Conservative Treatment with Teriparatide Versus Vertebroplasty for Acute Osteoporotic Vertebral Compression Fractures: A Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Study Extraction
2.2. Data Extraction and Quality Assessment
2.3. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. VAS at Immediate Period (<1 Week)
3.4. VAS at 0–6 Months
3.5. VAS at 12 Months
3.6. BMD Differences at 12 Months
3.7. KA Differences at 12 Months
3.8. AH Loss or Compression Ratio Change at 12 Months
3.9. New-Onset OVCFs
3.10. Heterogeneity Handling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Oh, Y.; Lee, B.; Lee, S.; Kim, J.; Park, J. Percutaneous Vertebroplasty versus Conservative Treatment Using a Transdermal Fentanyl Patch for Osteoporotic Vertebral Compression Fractures. J. Korean Neurosurg. Soc. 2019, 62, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Inose, H.; Tamai, K.; Iwamae, M.; Terai, H.; Nakamura, H. Risk of Revision After Vertebral Augmentation for Osteoporotic Vertebral Fracture: A Narrative Review. Neurospine 2023, 20, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, D.-C.; Kim, K.-T.; Lee, Y.-S. Evidence-based treatment of osteoporotic vertebral compression fracture. J. Korean Med. Assoc. 2021, 64, 200–207. [Google Scholar] [CrossRef]
- Ameis, A.; Randhawa, K.; Yu, H.; Côté, P.; Haldeman, S.; Chou, R.; Hurwitz, E.L.; Nordin, M.; Wong, J.J.; Shearer, H.M.; et al. The Global Spine Care Initiative: A review of reviews and recommendations for the non-invasive management of acute osteoporotic vertebral compression fracture pain in low- and middle-income communities. Eur. Spine J. 2018, 27, 861–869. [Google Scholar] [CrossRef]
- Esses, S.I.; McGuire, R.; Jenkins, J.; Finkelstein, J.; Woodard, E.; Watters, W.C., 3rd; Goldberg, M.J.; Keith, M.; Turkelson, C.M.; Wies, J.L.; et al. American Academy of Orthopaedic Surgeons clinical practice guideline on: The treatment of osteoporotic spinal compression fractures. J. Bone Jt. Surg. Am. 2011, 93, 1934–1936. [Google Scholar] [CrossRef]
- Bae, I.-S.; Moon, B.G.; Kang, H.I.; Kim, J.H.; Jwa, C.; Kim, D.R. Difference in the Cobb Angle Between Standing and Supine Position as a Prognostic Factor after Vertebral Augmentation in Osteoporotic Vertebral Compression Fractures. Neurospine 2022, 19, 357–366. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Macintyre, N.J.; Thabane, L.; Skidmore, C.J.; Papaioannou, A. Exercise for improving outcomes after osteoporotic vertebral fracture. Cochrane Database Syst. Rev. 2013, 7, Cd008618. [Google Scholar] [CrossRef]
- Venmans, A.; Klazen, C.A.; Lohle, P.N.; Mali, W.P.; van Rooij, W.J. Natural history of pain in patients with conservatively treated osteoporotic vertebral compression fractures: Results from VERTOS II. AJNR Am. J. Neuroradiol. 2012, 33, 519–521. [Google Scholar] [CrossRef]
- Inose, H.; Kato, T.; Ichimura, S.; Nakamura, H.; Hoshino, M.; Takahashi, S.; Togawa, D.; Hirano, T.; Tokuhashi, Y.; Ohba, T.; et al. Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures. J. Clin. Med. 2022, 11, 1566. [Google Scholar] [CrossRef]
