Harnessing Regenerative Science in Aesthetic Surgery: The Biologically Driven Future
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
3. Overview of Regenerative Medicine
3.1. Exosomes
3.2. PRP
3.3. ASCs
3.4. ECM-Based Scaffolds
4. Clinical Applications
4.1. Non-Surgical Treatments
4.1.1. Topical Exosomes
4.1.2. Injectable PRP
4.1.3. Exosomes Compared to PRP
4.2. Surgical Treatments
4.2.1. Enriched Fat Grafting
4.2.2. Laser + Biologics Synergy
5. Clinical Evidence
5.1. Clinical Evidence—PRP
5.2. Clinical Evidence—Exosomes
5.3. Clinical Evidence—ASCs
5.4. Clinical Evidence—Lasers and Biologics
5.5. Limitations
6. Regulatory and Ethical Considerations
7. The Future of Regenerative Aesthetics
7.1. Mitochondria
7.2. MicroRNA-Based Therapies
7.3. Synthetic Exosome Mimetics
7.4. AI-Assisted Biologics
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PRP | Platelet-Rich Plasma |
ECM | Extracellular Matrix |
ASCs | Adipose-Derived Stem Cells |
SVF | Stromal Vascular Fraction |
LLLT | Low-Level Laser Therapy |
AD | Atopic Dermatitis |
LS | Lichen Sclerosus |
FDA | Food and Drug Administration |
EMA | European Medicine Agency |
MHRA | Medicines and Healthcare products Regulatory Agency |
miRNA | microRNA |
LLMs | Large Language Models |
ROS | Reactive Oxygen Species |
References
- Pendharkar, S.S. Facial aesthetic surgery: Enhancing beauty through maxillofacial procedures. J. Oral Med. Oral Surg. Oral Pathol. Oral Radiol. 2023, 9, 130–133. [Google Scholar] [CrossRef]
- Yang, A.J.; Hohman, M.H. Rhytidectomy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK564338/ (accessed on 22 July 2025).
- Mendelson, B.; Farhadieh, R.D. 66—Facelift. In Plastic Surgery—Principles and Practice; Farhadieh, R.D., Bulstrode, N.W., Mehrara, B.J., Cugno, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1030–1040. [Google Scholar] [CrossRef]
- Zins, J.E.; Coombs, D.M. Endoscopic Brow Lift. Clin. Plast. Surg. 2022, 49, 357–363. [Google Scholar] [CrossRef]
- Smith, A.M.; Ferris, T.; Nahar, V.K.; Sharma, M. Non-Traditional and Non-Invasive Approaches in Facial Rejuvenation: A Brief Review. Cosmetics 2020, 7, 10. [Google Scholar] [CrossRef]
- Zins, J.E.; Moreira-Gonzalez, A. Cosmetic procedures for the aging face. Clin. Geriatr. Med. 2006, 22, 709–728. [Google Scholar] [CrossRef] [PubMed]
- Roh, D.S.; Panayi, A.C.; Bhasin, S.; Orgill, D.P.; Sinha, I. Implications of Aging in Plastic Surgery. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2085. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.P.; Pessa, J.E.; Hubbard, B.; Rohrich, R.J. The Science and Theory behind Facial Aging. Plast. Reconstr. Surg. Glob. Open 2013, 1, e8–e15. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Polychronis, A.; Liovas, D.; Schiuma, A.T. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024, 16, e68872. [Google Scholar] [CrossRef]
- Polak, D.J. Regenerative medicine. Opportunities and challenges: A brief overview. J. R. Soc. Interface 2010, 7 (Suppl. 6), S777–S781. [Google Scholar] [CrossRef]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e37–e44. [Google Scholar] [CrossRef]
- Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459. [Google Scholar] [CrossRef]
- Polykandriotis, E.; Popescu, L.M.; Horch, R.E. Regenerative medicine: Then and now—An update of recent history into future possibilities. J. Cell. Mol. Med. 2010, 14, 2350–2358. [Google Scholar] [CrossRef]
- Harding, C.; Heuser, J.; Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: Demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 1984, 35, 256–263. [Google Scholar]
- Wolf, P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Haematol. 1967, 13, 269–288. [Google Scholar] [CrossRef]
