Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson’s Disease Fine Motor Performance
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Finger-Tapping Assessment Set-Up and Procedure
2.3. CART Platform Development
2.4. Native-MMC Data Collection
2.5. CART-MMC Data Collection and 3D Hand Landmark Identification
2.5.1. Data Collection of Images and Camera Parameters
2.5.2. Image Extraction and Temporal Alignment
2.5.3. Convert Depth Image to World Point Cloud
2.5.4. Calculate RGB-Depth Composite
2.5.5. Identify Hand Landmark Positions in the RGB Image with MediaPipe
2.5.6. 3D World Hand Landmark Positions
2.5.7. Interpolation
2.6. Traditional-MC Data Processing
2.7. Metric Calculations
2.8. Statistical Analysis
2.8.1. System Equivalence Statistical Analysis
2.8.2. Known-Group Statistical Analysis
2.9. Final Dataset for Analyses
3. Results
3.1. Native-MMC Outcomes Lack Equivalence with the Traditional-MC
3.2. CART-MMC Outcomes Align Closely with the Traditional-MC
3.3. CART-MMC Differentiates Finger-Tapping Performance in PwPD from HCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
PwPD | People with Parkinson’s disease |
ADL | Activity of daily living |
MDS-UPDRS III | Movement Disorders Society-Unified Parkinson’s Disease Rating Scale Part III |
MMC | Markerless motion capture |
MC | Motion capture |
RGB | Red–green–blue |
AR | Augmented reality |
HL2 | HoloLens2 |
CART | Comprehensive Augmented Reality Testing |
HC | Healthy control |
AHaT | Articulated hand tracking |
PGM | Portable gray map |
LUT | Look-up-table |
Dur | Duration |
Freq | Frequency |
Amp | Amplitude |
Vel | Velocity |
NPL | Normalized path length |
References
- Boraud, T.; Tison, F.; Gross, C. Quantification of motor slowness in Parkinson’s disease: Correlations between the tapping test and single joint ballistic movement parameters. Park. Relat. Disord. 1997, 3, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Espay, A.J.; Fasano, A.; Paparella, G.; Hallett, M.; Berardelli, A. Redefining Bradykinesia. Mov. Disord. 2023, 38, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Doucet, B.M.; Blanchard, M.; Bienvenu, F. Occupational Performance and Hand Function in People With Parkinson’s Disease After Participation in Lee Silverman Voice Treatment (LSVT) BIG(R). Am. J. Occup. Ther. 2021, 75, 7506205010. [Google Scholar] [CrossRef] [PubMed]
- Wong-Yu, I.S.K.; Ren, L.; Mak, M.K.Y. Impaired Hand Function and Its Association With Self-Perceived Hand Functional Ability and Quality of Life in Parkinson Disease. Am. J. Phys. Med. Rehabil. 2022, 101, 843–849. [Google Scholar] [CrossRef]
- Sarasso, E.; Gardoni, A.; Zenere, L.; Emedoli, D.; Balestrino, R.; Grassi, A.; Basaia, S.; Tripodi, C.; Canu, E.; Malcangi, M.; et al. Neural correlates of bradykinesia in Parkinson’s disease: A kinematic and functional MRI study. NPJ Park. Dis. 2024, 10, 167. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Williams, S.; Wong, D.; Alty, J.E.; Relton, S.D. Parkinsonian Hand or Clinician’s Eye? Finger Tap Bradykinesia Interrater Reliability for 21 Movement Disorder Experts. J. Park. Dis. 2023, 13, 525–536. [Google Scholar] [CrossRef]