- Gou, P.; Zhao, Z.; Yu, C.; Hou, X.; Gao, G.; Zhang, T.; Chang, F. Efficacy of Recombinant Human Parathyroid Hormone versus Vertebral Augmentation Procedure on Patients with Acute Osteoporotic Vertebral Compression Fracture. Orthop. Surg. 2022, 14, 2510–2518. [Google Scholar] [CrossRef]
- Yang, E.Z.; Xu, J.G.; Huang, G.Z.; Xiao, W.Z.; Liu, X.K.; Zeng, B.F.; Lian, X.F. Percutaneous Vertebroplasty Versus Conservative Treatment in Aged Patients with Acute Osteoporotic Vertebral Compression Fractures: A Prospective Randomized Controlled Clinical Study. Spine 2016, 41, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Klazen, C.A.H.; Lohle, P.N.M.; de Vries, J.; Jansen, F.H.; Tielbeek, A.V.; Blonk, M.C.; Venmans, A.; van Rooij, W.J.J.; Schoemaker, M.C.; Juttmann, J.R.; et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): An open-label randomised trial. Lancet 2010, 376, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Firanescu, C.E.; de Vries, J.; Lodder, P.; Venmans, A.; Schoemaker, M.C.; Smeets, A.J.; Donga, E.; Juttmann, J.R.; Klazen, C.A.H.; Elgersma, O.E.H.; et al. Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): Randomised sham controlled clinical trial. BMJ 2018, 361, k1551. [Google Scholar] [CrossRef] [PubMed]
- Kallmes, D.F.; Comstock, B.A.; Heagerty, P.J.; Turner, J.A.; Wilson, D.J.; Diamond, T.H.; Edwards, R.; Gray, L.A.; Stout, L.; Owen, S. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N. Engl. J. Med. 2009, 361, 569–579. [Google Scholar] [CrossRef]
- Buchbinder, R.; Osborne, R.H.; Ebeling, P.R.; Wark, J.D.; Mitchell, P.; Wriedt, C.; Graves, S.; Staples, M.P.; Murphy, B. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N. Engl. J. Med. 2009, 361, 557–568. [Google Scholar] [CrossRef]
- Buchbinder, R.; Johnston, R.V.; Rischin, K.J.; Homik, J.; Jones, C.A.; Golmohammadi, K.; Kallmes, D.F. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst. Rev. 2018, 4, Cd006349. [Google Scholar] [CrossRef]
- Peichl, P.; Holzer, L.A.; Maier, R.; Holzer, G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J. Bone Jt. Surg. Am. 2011, 93, 1583–1587. [Google Scholar] [CrossRef]
- Aspenberg, P.; Genant, H.K.; Johansson, T.; Nino, A.J.; See, K.; Krohn, K.; García-Hernández, P.A.; Recknor, C.P.; Einhorn, T.A.; Dalsky, G.P.; et al. Teriparatide for acceleration of fracture repair in humans: A prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J. Bone Miner. Res. 2010, 25, 404–414. [Google Scholar] [CrossRef]
- Tsuchie, H.; Miyakoshi, N.; Kasukawa, Y.; Nishi, T.; Abe, H.; Segawa, T.; Shimada, Y. The effect of teriparatide to alleviate pain and to prevent vertebral collapse after fresh osteoporotic vertebral fracture. J. Bone Miner. Metab. 2016, 34, 86–91. [Google Scholar] [CrossRef]
- Lee, S.; Seo, Y.J.; Choi, J.Y.; Che, X.; Kim, H.J.; Eum, S.Y.; Hong, M.S.; Lee, S.K.; Cho, D.C. Effect of teriparatide on drug treatment of tuberculous spondylitis: An experimental study. Sci. Rep. 2022, 12, 21667. [Google Scholar] [CrossRef]