- De Broe, M.E.; Wieme, R.J.; Logghe, G.N.; Roels, F. Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin. Chim. Acta 1977, 81, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Corrado, C.; Raimondo, S.; Chiesi, A.; Ciccia, F.; De Leo, G.; Alessandro, R. Exosomes as Intercellular Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications. Int. J. Mol. Sci. 2013, 14, 5338–5366. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Sig. Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.B.; Kim, H.J.; Kang, S.-W.; Yoo, T.-H. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023, 15, 2042. [Google Scholar] [CrossRef]
- Rahman, E.; Webb, W.R.; Rao, P.; Abu-Farsakh, H.N.; Upton, A.E.; Yu, N.; Garcia, P.E.; Ioannidis, S.; Sayed, K.; Philipp-Dormston, W.G.; et al. Exosomes Exposed: Overview Systematic Review on Evidence Versus Expectation in Aesthetic and Regenerative Medicine. Aesthetic Plast. Surg. 2025, 49, 557–568. [Google Scholar] [CrossRef]
- Kingsley, C.S. Blood Coagulation: Evidence of an Antagonist to Factor VI in Platelet-Rich Human Plasma. Nature 1954, 173, 723–724. [Google Scholar] [CrossRef]
- Blair, P.; Flaumenhaft, R. Platelet α–granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Neiva-Sousa, M.; Carracha, C.; da Silva, L.N.; Coelho, P.V. Does Platelet-Rich Plasma Promote Facial Rejuvenation? Revising the Latest Evidence in a Narrative Review. J. Cutan. Aesthet. Surg. 2023, 16, 263–269. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, D.; Mao, R.; Xiao, M.; Fang, Y.; Liu, Y. Platelet-Rich Plasma in Facial Rejuvenation: A Systematic Appraisal of the Available Clinical Evidence. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1697–1724. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef]
- Lacasa, D.; Taleb, S.; Keophiphath, M.; Miranville, A.; Clement, K. Macrophage-secreted factors impair human adipogenesis: Involvement of proinflammatory state in preadipocytes. Endocrinology 2007, 148, 868–877. [Google Scholar] [CrossRef]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arter. Thromb. Vasc. Biol. 2005, 25, 2062–2068. [Google Scholar] [CrossRef]
- Permana, P.A.; Menge, C.; Reaven, P.D. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem. Biophys. Res. Commun. 2006, 341, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.S.; Ng, Z.Y.; Zhan, W.; Rozen, W. Role of Adipose-derived Stem Cells in Fat Grafting and Reconstructive Surgery. J. Cutan. Aesthet. Surg. 2016, 9, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, R.F.; Mazzola, I.C. The Fascinating History of Fat Grafting. J. Craniofacial Surg. 2013, 24, 1069. [Google Scholar] [CrossRef]
- Tonnard, P.; Verpaele, A.; Peeters, G.; Hamdi, M.; Cornelissen, M.; Declercq, H. Nanofat grafting: Basic research and clinical applications. Plast. Reconstr. Surg. 2013, 132, 1017–1026. [Google Scholar] [CrossRef]
- Khanna, A.; Zamani, M.; Huang, N.F. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J. Cardiovasc. Dev. Dis. 2021, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Widgerow, A.D.; Fabi, S.G.; Palestine, R.F.; Rivkin, A.; Ortiz, A.; Bucay, V.W.; Chiu, A.; Naga, L.; Emer, J.; Chasan, P.E. Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures. JDDonline-J. Drugs Dermatol. 2016, 15 (Suppl. 4), s63–s71. Available online: https://jddonline.com/articles/extracellular-matrix-modulation-optimizing-skin-care-and-rejuvenation-procedures-S1545961616S0063X/ (accessed on 22 July 2025).
- Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009, 17, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Petrie, K.; Cox, C.T.; Becker, B.C.; MacKay, B.J. Clinical Applications of Acellular Dermal Matrices: A Review. 2022. Available online: https://journals.sagepub.com/doi/full/10.1177/20595131211038313 (accessed on 22 July 2025).
