Optimizing Analgesia After Minimally Invasive Cardiac Surgery: A Randomized Non-Inferiority Trial Comparing Interpectoral Plane Block Plus Serratus Anterior Plane Block to Erector Spinae Plane Block
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Study Population
2.3. Randomization and Blinding
2.4. Anesthesia Protocol
2.5. Regional Anesthesia Techniques
2.6. Postoperative Management
2.7. Outcome Measures
2.8. Sample Size Calculation
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABG | Arterial blood gas |
ASA | American Society of Anesthesiologists |
BMI | Body mass index |
CONSORT | Consolidated Standards of Reporting Trials |
CPOT | Critical-Care Pain Observation Tool |
ESPB | Erector spinae plane block |
FiO2 | Fraction of inspired oxygen |
h | Hours |
ICM | Intercostal muscle |
ICU | Intensive care unit |
IPB | Interpectoral plane block |
IV | Intravenous |
kg/m2 | Kilograms per square meter |
LA | Local anesthetic |
LDM | Latissimus dorsi muscle |
MAC | Minimum alveolar concentration |
MICS | Minimally invasive cardiac surgery |
MIDCAB | Minimally invasive direct coronary artery bypass |
mg | Milligrams |
min | Minutes |
mL | Milliliters |
MMEs | Morphine milligram equivalents |
NIRS | Near-infrared spectroscopy |
NRS | Numeric rating scale |
PCA | Patient-controlled analgesia |
PM | Pectoralis major muscle |
Pm | Pectoralis minor muscle |
PONV | Postoperative nausea and vomiting |
PTA | Pectoral branch of the thoracoacromial artery |
RTE | Relative treatment effect |
SAM | Serratus anterior muscle |
SAPB | Superficial serratus anterior plane block |
TDA | Thoracodorsal artery |
µg | Micrograms |
References
- Yu, S.; Valencia, M.B.; Roques, V.; Aljure, O.D. Regional analgesia for minimally invasive cardiac surgery. J. Card. Surg. 2019, 34, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Cuartas, M.M.; Javadikasgari, H.; Pfannmueller, B.; Seeburger, J.; Gillinov, A.M.; Suri, R.M.; Borger, M.A. Mitral valve repair: Robotic and other minimally invasive approaches. Prog. Cardiovasc. Dis. 2017, 60, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Vinzant, N.J.; Christensen, J.M.; Yalamuri, S.M.; Smith, M.M.; Nuttall, G.A.; Arghami, A.; LeMahieu, A.M.; Schroeder, D.R.; Mauermann, W.J.; Ritter, M.J. Pectoral Fascial Plane Versus Paravertebral Blocks for Minimally Invasive Mitral Valve Surgery Analgesia. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1188–1194. [Google Scholar] [CrossRef]
- Leyva, F.M.; Mendiola, W.E.; Bonilla, A.J.; Cubillos, J.; Moreno, D.A.; Chin, K.J. Continuous Erector Spinae Plane (ESP) Block for Postoperative Analgesia after Minimally Invasive Mitral Valve Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2271–2274. [Google Scholar] [CrossRef]
- Berthoud, V.; Ellouze, O.; Nguyen, M.; Konstantinou, M.; Aho, S.; Malapert, G.; Girard, C.; Guinot, P.G.; Bouchot, O.; Bouhemad, B. Serratus anterior plane block for minimal invasive heart surgery. BMC Anesthesiol. 2018, 18, 144. [Google Scholar] [CrossRef]
- Gautam, S.; Pande, S.; Agarwal, A.; Agarwal, S.K.; Rastogi, A.; Shamshery, C.; Singh, A. Evaluation of Serratus Anterior Plane Block for Pain Relief in Patients Undergoing MIDCAB Surgery. Innovations 2020, 15, 148–154. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, M. The effect of continuous intercostal nerve block vs. single shot on analgesic outcomes and hospital stays in minimally invasive direct coronary artery bypass surgery: A retrospective cohort study. BMC Anesthesiol. 2022, 22, 64. [Google Scholar] [CrossRef]
- Xin, L.; Wang, L.; Feng, Y. Ultrasound-guided erector spinae plane block for postoperative analgesia in patients undergoing minimally invasive direct coronary artery bypass surgery: A double-blinded randomized controlled trial. Can. J. Anaesth. 2024, 71, 784–792. [Google Scholar] [CrossRef]