- Dohke, T.; Iba, K.; Hanaka, M.; Kanaya, K.; Okazaki, S.; Yamashita, T. Teriparatide rapidly improves pain-like behavior in ovariectomized mice in association with the downregulation of inflammatory cytokine expression. J. Bone Miner. Metab. 2018, 36, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Tseng, Y.Y.; Su, C.H.; Lui, T.N.; Yeh, Y.S.; Yeh, S.H. Prospective comparison of the therapeutic effect of teriparatide with that of combined vertebroplasty with antiresorptive agents for the treatment of new-onset adjacent vertebral compression fracture after percutaneous vertebroplasty. Osteoporos. Int. 2012, 23, 1613–1622. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Xiao, X.; Ma, Y.; Feng, L.; Yan, W.; Chen, J.; Yang, D. Effects of teriparatide versus percutaneous vertebroplasty on pain relief, quality of life and cost-effectiveness in postmenopausal females with acute osteoporotic vertebral compression fracture: A prospective cohort study. Bone 2020, 131, 115154. [Google Scholar] [CrossRef]
- Su, C.H.; Tu, P.H.; Yang, T.C.; Tseng, Y.Y. Comparison of the therapeutic effect of teriparatide with that of combined vertebroplasty with antiresorptive agents for the treatment of new-onset adjacent vertebral compression fracture after percutaneous vertebroplasty. J. Spinal Disord. Tech. 2013, 26, 200–206. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, B.H.; Lee, J.Y.; Jeon, H.J.; Cho, B.M.; Kim, S.Y.; Park, S.H. Clinical and radiological outcomes of denosumab and teriparatide treatment in elderly patients with osteoporotic spinal compression fracture without vertebroplasty. J. Korean Soc. Geriatr. Neurosurg. 2021, 17, 69–75. [Google Scholar] [CrossRef]
- Jung, H.J.; Park, Y.-S.; Seo, H.-Y.; Lee, J.-C.; An, K.-C.; Kim, J.-H.; Shin, B.-J.; Kang, T.W.; Park, S.Y. Quality of Life in Patients with Osteoporotic Vertebral Compression Fractures. J. Bone Metab. 2017, 24, 187–196. [Google Scholar] [CrossRef]
- Jacob, K.C.; Patel, M.R.; Collins, A.P.; Park, G.J.; Vanjani, N.N.; Prabhu, M.C.; Pawlowski, H.; Parsons, A.W.; Singh, K. Meeting Patient Expectations and Achieving a Minimal Clinically Important Difference for Back Disability, Back Pain, and Leg Pain May Provide Predictive Utility for Achieving Patient Satisfaction Among Lumbar Decompression Patients. World Neurosurg. 2022, 162, e328–e335. [Google Scholar] [CrossRef]
- Copay, A.G.; Glassman, S.D.; Subach, B.R.; Berven, S.; Schuler, T.C.; Carreon, L.Y. Minimum clinically important difference in lumbar spine surgery patients: A choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J. 2008, 8, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Ostelo, R.W.; de Vet, H.C. Clinically important outcomes in low back pain. Best Pract. Res. Clin. Rheumatol. 2005, 19, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Than, C.A.; Adra, M.; Curtis, T.J.; Shi, A.; Kim, G.E.; Nakanishi, H.; Matar, R.H.; Brown, J.M.M.; Dannawi, Z.; Beck, B.R. The effect of exercise post vertebral augmentation in osteoporotic patients: A systematic review and meta-analysis. J. Orthop. Res. 2023, 41, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Ploeg, W.T.; Veldhuizen, A.G.; The, B.; Sietsma, M.S. Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures: A systematic review. Eur. Spine J. 2006, 15, 1749–1758. [Google Scholar] [CrossRef]
- Shah, R.V. Sacral kyphoplasty for the treatment of painful sacral insufficiency fractures and metastases. Spine J. 2012, 12, 113–120. [Google Scholar] [CrossRef]