- Lo, C.; Arora, S.; Lawton, M.; Barber, T.; Quinnell, T.; Dennis, G.J.; Ben-Shlomo, Y.; Hu, M.T. A composite clinical motor score as a comprehensive and sensitive outcome measure for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2022, 93, 617–624. [Google Scholar] [CrossRef]
- Henderson, L.; Kennard, C.; Crawford, T.J.; Day, S.; Everitt, B.S.; Goodrich, S.; Jones, F.; Park, D.M. Scales for rating motor impairment in Parkinson’s disease: Studies of reliability and convergent validity. J. Neurol. Neurosurg. Psychiatry 1991, 54, 18–24. [Google Scholar] [CrossRef]
- Cancela, J.; Pansera, M.; Arredondo, M.T.; Estrada, J.J.; Pastorino, M.; Pastor-Sanz, L.; Villalar, J.L. A comprehensive motor symptom monitoring and management system: The bradykinesia case. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 2010, 1008–1011. [Google Scholar] [CrossRef]
- Alberts, J.L.; Shuaib, U.; Fernandez, H.; Walter, B.L.; Schindler, D.; Miller Koop, M.; Rosenfeldt, A.B. The Parkinson’s disease waiting room of the future: Measurements, not magazines. Front. Neurol. 2023, 14, 1212113. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s disease: Challenges and opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.D.; Sanes, J.N.; Dambrosia, J.M.; Calne, D.B. Methods for evaluating treatment in Parkinson’s disease. Adv. Neurol. 1983, 37, 1–7. [Google Scholar] [PubMed]
- Sanchez-Ferro, A.; Elshehabi, M.; Godinho, C.; Salkovic, D.; Hobert, M.A.; Domingos, J.; van Uem, J.M.; Ferreira, J.J.; Maetzler, W. New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Mov. Disord. 2016, 31, 1283–1292. [Google Scholar] [CrossRef]
- Yu, T.; Park, K.W.; McKeown, M.J.; Wang, Z.J. Clinically Informed Automated Assessment of Finger Tapping Videos in Parkinson’s Disease. Sensors 2023, 23, 9149. [Google Scholar] [CrossRef]
- Hii, C.S.T.; Gan, K.B.; Zainal, N.; Mohamed Ibrahim, N.; Azmin, S.; Mat Desa, S.H.; van de Warrenburg, B.; You, H.W. Automated Gait Analysis Based on a Marker-Free Pose Estimation Model. Sensors 2023, 23, 6489. [Google Scholar] [CrossRef]
- Ino, T.; Samukawa, M.; Ishida, T.; Wada, N.; Koshino, Y.; Kasahara, S.; Tohyama, H. Validity and Reliability of OpenPose-Based Motion Analysis in Measuring Knee Valgus during Drop Vertical Jump Test. J. Sports Sci. Med. 2024, 23, 515–525. [Google Scholar] [CrossRef]
- Acevedo, G.; Lange, F.; Calonge, C.; Peach, R.; Wong, J.K.; Guarin, D.L. VisionMD: An open-source tool for video-based analysis of motor function in movement disorders. NPJ Park. Dis. 2025, 11, 27. [Google Scholar] [CrossRef]
- Soares, I.B.; Sousa, R.; Petry, M.; Moreira, A.P. Accuracy and Repeatability Tests on HoloLens 2 and HTC Vive. Multimodal Technol. Interact. 2021, 5, 47. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Rodriguez-Blazquez, C.; Mario, A.; Arakaki, T.; Arillo, V.C.; Chana, P.; Fernandez, W.; Garretto, N.; Martinez-Castrillo, J.C.; Rodriguez-Violante, M.; et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Park. Relat. Disord. 2015, 21, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.R.; Garcia-Sarreon, A.; Camara-Lemarroy, C.; Salazar, F.; Guerrero-Gonzalez, M.L. Accuracy of Markerless 3D Motion Capture Evaluation to Differentiate between On/Off Status in Parkinson’s Disease after Deep Brain Stimulation. Park. Dis. 2018, 2018, 5830364. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Sinclair, N.C.; Jones, M.; Tan, J.L.; Proud, E.L.; Peppard, R.; McDermott, H.J.; Perera, T. Objective evaluation of bradykinesia in Parkinson’s disease using an inexpensive marker-less motion tracking system. Physiol. Meas. 2019, 40, 014004. [Google Scholar] [CrossRef] [PubMed]