- Hoogma, D.F.; Van den Eynde, R.; Oosterlinck, W.; Al Tmimi, L.; Verbrugghe, P.; Tournoy, J.; Fieuws, S.; Coppens, S.; Rex, S. Erector spinae plane block for postoperative analgesia in robotically-assisted coronary artery bypass surgery: Results of a randomized placebo-controlled trial. J. Clin. Anesth. 2023, 87, 111088. [Google Scholar] [CrossRef]
- Hoogma, D.F.; Van den Eynde, R.; Al Tmimi, L.; Verbrugghe, P.; Tournoy, J.; Fieuws, S.; Coppens, S.; Rex, S. Efficacy of erector spinae plane block for minimally invasive mitral valve surgery: Results of a double-blind, prospective randomized placebo-controlled trial. J. Clin. Anesth. 2023, 86, 111072. [Google Scholar] [CrossRef]
- Landoni, G.; Isella, F.; Greco, M.; Zangrillo, A.; Royse, C.F. Benefits and risks of epidural analgesia in cardiac surgery. Br. J. Anaesth. 2015, 115, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Forero, M.; Adhikary, S.D.; Lopez, H.; Tsui, C.; Chin, K.J. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg. Anesth. Pain Med. 2016, 41, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Cheruku, S.R.; Fox, A.A.; Heravi, H.; Doolabh, N.; Davis, J.; He, J.; Deonarine, C.; Bereuter, L.; Reisch, J.; Ahmed, F.; et al. Thoracic Interfascial Plane Blocks and Outcomes After Minithoracotomy for Valve Surgery. Semin. Cardiothorac. Vasc. Anesth. 2023, 27, 8–15. [Google Scholar] [CrossRef]
- El-Boghdadly, K.; Wolmarans, M.; Stengel, A.D.; Albrecht, E.; Chin, K.J.; Elsharkawy, H.; Kopp, S.; Mariano, E.R.; Xu, J.L.; Adhikary, S.; et al. Standardizing nomenclature in regional anesthesia: An ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks. Reg. Anesth. Pain Med. 2021, 46, 571–580. [Google Scholar] [CrossRef]
- Blanco, R.; Parras, T.; McDonnell, J.G.; Prats-Galino, A. Serratus plane block: A novel ultrasound-guided thoracic wall nerve block. Anaesthesia 2013, 68, 1107–1113. [Google Scholar] [CrossRef]
- Morkos, M.; DeLeon, A.; Koeckert, M.; Gray, Z.; Liao, K.; Pan, W.; Tolpin, D.A. The Use of Unilateral Erector Spinae Plane Block in Minimally Invasive Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2023, 37, 432–436. [Google Scholar] [CrossRef]
- Kazior, M.R.; King, A.B.; Lopez, M.G.; Billings, F.T.t.; Costello, W.T. Serratus anterior plane block for minimally invasive valve surgery thoracotomy pain. J. Clin. Anesth. 2019, 56, 48–49. [Google Scholar] [CrossRef]
- Moll, V.; Maffeo, C.; Mitchell, M.; Ward, C.T.; Groff, R.F.; Lee, S.C.; Halkos, M.E.; Jabaley, C.S.; O’Reilly-Shah, V.N. Association of Serratus Anterior Plane Block for Minimally Invasive Direct Coronary Artery Bypass Surgery With Higher Opioid Consumption: A Retrospective Observational Study. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2570–2577. [Google Scholar] [CrossRef]
- Saikat, S.; Shweta, S.; Somalia, M.; Dibyendu, K.; Sushan, M. Comparative efficacy of serratus anterior plane block (SAPB) and fentanyl for postoperative pain management and stress response in patients undergoing minimally invasive cardiac surgery (MICS). Ann. Card. Anaesth. 2023, 26, 268–273. [Google Scholar] [CrossRef]
- Macintyre, P.E.; Schug, S. Acute Pain Management: A Practical Guide, 5th ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 338. [Google Scholar]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef]
- Myles, P.S.; Myles, D.B.; Galagher, W.; Boyd, D.; Chew, C.; MacDonald, N.; Dennis, A. Measuring acute postoperative pain using the visual analog scale: The minimal clinically important difference and patient acceptable symptom state. Br. J. Anaesth. 2017, 118, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Tutar, M.; Kozanhan, B.; Tire, Y.; Coven, I.; Altay, N. Effects of Scalp Block on Postoperative Analgesia in Craniotomy Surgery: A Prospective, Randomized Controlled, Double-Blind Study. Bakirkoy Tip Derg./Med. J. Bakirkoy 2025, 21, 76–82. [Google Scholar] [CrossRef]