- Choi, J.H.; Kang, H.D.; Park, J.H.; Gu, B.S.; Jung, S.K.; Oh, S.H. The Efficacy of Fentanyl Transdermal Patch as the First-Line Medicine for the Conservative Treatment of Osteoporotic Compression Fracture. Korean J. Neurotrauma 2017, 13, 130–136. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, J.; Ding, Q.; Wu, M.; Yin, G. Risk factors for new osteoporotic vertebral compression fractures after vertebroplasty: A systematic review and meta-analysis. J. Spinal Disord. Tech. 2013, 26, E150–E157. [Google Scholar] [CrossRef]
- Kamano, H.; Hiwatashi, A.; Kobayashi, N.; Fuwa, S.; Takahashi, O.; Saida, Y.; Honda, H.; Numaguchi, Y. New vertebral compression fractures after prophylactic vertebroplasty in osteoporotic patients. AJR Am. J. Roentgenol. 2011, 197, 451–456. [Google Scholar] [CrossRef]
- Uppin, A.A.; Hirsch, J.A.; Centenera, L.V.; Pfiefer, B.A.; Pazianos, A.G.; Choi, I.S. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 2003, 226, 119–124. [Google Scholar] [CrossRef]
- Trout, A.T.; Kallmes, D.F.; Kaufmann, T.J. New fractures after vertebroplasty: Adjacent fractures occur significantly sooner. AJNR Am. J. Neuroradiol. 2006, 27, 217–223. [Google Scholar]
- Ku, K.-L.; Wu, Y.-S.; Wang, C.-Y.; Hong, D.-W.; Chen, Z.-X.; Huang, C.-A.; Chu, I.-M.; Lai, P.-L. Incorporation of surface-modified hydroxyapatite into poly (methyl methacrylate) to improve biological activity and bone ingrowth. R. Soc. Open Sci. 2019, 6, 182060. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kuh, S.; Park, J.; Kim, K.; Chin, D.; Cho, Y. What is the importance of “halo” phenomenon around bone cement following vertebral augmentation for osteoporotic compression fracture? Osteoporos. Int. 2012, 23, 2559–2565. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Kanayama, M.; Oha, F.; Hashimoto, T.; Iwasaki, N. Effect of teriparatide (rh-PTH 1-34) versus bisphosphonate on the healing of osteoporotic vertebral compression fracture: A retrospective comparative study. BMC Musculoskelet. Disord. 2017, 18, 148. [Google Scholar] [CrossRef]
- Scaturro, D.; Rizzo, S.; Sanfilippo, V.; Giustino, V.; Messina, G.; Martines, F.; Falco, V.; Cuntrera, D.; Moretti, A.; Iolascon, G.; et al. Effectiveness of Rehabilitative Intervention on Pain, Postural Balance, and Quality of Life in Women with Multiple Vertebral Fragility Fractures: A Prospective Cohort Study. J. Funct. Morphol. Kinesiol. 2021, 6, 24. [Google Scholar] [CrossRef]
- Alkhiary, Y.M.; Gerstenfeld, L.C.; Krall, E.; Westmore, M.; Sato, M.; Mitlak, B.H.; Einhorn, T.A. Enhancement of Experimental Fracture-Healing by Systemic Administration of Recombinant Human Parathyroid Hormone (PTH 1–34). JBJS 2005, 87, 731–741. [Google Scholar] [CrossRef]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.-Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef]
- Min, H.K.; Ahn, J.H.; Ha, K.Y.; Kim, Y.H.; Kim, S.I.; Park, H.Y.; Rhyu, K.W.; Kim, Y.Y.; Oh, I.S.; Seo, J.Y.; et al. Effects of anti-osteoporosis medications on radiological and clinical results after acute osteoporotic spinal fractures: A retrospective analysis of prospectively designed study. Osteoporos. Int. 2019, 30, 2249–2256. [Google Scholar] [CrossRef]