- Peña, A.N.; Garcia, J.A.; Elisseeff, J.H. Translational considerations for adipose-derived biological scaffolds for soft tissue repair. Curr. Opin. Biomed. Eng. 2021, 20, 100321. [Google Scholar] [CrossRef]
- Triana, L.; Huatuco, R.M.P.; Campilgio, G.; Liscano, E. Trends in Surgical and Nonsurgical Aesthetic Procedures: A 14-Year Analysis of the International Society of Aesthetic Plastic Surgery—ISAPS. Aesth. Plast. Surg. 2024, 48, 4217–4227. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, R.; Xiao, M.; Zhu, W.; Liu, Y.; Xiao, H. Facial Rejuvenation: A Global Trend of Dermatological Procedures in the Last Decade. Plast. Reconstr. Surg.–Glob. Open 2024, 12, e5801. [Google Scholar] [CrossRef]
- Hu, S.; Li, Z.; Cores, J.; Huang, K.; Su, T.; Dinh, P.-U.; Cheng, K. Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging. ACS Nano 2019, 13, 11273–11282. [Google Scholar] [CrossRef]
- Shi, H.; Wang, M.; Sun, Y.; Yang, D.; Xu, W.; Qian, H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front. Cell Dev. Biol. 2021, 9, 736022. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Wang, T.; Gao, H.; Wang, D.; Zhang, C.; Hu, K.; Zhang, H.; Lin, J.; Chen, X. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg. Med. 2023, 55, 178–189. [Google Scholar] [CrossRef]
- Bento-Lopes, L.; Cabaço, L.C.; Charneca, J.; Neto, M.V.; Seabra, M.C.; Barral, D.C. Melanin’s Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int. J. Mol. Sci. 2023, 24, 11289. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, P.R.; Ho, T.; Abdel-Malek, Z.A. Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment. Cell Melanoma Res. 2021, 34, 762–776. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Consumer Alert on Regenerative Medicine Products Including Stem Cells and Exosomes. In FDA; April 2024. Available online: https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes (accessed on 22 July 2025).
- Lotfy, A.; AboQuella, N.M.; Wang, H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res. Ther. 2023, 14, 66. [Google Scholar] [CrossRef]
- Goldie, K. The evolving field of regenerative aesthetics. J. Cosmet. Dermatol. 2023, 22, 1–7. [Google Scholar] [CrossRef]
- Gawdat, H.I.; Tawdy, A.M.; Hegazy, R.A.; Zakaria, M.M.; Allam, R.S. Autologous platelet-rich plasma versus readymade growth factors in skin rejuvenation: A split face study. J. Cosmet. Dermatol. 2017, 16, 258–264. [Google Scholar] [CrossRef]
- Jee, C.-H.; Eom, N.-Y.; Jang, H.-M.; Jung, H.-W.; Choi, E.-S.; Won, J.-H.; Hong, I.-H.; Kang, B.-T.; Jeong, D.W.; Jung, D.-I. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs. J. Vet. Sci. 2016, 17, 79–87. [Google Scholar] [CrossRef]
- Raposio, E.; Bertozzi, N.; Bonomini, S.; Bernuzzi, G.; Formentini, A.; Grignaffini, E.; Grieco, M.P. Adipose-derived Stem Cells Added to Platelet-rich Plasma for Chronic Skin Ulcer Therapy. HMP Global Learning Network. Available online: https://www.hmpgloballearningnetwork.com/site/wounds/article/adipose-derived-stem-cells-added-platelet-rich-plasma-chronic-skin-ulcer-therapy (accessed on 22 July 2025).
