390/dj14010043 - 8 Jan 2026
Viewed by 207
Abstract
Background: Computer-guided static implant surgery (CGSIS) is widely adopted to enhance the precision of dental implant placement. However, significant heterogeneity in reported accuracy values complicates evidence-based clinical decision-making. This variance is likely attributable to a fundamental lack of standardization in the methodologies [...] Read more.
Background: Computer-guided static implant surgery (CGSIS) is widely adopted to enhance the precision of dental implant placement. However, significant heterogeneity in reported accuracy values complicates evidence-based clinical decision-making. This variance is likely attributable to a fundamental lack of standardization in the methodologies used to assess dimensional accuracy. Objective: This scoping review aimed to systematically map, synthesize, and analyze the clinical methodologies used to quantify the dimensional accuracy of CGSIS. Methods: The review was conducted in accordance with the PRISMA-ScR guidelines. A systematic search of PubMed/MEDLINE, Scopus, and Embase was performed from inception to October 2025. Clinical studies quantitatively comparing planned versus achieved implant positions in human patients were included. Data were charted on study design, guide support type, data acquisition methods, reference systems for superimposition, measurement software, and accuracy metrics. Results: The analysis of 21 included studies revealed extensive methodological heterogeneity. Key findings included the predominant use of two distinct reference systems: post-operative CBCT (n = 12) and intraoral scanning with scan bodies (n = 6). A variety of proprietary and third-party software packages (e.g., coDiagnostiX, Geomagic, Mimics) were employed for superimposition, utilizing different alignment algorithms. Critically, this heterogeneity in measurement approach directly manifests in widely varying reported values for core accuracy metrics. In addition, the definitions and reporting of core accuracy metrics—specifically global coronal deviation (range of reported means: 0.55–1.70 mm), global apical deviation (0.76–2.50 mm), and angular deviation (2.11–7.14°)—were inconsistent. For example, these metrics were also reported using different statistical summaries (e.g., means with standard deviations or medians with interquartile ranges). Conclusions: The comparability and synthesis of evidence on CGSIS accuracy are significantly limited by non-standardized measurement approaches. The reported ranges of deviation values are a direct consequence of this methodological heterogeneity, not a comparison of implant system performance. Our findings highlight an urgent need for a consensus-based minimum reporting standard for future clinical research in this field to ensure reliable and translatable evidence. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Graphical abstract

12 pages, 1200 KB  
Article
In Vitro Evaluation of the Antimicrobial Properties of Chitosan–Vancomycin Coatings on Grade 4 Titanium Discs: A Preliminary Study
by João M. Pinto, Liliana Grenho, Susana J. Oliveira, Manuel A. Sampaio-Fernandes, Maria Helena Fernandes, Maria Helena Figueiral and Maria Margarida Sampaio-Fernandes
Coatings 2026, 16(1), 75; https://doi.org/10.3390/coatings16010075 - 8 Jan 2026
Viewed by 191
Abstract
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using [...] Read more.
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using the dip-coating technique and subsequently loaded with vancomycin through immersion in an aqueous solution. Coating morphology was examined by scanning electron microscopy (SEM). Vancomycin loading was quantified by spectrophotometry, and release kinetics were monitored over 144 h (6-day). Antimicrobial activity was assessed through agar diffusion assays against Staphylococcus aureus. Cytocompatibility was evaluated using human mesenchymal stem cells (hMSCs), whose metabolic activity, adhesion, and morphology were assessed over a 19-day culture period by resazurin assay and SEM. SEM analysis revealed a uniformly distributed, smooth, and crack-free chitosan film, which remained stable after drug loading. The coating exhibited a biphasic release profile, characterized by an initial burst followed by sustained release over six days, which maintained antimicrobial activity, as confirmed by inhibition zones. hMSCs adhered and proliferated on the coated surfaces, displaying normal morphology despite a transient reduction in metabolic activity on vancomycin-containing films. These findings support the potential of chitosan–vancomycin coatings as localized antimicrobial strategies for implant applications, warranting further in vivo and mechanical evaluations. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

Back to TopTop