- Black, D.M.; Cummings, S.R.; Karpf, D.B.; Cauley, J.A.; Thompson, D.E.; Nevitt, M.C.; Bauer, D.C.; Genant, H.K.; Haskell, W.L.; Marcus, R.; et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996, 348, 1535–1541. [Google Scholar] [CrossRef]
- Ettinger, B.; Black, D.M.; Mitlak, B.H.; Knickerbocker, R.K.; Nickelsen, T.; Genant, H.K.; Christiansen, C.; Delmas, P.D.; Zanchetta, J.R.; Stakkestad, J.; et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999, 282, 637–645. [Google Scholar] [CrossRef]
- Matos, M.A.; Tannuri, U.; Guarniero, R. The effect of zoledronate during bone healing. J. Orthop. Traumatol. 2010, 11, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.Y.; Park, K.S.; Kim, S.I.; Kim, Y.H. Does bisphosphonate-based anti-osteoporosis medication affect osteoporotic spinal fracture healing? Osteoporos. Int. 2016, 27, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Takao-Kawabata, R.; Takakura, A.; Shimazu, Y.; Nakatsugawa, M.; Ito, A.; Lee, J.W.; Kawasaki, K.; Iimura, T. Teriparatide relieves ovariectomy-induced hyperalgesia in rats, suggesting the involvement of functional regulation in primary sensory neurons by PTH-mediated signaling. Sci. Rep. 2020, 10, 5346. [Google Scholar] [CrossRef] [PubMed]
- Hamano, H.; Takahata, M.; Ota, M.; Hiratsuka, S.; Shimizu, T.; Kameda, Y.; Iwasaki, N. Teriparatide Improves Trabecular Osteoporosis but Simultaneously Promotes Ankylosis of the Spine in the Twy Mouse Model for Diffuse Idiopathic Skeletal Hyperostosis. Calcif. Tissue Int. 2016, 98, 140–148. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ando, M.; Sasaki, S. Effective treatment of delayed union of a lumbar vertebral fracture with daily administration of teriparatide in a patient with diffuse idiopathic skeletal hyperostosis. Eur. Spine J. 2015, 24 (Suppl. S4), S573–S576. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, K.C.; Shin, D.E.; Koh, Y.G.; Son, J.S.; Kim, B.H. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture. Osteoporos. Int. 2014, 25, 613–618. [Google Scholar] [CrossRef]
- Kang, J.H.; Yang, S.M.; Im, S.B.; Jeong, J.H. Can Three Months of Teriparatide Be One of Treatment Options for Osteoporotic Vertebral Compression Fracture Patients? Korean J. Neurotrauma 2019, 15, 19–27. [Google Scholar] [CrossRef]
- Parreira, P.C.S.; Maher, C.G.; Megale, R.Z.; March, L.; Ferreira, M.L. An overview of clinical guidelines for the management of vertebral compression fracture: A systematic review. Spine J. 2017, 17, 1932–1938. [Google Scholar] [CrossRef]
Study /Design | Inclusion Criteria/Definition of Acute OVCF | Demographics and Follow-Up Periods | Intervention and Drug Dosage | Outcome Evaluation and Time Points | Complications | Results |
---|---|---|---|---|---|---|
Tseng et al. (2012) [25] /RCT | New-onset painful adjacent OVCFs after VP /Severe pain + based on MRI exam | TP (n = 22) Age 70.55 ± 4.10 Gender (F:M) 20:2 Baseline BMD −3.45 ± 0.73 F/U 24.63 ± 3.48 months | TP (20 μg/d, 18 months) +Ca (1~1.5 g/d) +VitD (800~1000 IU/d) | VAS, JOA, BMD, new-onset OVCF At 1, 6, 12, 18 months | VP: 6 new-onset adjacent OVCFs; 1 major bone cement extravasation requiring decompressive laminectomy; 2 minor bone cement extravasations TP: 1 New-onset adjacent OVCF | Treatment of post-VP adjacent OVCFs with TP (no new VP) was more effective than that of repeated VPs combined with an anti-resorber |