- Manole, C.G.; Soare, C.; Ceafalan, L.C.; Voiculescu, V.M. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life 2024, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Çayırlı, M.; Çalışkan, E.; Açıkgöz, G.; Erbil, A.H.; Ertürk, G. Regression of Melasma with Platelet-Rich Plasma Treatment. Ann. Dermatol. 2014, 26, 401–402. [Google Scholar] [CrossRef]
- Kim, D.H.; Je, Y.J.; Kim, C.D.; Lee, Y.H.; Seo, Y.J.; Lee, J.H.; Lee, Y. Can Platelet-rich Plasma Be Used for Skin Rejuvenation? Evaluation of Effects of Platelet-rich Plasma on Human Dermal Fibroblast. Ann. Dermatol. 2011, 23, 424–431. [Google Scholar] [CrossRef]
- Conboy, I.M.; Conboy, M.J.; Wagers, A.J.; Girma, E.R.; Weissman, I.L.; Rando, T.A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433, 760–764. [Google Scholar] [CrossRef]
- Chowdhary, K.; Sahu, A.; Iijima, H.; Shinde, S.; Borg-Stein, J.; Ambrosio, F. Aging Affects the Efficacy of Platelet-Rich Plasma Treatment for Osteoarthritis. Am. J. Phys. Med. Rehabil. 2023, 102, 597–604. [Google Scholar] [CrossRef]
- Estupiñan, B.; Ly, K.; Goldberg, D.J. Adipose Mesenchymal Stem Cell-Derived Exosomes Versus Platelet-Rich Plasma Treatment for Photoaged Facial Skin: An Investigator-Blinded, Split-Face, Non-Inferiority Trial. J. Cosmet. Dermatol. 2025, 24, e70208. [Google Scholar] [CrossRef]
- Ding, P.; Lu, E.; Li, G.; Sun, Y.; Yang, W.; Zhao, Z. Research Progress on Preparation, Mechanism, and Clinical Application of Nanofat. J. Burn. Care Res. 2022, 43, 1140–1144. [Google Scholar] [CrossRef]
- Menkes, S.; Luca, M.; Soldati, G.; Polla, L. Subcutaneous Injections of Nanofat Adipose-derived Stem Cell Grafting in Facial Rejuvenation. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2550. [Google Scholar] [CrossRef]
- Tonnard, P.; Verpaele, A.; Carvas, M. Fat Grafting for Facial Rejuvenation with Nanofat Grafts. Clin. Plast. Surg. 2020, 47, 53–62. [Google Scholar] [CrossRef]
- Bellei, B.; Migliano, E.; Picardo, M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp. Dermatol. 2022, 31, 1837–1852. [Google Scholar] [CrossRef]
- Canizares, O., Jr.; Thomson, J.E.; Allen, R.J., Jr.; Davidson, E.H.; Tutela, J.P.; Saadeh, P.B.; Warren, S.M.; Hazen, A. The Effect of Processing Technique on Fat Graft Survival. Plast. Reconstr. Surg. 2017, 140, 933–943. [Google Scholar] [CrossRef]
- Zachary, C.B. Facial Rejuvenation: 40th Anniversary Review. Semin. Cutan. Med. Surg. 2016, 35, S122–S124. [Google Scholar] [CrossRef]
- Haykal, D.; Cartier, H.; Goldberg, D.; Gold, M. Advancements in laser technologies for skin rejuvenation: A comprehensive review of efficacy and safety. J. Cosmet. Dermatol. 2024, 23, 3078–3089. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar]
- da Silva, J.P.; da Silva, M.A.; Almeida, A.P.F.; Junior, I.L.; Matos, A.P. Laser therapy in the tissue repair process: A literature review. Photomed. Laser Surg. 2010, 28, 17–21. [Google Scholar] [CrossRef]
- Tsiatoura, A.; Zafeiropoulou, T.; Zafeiratou, D.; Nivatsi, P.; Rapti, C.; Mamali, K. Combination of Fractional laser CO2 and Platelet-Rich-Plasma as a method for skin rejuvenation. In Proceedings of the 24th World Congress of Dermatology Milan 2019, Milan, Italy, 10–15 June 2019. [Google Scholar]
- Kwon, H.H.; Yang, S.H.; Lee, J.; Park, B.C.; Park, K.; Jung, J.; Bae, Y.; Park, G. Combination Treatment with Human Adipose Tissue Stem Cell-derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-week Prospective, Double-blind, Randomized, Split-face Study. Acta Derm. Venereol. 2020, 100, 5913. [Google Scholar] [CrossRef]
- Alam, M.; Hughart, R.; Champlain, A.; Geisler, A.; Paghdal, K.; Whiting, D.; Hammel, J.A.; Maisel, A.; Rapcan, M.J.; West, D.P.; et al. Effect of Platelet-Rich Plasma Injection for Rejuvenation of Photoaged Facial Skin. JAMA Dermatol. 2018, 154, 1447–1452. [Google Scholar] [CrossRef]