- Gionfrida, L.; Rusli, W.M.R.; Bharath, A.A.; Kedgley, A.E. Validation of two-dimensional video-based inference of finger kinematics with pose estimation. PLoS ONE 2022, 17, e0276799. [Google Scholar] [CrossRef]
- Amprimo, G.; Masi, G.; Pettiti, G.; Olmo, G.; Priano, L.; Ferraris, C. Hand tracking for clinical applications: Validation of the Google MediaPipe Hand (GMH) and the depth-enhanced GMH-D frameworks. Biomed. Signal Process. Control 2024, 96, 106508. [Google Scholar] [CrossRef]
- Marsili, L.; Abanto, J.; Mahajan, A.; Duque, K.R.; Chinchihualpa Paredes, N.O.; Deraz, H.A.; Espay, A.J.; Bologna, M. Dysrhythmia as a prominent feature of Parkinson’s disease: An app-based tapping test. J. Neurol. Sci. 2024, 463, 123144. [Google Scholar] [CrossRef]
- Tinaz, S.; Pillai, A.S.; Hallett, M. Sequence Effect in Parkinson’s Disease Is Related to Motor Energetic Cost. Front. Neurol. 2016, 7, 83. [Google Scholar] [CrossRef]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef]
- Yokoe, M.; Okuno, R.; Hamasaki, T.; Kurachi, Y.; Akazawa, K.; Sakoda, S. Opening velocity, a novel parameter, for finger tapping test in patients with Parkinson’s disease. Park. Relat. Disord. 2009, 15, 440–444. [Google Scholar] [CrossRef]
- Ling, H.; Massey, L.A.; Lees, A.J.; Brown, P.; Day, B.L. Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson’s disease. Brain 2012, 135, 1141–1153. [Google Scholar] [CrossRef]
- Pearson, C.; Hartzman, A.; Munevar, D.; Feeney, M.; Dolhun, R.; Todaro, V.; Rosenfeld, S.; Willis, A.; Beck, J.C. Care access and utilization among medicare beneficiaries living with Parkinson’s disease. NPJ Park. Dis. 2023, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Miller Koop, M.; Rosenfeldt, A.B.; Owen, K.; Penko, A.L.; Streicher, M.C.; Albright, A.; Alberts, J.L. The Microsoft HoloLens 2 Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Sensors 2022, 22, 2009. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, P.F.; Geerse, D.J.; van Bergem, J.S.; Hoogendoorn, E.M.; Nyman, E., Jr.; Roerdink, M. Gait Parameters Can Be Derived Reliably and Validly from Augmented Reality Glasses in People with Parkinson’s Disease Performing 10-m Walk Tests at Comfortable and Fast Speeds. Sensors 2025, 25, 1230. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls (n = 24) | Parkinson’s Disease (n = 55) | |
---|---|---|
Age (years) | 68.6 (6.0) | 68.2 (7.9) |
Gender | ||
Female | 16 (66.7%) | 13 (23.6%) |
Male | 8 (33.3%) | 42 (76.4%) |
Race | ||
White | 24 (100%) | 50 (90.9%) |
Black | 0 (0%) | 5 (9.1%) |
Ethnicity | ||
Not Hispanic or Latino | 24 (100%) | 55 (100%) |
Education (years) | 17.0 (2.9) | 17.1 (2.3) |
MDS-UPDRS III Total Score | - | 36.2 (13.6) |
Severity Score | ||
Mild (0–32) | - | 22 (40.0%) |
Moderate (33–58) | - | 29 (52.7%) |
Severe (59+) | - | 4 (7.3%) |