VP (n = 22) Age 75.95 ± 6.28 Gender (F:M) 20:2 Baseline BMD −3.76 ± 0.71 F/U 25.05 ± 3.42 months | VP +Alendronate (70 mg/wk) or Raloxifene (60 mg/d) +Ca (1–1.5 g/d) +VitD (800–1000 IU/d) | |||||
Ma et al. (2020) [26] /Prospective, non-randomized, real-world study | 55–80 years old Female OVCF (BMD < −2.5) /Based on 3.0T MRI and severe lower back pain, especially when walking or changing position | TP (n = 30) Age 67.35 ± 6.49 BMD (g/cm2) 0.62 ± 0.14 Fracture time (days) 14.25 ± 12.6 F/U > 3 months | TP (20 μg/d) +Ca (0.6 g/d) +VitD (500 IU/d) | VAS, ODI, SF-36, BMD, VH, Medical cost At 1 week, 1 month, 3 months | No significant complications were observed in either treatment | Both treatments with TP and VP significantly and similarly improved patients’ health quality, with reduced visual analog and ODI scores at end of first and third months. VP was more effective in reducing pain at the early time point (1 week) |
VP (n = 30) Age 70.84 ± 6.60 BMD (g/cm2) 0.66 ± 0.11 Fracture time (days) 12.26 ± 9.96 F/U > 3 months | VP +Alendronate (70 mg/wk) +Ca (0.6 g/d) +VitD (500 IU/d) | |||||
Su et al. (2013) [27] /Prospective cohort and retrospective comparative study | New-onset painful adjacent OVCF after VP /Based on MRI exam, when they had their first painful VCF | TP (n = 32) Age 77.94 ± 7.44 Gender (F:M) 29:3 Baseline BMD −3.81 ± 0.93 F/U > 22.56 ± 4.71 months | TP (20 μg/d) +Ca (1.0–1.5 g/d) +VitD (800–1000 IU/d) | VAS, BMD, New onset OVCF At 1, 6, 12, 18 months | VP: 6 new-onset adjacent OVCFs; 2 new-onset nonadjacent OVCFs; 1 major bone cement extravasation requiring decompressive laminectomy; 1 minor bone cement extravasation TP: 1 new-onset adjacent OVCF | Therapeutic effects of TP are better than those of combination of VP with an anti-resorptive agent in terms of fracture prevention, BMD change, and sustained pain relief |
VP (n = 33) Age 73.12 ± 7.49 Gender (F:M) 30:3 Baseline BMD −3.29 ± 0.74 F/U > 23.27 ± 5.13 months | VP +Alendronate (70 mg/wk) or Raloxifene (60 mg/d) +Calcitonin (200 IU/d) +Ca (1.0–1.5 g/d) +VitD (400–800 IU/d) | |||||
Jung et al. (2021) [28] /Retrospective comparative study | >75 years old, BMD < −3.0 OVCF, /Definition of acute OVCF was not reported. Painful OVCF (VAS about 7, initial VAS 7.62 ± 0.78 for TP, and 7.82 ± 0.59 for VP) | TP (n = 41) Age 81.07 ± 4.92 Gender (F:M) 38:3 Baseline BMD –3.51 ± 0.42 F/U > 1 yr | TP +Denosumab Combination > 1 yr +Ca | VAS, BMD, KA, New onset OVCF HS, Days ambulation At 0 (post), 1, 12 months | VP: 6 adjacent OVCFs at 1 yr F/U TP: No significant complications were reported | TP combination treatment without VP did not show significant differences in either clinical or radiologic results compared to VP cases |
VP (n = 45) Age 83.07 ± 5.02 Gender (F:M) 40:5 Baseline BMD –3.62 ± 0.44 F/U > 1 yr | VP +Alendronate, Risendronate +Ca | |||||