- Cabrera-Ramírez, J.O.; Puebla-Mora, A.; González-Ojeda, A.; García-Martínez, D.; Cortés-Lares, J.; Márquez-Valdéz, A.; Contreras-Hernández, G.; Bracamontes-Blanco, J.; Saucedo-Ortíz, J.; Fuentes-Orozco, C. Platelet-Rich Plasma for the Treatment of Photodamage of the Skin of the Hands. Actas Dermo-Sifiliográficas (Engl. Ed.) 2017, 108, 746–751. [Google Scholar] [CrossRef]
- Qu, Q.; Zhou, Y.; Shi, P.; Du, L.; Fan, Z.; Wang, J.; Li, X.; Chen, J.; Zhu, D.; Ye, K.; et al. Platelet-rich plasma for androgenic alopecia: A randomized, placebo-controlled, double-blind study and combined mice model experiment. J. Cosmet. Dermatol. 2021, 20, 3227–3235. [Google Scholar] [CrossRef]
- Gulanikar, A.D.; Vidholkar, R. Efficacy of Platelet-Rich Plasma in Acne Scars. Clin. Dermatol. Rev. 2019, 3, 109. [Google Scholar] [CrossRef]
- Hui, Q.; Chang, P.; Guo, B.; Zhang, Y.; Tao, K. The Clinical Efficacy of Autologous Platelet-Rich Plasma Combined with Ultra-Pulsed Fractional CO2 Laser Therapy for Facial Rejuvenation. Rejuvenation Res. 2017, 20, 25–31. [Google Scholar] [CrossRef]
- Proffer, S.L.; Paradise, C.R.; DeGrazia, E.; Halaas, Y.; Durairaj, K.K.; Somenek, M.; Sivly, A.; Boon, A.J.; Behfar, A.; Wyles, S.P. Efficacy and Tolerability of Topical Platelet Exosomes for Skin Rejuvenation: Six-Week Results. Aesthetic Surg. J. 2022, 42, 1185–1193. [Google Scholar] [CrossRef]
- Kim, H.; Jang, Y.; Kim, E.H.; Jang, H.; Cho, H.; Han, G.; Song, H.K.; Kim, S.H.; Yang, Y. Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Front. Cell Dev. Biol. 2022, 10, 815205. [Google Scholar] [CrossRef]
- Dayan, S.; Gandhi, N.; Wilson, J.; Kola, E.; Jankov, L.E.; Copeland, K.; Paradise, C.; Behfar, A. Safety and efficacy of human platelet extract in skin recovery after fractional CO2 laser resurfacing of the face: A randomized, controlled, evaluator-blinded pilot study. J. Cosmet. Dermatol. 2023, 22, 2464–2470. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, J.; Zhang, P.; Liao, Y.; Yuan, Y.; Dong, Z.; Lu, F. Adipose Stromal Vascular Fraction Gel Grafting: A New Method for Tissue Volumization and Rejuvenation. Dermatol. Surg. 2018, 44, 1278–1286. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.J.; Lee, Y.J.; Lee, J.C.; Kim, J.H.; Kim, D.H.; Do, Y.H.; Choi, J.W.; Chung, S.I.; Do, B.-R. Innovative method of alopecia treatment by autologous adipose-derived SVF. Stem Cell Res. Ther. 2021, 12, 486. [Google Scholar] [CrossRef]
- Behrangi, E.; Moradi, S.; Ghassemi, M.; Goodarzi, A.; Hanifnia, A.; Zare, S.; Nouri, M.; Dehghani, A.; Seifadini, A.; Nilforoushzadeh, M.A.; et al. The investigation of the efficacy and safety of stromal vascular fraction in the treatment of nanofat-treated acne scar: A randomized blinded controlled clinical trial. Stem Cell Res. Ther. 2022, 13, 298. [Google Scholar] [CrossRef]
- Rageh, M.A.; Ibrahim, S.M.A.; Abdallah, N.; Tawfik, A.A. Autologous Nanofat Injection Combined with Fractional CO2 Laser in the Treatment of Atrophic Acne Scars. Clin. Cosmet. Investig. Dermatol. 2024, 17, 697–705. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Polychronis, A.; Schiuma, A.T. A Comparative Analysis of the Advances in Stem Cell Therapy in Plastic Surgery: A Systematic Review of Current Applications and Future Directions. Cureus 2024, 16, e67067. [Google Scholar] [CrossRef]
- Domaszewska-Szostek, A.; Krzyżanowska, M.; Polak, A.; Puzianowska-Kuźnicka, M. Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials? Int. J. Mol. Sci. 2025, 26, 2354. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Public Safety Notification on Exosome Products. In FDA; December 2019. Available online: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/public-safety-notification-exosome-products (accessed on 22 July 2025).