Traditional-MC | Native-MMC | CART-MMC | |||||
---|---|---|---|---|---|---|---|
Outcome | Mean (SD) | Mean (SD) | % Difference from Traditional-MC | Equivalence p-Value | Mean (SD) | % Difference from Traditional-MC | Equivalence p-Value |
TapCount | 46.4 (13.5) | 42.9 (12.3) | −7.6% | 0.89 | 45.6 (12.6) | −1.8% | <0.001 ** |
Freq-Mean (Hz) | 3.37 (0.96) | 3.19 (0.83) | −5.4% | 0.58 | 3.35 (0.89) | −0.6% | <0.001 ** |
Freq-CV | 0.11 (0.06) | 0.16 (0.12) | 45.2% | >0.99 | 0.15 (0.08) | 28.7% | >0.99 |
Amp-Mean (cm) | 8.94 (4.49) | 7.20 (4.38) | −19.5% | >0.99 | 9.09 (4.48) | 1.7% | 0.035 * |
Amp-CV | 0.26 (0.14) | 0.33 (0.15) | 28.0% | >0.99 | 0.30 (0.13) | 16.9% | >0.99 |
NPL (cm/s) | 53.5 (21.7) | 40.5 (19.7) | −24.4% | >0.99 | 54.8 (22.5) | 2.4% | 0.061 |
MaxOpenVel-Mean (cm/s) | 83.7 (34.2) | 64.1 (31.0) | −23.4% | >0.99 | 84.9 (34.3) | 1.4% | 0.014 * |
MaxOpenVel-CV | 0.22 (0.12) | 0.29 (0.13) | 30.6% | >0.99 | 0.27 (0.12) | 19.7% | >0.99 |
MaxCloseVel-Mean (cm/s) | 87.4 (34.4) | 66.7 (32.4) | −23.7% | >0.99 | 90.1 (36.0) | 3.1% | 0.15 |
MaxCloseVel-CV | 0.23 (0.12) | 0.30 (0.13) | 32.8% | >0.99 | 0.27 (0.12) | 19.0% | >0.99 |
Outcome | HC Mean (SD) | PD Mean (SD) | Hedges’ g | p-Value |
---|---|---|---|---|
TapCount | 46.4 (12.2) | 46.3 (12.5) | −0.01 | 0.96 |
Freq-Mean (Hz) | 3.38 (0.84) | 3.42 (0.87) | 0.05 | 0.84 |
Freq-CV | 0.12 (0.06) | 0.16 (0.09) | 0.57 | 0.028 * |
Amp-Mean (cm) | 11.3 (4.1) | 8.40 (4.7) | −0.65 | 0.012 * |
Amp-CV | 0.24 (0.09) | 0.34 (0.15) | 0.77 | 0.005 ** |
NPL (cm/s) | 69.3 (17.9) | 51.2 (24.0) | −0.84 | 0.002 ** |
MaxOpenVel-Mean (cm/s) | 106.2 (27.7) | 79.3 (37.2) | −0.81 | 0.002 ** |
MaxOpenVel-CV | 0.21 (0.07) | 0.30 (0.12) | 0.91 | 0.001 ** |
MaxCloseVel-Mean (cm/s) | 112.5 (30.5) | 84.9 (39.1) | −0.78 | 0.003 ** |
MaxCloseVel-CV | 0.21 (0.07) | 0.31 (0.13) | 0.92 | 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazyk, A.; Kaya, R.D.; Waltz, C.; Zimmerman, E.; Johnston, J.D.; Scelina, K.; Walter, B.L.; Siddiqui, J.; Rosenfeldt, A.B.; Miller Koop, M.; et al. Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson’s Disease Fine Motor Performance. J. Clin. Med. 2025, 14, 3966. https://doi.org/10.3390/jcm14113966
Bazyk A, Kaya RD, Waltz C, Zimmerman E, Johnston JD, Scelina K, Walter BL, Siddiqui J, Rosenfeldt AB, Miller Koop M, et al. Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson’s Disease Fine Motor Performance. Journal of Clinical Medicine. 2025; 14(11):3966. https://doi.org/10.3390/jcm14113966
Chicago/Turabian StyleBazyk, Andrew, Ryan D. Kaya, Colin Waltz, Eric Zimmerman, Joshua D. Johnston, Kathryn Scelina, Benjamin L. Walter, Junaid Siddiqui, Anson B. Rosenfeldt, Mandy Miller Koop, and et al. 2025. "Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson’s Disease Fine Motor Performance" Journal of Clinical Medicine 14, no. 11: 3966. https://doi.org/10.3390/jcm14113966
APA StyleBazyk, A., Kaya, R. D., Waltz, C., Zimmerman, E., Johnston, J. D., Scelina, K., Walter, B. L., Siddiqui, J., Rosenfeldt, A. B., Miller Koop, M., & Alberts, J. L. (2025). Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson’s Disease Fine Motor Performance. Journal of Clinical Medicine, 14(11), 3966. https://doi.org/10.3390/jcm14113966