Gou et al. (2022) [10] /Retrospective comparative study | (i) 60–90 years old; (ii) acute OVCF from low-energy trauma (fall from standing height or less; (iii) severe back pain; (iv) osteoporosis: CT values of L4 ≤ 80 HU /Trauma < 2 wks, based on MRI exam | TP (n = 22) Age 76.18 ± 5.43 Gender (F:M) 15:7 Baseline L4 CT HU 63.95 ± 6.93 F/U 14.05 ± 1.13 months | TP (20 μg/d, >6 months) +Ca (1.2 g/d) +VitD (800 IU/d) | VAS, ODI, SF-36, BMD, KA, New onset OVCF At 1, 3, 6, 12 months | VP: 8 new-onset OVCFs TP: 0 new-onset OVCFs No serious adverse events occurred in either group | TP was better than VP in terms of increasing spinal BMD to promote OVCF healing, reduce new OVCFs, and improve back pain, physical ability, and health-related quality of life |
VP (n = 49) Age 73.63 ± 5.78 Gender (F:M) 35:14 Baseline L4 CT HU 67.17 ± 11.55 F/U 13.82 ± 1.20 months | VP +Ca (1.2 g/d) +VitD (800 IU/d) |
Study | Assessment | Domain | Risk Level | Justification |
---|---|---|---|---|
Tseng et al. (2012) [25] | RoB-2 (RCT) | Bias due to deviations from intended interventions | Some concerns | Blinding status of participants and care providers was not explicitly stated. |
Bias in measurement of outcome | Some concerns | Subjective outcomes such as VAS were used, and assessor blinding was not clearly described. | ||
Bias in selection of reported results | Some concerns | No pre-registered protocol or statistical analysis plan was referenced. | ||
Overall risk of bias | Some concerns | Lack of clarity in blinding and selective reporting domains. | ||
Ma et al. (2020) [26] | ROBINS-I (non-RCT) | Confounding | Moderate | No statistical adjustment for baseline variables; possible selection bias by patient choice. |
Su et al. (2013) [27] | Confounding | Moderate | Post hoc comparison group with no baseline adjustment. | |
Su et al. (2013) [27] | Classification of interventions | Moderate | Retrospective group received variable anti-resorptives. | |
Su et al. (2013) [27] | Deviations from intended intervention | Serious | Variation in treatment length and agent changes. | |
Su et al. (2013) [27] | Outcome measurement | Moderate | No blinding; subjective outcomes prone to bias. | |
Jung et al. (2021) [28] | Outcome measurement | Moderate | Outcome assessors were not blinded. |
Study | Detailed Measurement Methods | Remarks |
---|---|---|
Tseng et al. (2012) [25] | Anteroposterior and lateral lumbar spine radiographs, measured by DEXA At least two evaluable vertebrae in the lumbar spine region (L1–L4) Vertebrae with structural changes or artifacts were excluded Diagnoses were not made based on single vertebral bodies | Included in the analysis (Figure 4A) |
Ma et al. (2020) [26] | Both lumbar and femoral neck BMD were measured using DEXA and recorded separately | Excluded due to the absence of 1-year follow-up data |
Su et al. (2013) [27] | Anteroposterior and lateral lumbar spine radiographs, measured by DEXA At least two evaluable vertebrae in the lumbar spine region (L1-L4) | Included in the analysis (Figure 4A) |
Jung et al. (2021) [28] | Average value of lumbar spine radiographs (L1 to L4.), measured by DEXA | Included in the analysis (Figure 4A) |