- Turner, L.; Martinez, J.R.; Najjar, S.; Arachchilage, T.R.; Sahrai, V.; Wang, J.C. Safety and efficacy claims made by US businesses marketing purported stem cell treatments and exosome therapies. Regen. Med. 2023, 18, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-F.; Liao, H.-T. Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model. World J. Stem Cells 2018, 10, 212–227. [Google Scholar] [CrossRef]
- Morrow, T.; Felcone, L.H. Defining the difference: What Makes Biologics Unique. Biotechnol. Healthc. 2004, 1, 24–29. [Google Scholar]
- Vyas, K.S.; Kaufman, J.; Munavalli, G.S.; Robertson, K.; Behfar, A.; Wyles, S.P. Exosomes: The latest in regenerative aesthetics. Regen. Med. 2023, 18, 181–194. [Google Scholar] [CrossRef]
- de Kanter, A.-F.J.; Jongsma, K.R.; Verhaar, M.C.; Bredenoord, A.L. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. Tissue Eng. Part B Rev. 2023, 29, 167–187. [Google Scholar] [CrossRef]
- Wang, C.; Tsai, T.; Lee, C. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 2024, 17, e13904. [Google Scholar] [CrossRef]
- Nadarzynski, T.; Miles, O.; Cowie, A.; Ridge, D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digit. Health 2019, 5, 2055207619871808. [Google Scholar] [CrossRef]
- Schachner, T.; Keller, R.; Wangenheim, F.V. Artificial Intelligence-Based Conversational Agents for Chronic Conditions: Systematic Literature Review. J. Med. Internet Res. 2020, 22, e20701. [Google Scholar] [CrossRef]
- Martic, I.; Papaccio, F.; Bellei, B.; Cavinato, M. Mitochondrial dynamics and metabolism across skin cells: Implications for skin homeostasis and aging. Front. Physiol. 2023, 14, 1284410. [Google Scholar] [CrossRef]
- Apostolova, N.; Victor, V.M. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications. Antioxid. Redox Signal. 2015, 22, 686–729. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 119–141. [Google Scholar] [CrossRef]
- Balcázar, M.; Cañizares, S.; Borja, T.; Pontón, P.; Bisiou, S.; Carabasse, E.; Bacilieri, A.; Canavese, C.; Diaz, R.F.; Cabrera, F.; et al. Bases for Treating Skin Aging with Artificial Mitochondrial Transfer/Transplant (AMT/T). Front. Bioeng. Biotechnol. 2020, 8, 919. [Google Scholar] [CrossRef] [PubMed]
- Haykal, D.; Wyles, S.; Garibyan, L.; Cartier, H.; Gold, M. Exosomes in Cosmetic Dermatology: A Review of Benefits and Challenges. JDDonline-J. Drugs Dermatol. 2025, 24, 12–18. [Google Scholar] [CrossRef]
- Wen, H.; Deng, H.; Li, B.; Chen, J.; Zhu, J.; Zhang, X.; Yoshida, S.; Zhou, Y. Mitochondrial diseases: From molecular mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 9. [Google Scholar] [CrossRef]
- Li, X.; Ponandai-Srinivasan, S.; Nandakumar, K.S.; Fabre, S.; Landén, N.X.; Mavon, A.; Khmaladze, I. Targeting microRNA for improved skin health. Health Sci. Rep. 2021, 4, e374. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.-S. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. Mol. Ther. Nucleic Acids 2020, 20, 606–620. [Google Scholar] [CrossRef]
- Ross, K. Towards topical microRNA-directed therapy for epidermal disorders. J. Control. Release 2018, 269, 136–147. [Google Scholar] [CrossRef]
- Yang, S.-C.; Alalaiwe, A.; Lin, Z.-C.; Lin, Y.-C.; Aljuffali, I.A.; Fang, J.-Y. Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022, 12, 1072. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Zhong, Y.; Shen, J.; An, W. Biomimetic Exosomes: A New Generation of Drug Delivery System. Front. Bioeng. Biotechnol. 2022, 10, 865682. [Google Scholar] [CrossRef]
- Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano 2016, 10, 7738–7748. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Shin, D.H.; Kim, J.-S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release 2018, 269, 245–257. [Google Scholar] [CrossRef]
- Nosrati, H.; Nosrati, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics 2023, 8, 442. [Google Scholar] [CrossRef] [PubMed]
- Eppler, A.R.; Ma, H. Artificial Intelligence Beauty Revolution—State of the Art and New Trends from the SCC78 Annual Meeting. Cosmetics 2025, 12, 73. [Google Scholar] [CrossRef]
Regenerative Product Type | Mechanism of Action | Summary of Clinical Indications |
---|---|---|
PRP | Concentrated release growth factors that stimulate fibroblast proliferation, angiogenesis, and extracellular matrix ECM remodeling. |
|
Exosomes | Nanovesicles secreted by cells containing proteins, lipids, and miRNAs. Modulate intercellular communication, reduce inflammation, promote angiogenesis, and stimulate fibroblast and keratinocyte activity. |
|
ASCs | Multipotent mesenchymal stem cells secrete cytokines and growth factors with paracrine regenerative effects. Enhance angiogenesis, modulate immune response, and promote adipogenesis and collagen remodeling. |
|
ECM-Based Scaffolds | Decellularized extracellular matrices retain structural proteins and bioactive molecules that mimic native tissue architecture. They facilitate cell adhesion, migration, and proliferation; modulate immune responses; and promote angiogenesis. |
|
Growth Factor | Role |
---|---|
PDGF | Stimulates fibroblasts, collagen, and angiogenesis |
VEGF | Promotes new blood vessels’ formation |
HGF | Enhances cell migration and supports stem cell-mediated tissue regeneration |
Inflammatory cytokines (IL-6, IL-8, TNF-α) | Regulate inflammation and initiate tissue repair |
Regenerative Product Type | Advantages | Disadvantages |
---|---|---|
PRP |
|
|
Exosomes |
|
|
ASCs |
|
|
Biologics/Lasers |
|
|
Study | Level of Evidence | Product Type | Intended Effect | Efficacy | Safety |
---|---|---|---|---|---|
Alam et al., 2018 [71] | Experimental study/II | PRP | Facial Rejuvenation | Skin treated with platelet-rich plasma was found to be significantly less rough and wrinkled at 6 months. | No side effects associated with PRP directly. |
Cabrera-Ramírez et al., 2017 [72] | Experimental study/II | PRP | Hand Rejuvenation | Histological analysis showed an increase in the number of fibroblasts (p < 0.001), number of vessels (p < 0.001), and collagen density (p = 0.27). | No side effects reported. |
Qu et al., 2021 [73] | Experimental study/II | PRP | Hair Restoration | Significant increase in hair density, hair count, diameter, and anagen hair ratio at 6 months compared to the control side and baseline. | No side effects reported. |
Gulanikar et al., 2019 [74] | Case series/IV | PRP | Acne Scars | All the types of scars showed response in terms of reduction in size. | Mild erythema and edema lasting for 1 day. |
Hui et al., 2017 [75] | Experimental study/II | CO2 lasers + PRP | Facial Rejuvenation | Combination treatment of PRP and laser was superior to laser treatment alone. Scores reflect better area and density of wrinkles, texture, and pores. | Mild erythema, edema, and crusting in both the experimental group and control group, with less side effects reported in the experimental group. |
Proffer et al., 2022 [76] | Case series/IV | Exosomes | Facial Rejuvenation | VISIA-CR imaging yielded quantifiable and statistically significant improvements in overall skin health. | Mild dryness, with no other side effects reported. |