Gou et al. (2022) [10] | The CT value of L4 quantified on sagittal CT images CT values of L4 ≤ 80 HU were applied to the osteoporosis diagnosis | CT values excluded due to incompatibility with DEXA T-scores |
Study | Time point | MD | SE | CI Lower | CI Upper | Age | TP Drug | VP Drug | Fracture Type | RCT | Overall (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ma et al. (2020) [26] | ΔVAS at 3M | 0.55 | 0.10 | 0.36 | 0.74 | <75 | TP | BP | New | non | 99.60 |
Jung et al. (2021) [28] | ΔVAS at 3M | 0.74 | 0.03 | 0.67 | 0.81 | ≥75 | TP+ Deno | BP | New | non | 99.60 |
Gou et al. (2022) [10] | ΔVAS at 3M | −0.40 | 0.04 | −0.48 | −0.32 | <75 | TP | No | New | non | 99.60 |
Tseng et al. (2012) [25] | ΔVAS at 6M | −1.15 | 0.10 | −1.34 | −0.96 | <75 | TP | BP | AdjFx | RCT | 95.59 |
Su et al. (2013) [27] | ΔVAS at 6M | −1.96 | 0.10 | −2.15 | −1.77 | ≥75 | TP | BP | AdjFx | non | 95.59 |
Gou et al. (2022) [10] | ΔVAS at 6M | −1.84 | 0.05 | −1.94 | −1.74 | <75 | TP | No | New | non | 95.59 |
Tseng et al. (2012) [25] | ΔVAS at 12M | −1.89 | 0.11 | −2.10 | −1.68 | <75 | TP | BP | AdjFx | RCT | 99.84 |
Su et al. (2013) [27] | ΔVAS at 12M | −2.31 | 0.09 | −2.49 | −2.13 | ≥75 | TP | BP | AdjFx | non | 99.84 |
Jung et al. (2021) [28] | ΔVAS at 12M | 0.22 | 0.03 | 0.15 | 0.29 | ≥75 | TP+ Deno | BP | New | non | 99.84 |
Gou et al. (2022) [10] | ΔVAS at 12M | −2.09 | 0.05 | −2.19 | −1.99 | <75 | TP | No | New | non | 99.84 |
Time Point | Age Group | (%) | Study Count |
---|---|---|---|
ΔVAS at 3M | <75 | 98.81 | 2 [Ma et al. (2020), Gou et al. (2022)] [10,26] |
ΔVAS at 3M | ≥75 | - | 1 [Jung et al. (2021)] [28] |
ΔVAS at 6M | <75 | 97.46 | 2 [Tseng et al. (2012), Gou et al. (2022)] [10,25] |
ΔVAS at 6M | ≥75 | - | 1 [Su et al. (2013)] [27] |
ΔVAS at 12M | <75 | 64.07 | 2 [Tseng et al. (2012), Gou et al. (2022)] [10,25] |
ΔVAS at 12M | ≥75 | 99.84 | 2 [Su et al. (2013), Jung et al. (2021)] [27,28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Hur, J.W.; Oh, Y.; An, S.; Chung, Y.; Park, D.; Park, J.H. Conservative Treatment with Teriparatide Versus Vertebroplasty for Acute Osteoporotic Vertebral Compression Fractures: A Meta-Analysis. J. Clin. Med. 2025, 14, 3967. https://doi.org/10.3390/jcm14113967
Lee S, Hur JW, Oh Y, An S, Chung Y, Park D, Park JH. Conservative Treatment with Teriparatide Versus Vertebroplasty for Acute Osteoporotic Vertebral Compression Fractures: A Meta-Analysis. Journal of Clinical Medicine. 2025; 14(11):3967. https://doi.org/10.3390/jcm14113967
Chicago/Turabian StyleLee, Subum, Junseok W. Hur, Younggyu Oh, Sungjae An, Yeongu Chung, Danbi Park, and Jin Hoon Park. 2025. "Conservative Treatment with Teriparatide Versus Vertebroplasty for Acute Osteoporotic Vertebral Compression Fractures: A Meta-Analysis" Journal of Clinical Medicine 14, no. 11: 3967. https://doi.org/10.3390/jcm14113967
APA StyleLee, S., Hur, J. W., Oh, Y., An, S., Chung, Y., Park, D., & Park, J. H. (2025). Conservative Treatment with Teriparatide Versus Vertebroplasty for Acute Osteoporotic Vertebral Compression Fractures: A Meta-Analysis. Journal of Clinical Medicine, 14(11), 3967. https://doi.org/10.3390/jcm14113967