Kim et al., 2022 [77] | Preclinical study/V | Exosomes | Hair Restoration | Exosomes induced proliferation of DP cells and accelerated hair regeneration through activation of the Wnt/β-catenin pathway. | No side effects reported. |
Kwon et al., 2020 [70] | Experimental study/II | CO2 lasers + Exosomes | Acne Scars | Atrophic scar volume, mean pore volume, and skin surface roughness were significantly decreased from baseline on the ASC side. | Mild erythema, post-treatment pain, and dryness that resolved within 5 days. |
Dayan et al., 2023 [78] | Experimental study/II | CO2 lasers + Exosomes | Facial Rejuvenation | Statistically significant brighter appearing skin at 14 days and more youthful looking skin on days 14 and 30. | Mild bruising and itching. |
Yao et al., 2018 [79] | Cohort study/IV | Nanofat | Facial Rejuvenation | Assessment of patient-rated satisfaction on a 5-point Likert scale found that 77.3% of patients in the SVF gel group were satisfied (54.5%) or very satisfied (22.8%) with their outcomes. | Patients in the SVF gel group experienced mild postoperative swelling. |
Kim et al., 2021 [80] | Experimental study/II | SVF | Hair Restoration | Hair density of the SVF-treated side was significantly increased after 3 and 6 months of transplantation compared to the non-treated side. | No side effects reported. |
Behrangi et al., 2022 [81] | Experimental study/II | SVF | Acne Scars | The use of SVF in the treatment of patients with acne scars accelerates improvement in volume, area, and depth of the scar. | No side effects reported. |
Rageh et al., 2023 [82] | Experimental study/II | CO2 lasers + Nanofat | Acne Scars | After treatment, the nanofat treated side of the face showed a significant reduction in Goodman scores. | Erythema, edema, and crust formation were reported by all patients, which faded away within 6.68 ± 0.95 days after the session. |
Technology | Primary Mechanism | Advantages | Limitations |
---|---|---|---|
Mitochondrial Therapies | Boost energy metabolism, reduce ROS | Cellular rejuvenation at source, metabolic enhancement | Still experimental; limited human data |
MicroRNA Therapies | Post-transcriptional gene regulation | Precision targeting, reversible effects | Delivery challenges, cost |
Synthetic Exosome Mimetics | Biologically inspired delivery systems | Scalable, customizable, reduced immune response | Lack of standardization; early-stage clinical use |
AI-Assisted Biologics | Data-driven design and optimization | Speeds R&D, enhances personalization | Requires robust datasets, limited clinical integration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivas, C.G.; Shauly, O.; Hutchison, D.M.; Gould, D.J. Harnessing Regenerative Science in Aesthetic Surgery: The Biologically Driven Future. J. Clin. Med. 2025, 14, 6205. https://doi.org/10.3390/jcm14176205
Olivas CG, Shauly O, Hutchison DM, Gould DJ. Harnessing Regenerative Science in Aesthetic Surgery: The Biologically Driven Future. Journal of Clinical Medicine. 2025; 14(17):6205. https://doi.org/10.3390/jcm14176205
Chicago/Turabian StyleOlivas, Claire G., Orr Shauly, Dana M. Hutchison, and Daniel J. Gould. 2025. "Harnessing Regenerative Science in Aesthetic Surgery: The Biologically Driven Future" Journal of Clinical Medicine 14, no. 17: 6205. https://doi.org/10.3390/jcm14176205
APA StyleOlivas, C. G., Shauly, O., Hutchison, D. M., & Gould, D. J. (2025). Harnessing Regenerative Science in Aesthetic Surgery: The Biologically Driven Future. Journal of Clinical Medicine, 14(17), 6205. https://doi.org/10.3390/jcm14176205