- Shanthanna, H.; Joshi, G.P. Noninferiority trials in acute pain research: A valid approach or a slippery slope? Br. J. Anaesth. 2024, 132, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Saxena, P.; Borkar, N.; Rangaiah, M.; Arora, N.; Mohanty, P.K. Erector spinae plane block for postoperative analgesia in cardiac surgeries- A systematic review and meta-analysis. Ann. Card. Anaesth. 2023, 26, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Koo, C.H.; Lee, H.T.; Na, H.S.; Ryu, J.H.; Shin, H.J. Efficacy of Erector Spinae Plane Block for Analgesia in Thoracic Surgery: A Systematic Review and Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1387–1395. [Google Scholar] [CrossRef]
- Taketa, Y.; Irisawa, Y.; Fujitani, T. Ultrasound-guided erector spinae plane block elicits sensory loss around the lateral, but not the parasternal, portion of the thorax. J. Clin. Anesth. 2018, 47, 84–85. [Google Scholar] [CrossRef]
- Cosarcan, S.K.; Sezer, Ö.A.; Gürkahraman, S.; Erçelen, Ö. Regional analgesia techniques for effective recovery from coronary artery bypass surgeries: A retrospective study involving the experience of a single center. J. Cardiothorac. Surg. 2022, 17, 170. [Google Scholar] [CrossRef]
- Versyck, B. Pectoral and Serratus Plane Blocks. In Regional Nerve Blocks in Anesthesia and Pain Therapy: Imaging-Guided and Traditional Techniques, 5th ed.; Jankovic, D., Peng, P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 445–454. [Google Scholar]
- Ciftci, B.; Ekinci, M.; Celik, E.C.; Karaaslan, P.; Tukac, İ.C. Ultrasound-guided pectoral nerve block for pain control after breast augmentation: A randomized clinical study. Braz. J. Anesthesiol. (Engl. Ed.) 2021, 71, 44–49. [Google Scholar] [CrossRef]
- Liu, X.; Song, T.; Xu, H.Y.; Chen, X.; Yin, P.; Zhang, J. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails. Medicine 2020, 99, e20286. [Google Scholar] [CrossRef]
- Nair, A.; Diwan, S. Efficacy of Ultrasound-Guided Serratus Anterior Plane Block for Managing Pain Due to Multiple Rib Fractures: A Scoping Review. Cureus 2022, 14, e21322. [Google Scholar] [CrossRef]
- Vaes, B.; Van Hoecke, L.; Allaert, S.; Maes, J.-W.; François, J.; Poelaert, J.; Lapage, K. Superficial Serratus Anterior Plane Block for Minimal Invasive Cardiac Surgery: A single-center randomized controlled trial. Acta Anaesthesiol. Belg. 2024, 75, 107–115. [Google Scholar] [CrossRef]
ESPB (n = 20) | IPB + SAPB (n = 20) | p | |
---|---|---|---|
Age | 64.5 (50.0–74.0) | 62.0 (51.0–73.0) | 0.507 |
Gender (M/F) | 13/7 | 14/6 | 0.999 |
BMI (kg/m2) | 23.6 (19.0–29.5) | 23.1 (18.7–29.6) | 0.968 |
EuroSCORE | 3.5 (1.6–7.3) | 3.2 (1.6–5.7) | 0.655 |
ASA (II/III) | 8/12 | 10/10 | 0.751 |
Surgery type (MIDCAB/minimally invasive valve) | 16/4 | 10/10 | 0.097 |
Surgery length (min) | 300.0 (252.0–336.0) | 294.0 (246.0–324.0) | 0.978 |
Anesthesia length (min) | 357.0 (319.0–403.0) | 356.5 (315.0–390.0) | 0.882 |
ESPB (n = 20) | IPB + SAPB (n = 20) | p | |
---|---|---|---|
Intraoperative Parameters | |||
Remifentanil (μg) | 2468.0 (1803.0–3018.0) | 2382.0 (1814.0–3199.0) | 0.925 |
Remifentanil MMEs (mg) | 6.2 (4.5–7.6) | 6.0 (4.5–8.0) | 0.925 |
RTE | |||
CPOT Scores † | |||
Baseline | 2.0 (0.0–4.0) | 2.5 (0.0–4.0) | 0.512/0.543 |
2 h | 2.0 (0.0–4.0) | 2.0 (0.0–5.0) | 0.495/0.491 |
4 h | 2.0 (0.0–5.0) | 2.0 (0.0–4.0) | 0.425/0.424 |
6 h | 1.5 (0.0–5.0) | 2.0 (1.0–4.0) | 0.549/0.560 |
CPOT Analysis | |||
Group Effect | p = 0.900 | ||
Time Effect | p = 0.029 | ||
Group × Time Interaction | p = 0.933 | ||
NRS Scores ‡ | |||
6 h | 3.0 (0.0–4.0) | 4.0 (0.0–4.0) | 0.510/0.562 |
12 h | 3.0 (0.0–5.0) | 3.0 (0.0–5.0) | 0.505/0.512 |
24 h | 3.0 (0.0–5.0) | 2.5 (0.0–5.0) | 0.475/0.497 |
48 h | 2.0 (0.0–5.0) | 3.0 (0.0–5.0) | 0.405/0.534 |
Longitudinal Analysis Results | |||
NRS Analysis | |||
Group Effect | p = 0.517 | ||
Time Effect | p = 0.201 | ||
Group × Time Interaction | p = 0.238 |
ESPB (n = 20) | IPB + SAPB (n = 20) | p | |
---|---|---|---|
Analgesic Requirements | |||
PCA Fentanyl (μg) | 1725.0 (900.0–2575.0) [IQR: 1331.2–2225.0] | 2025.0 (975.0–2625.0) [IQR: 1650.0–2293.7] | 0.432 |
PCA MMEs (mg) | 172.5 (90.0–257.5) [IQR: 133.1–222.5] | 202.5 (97.5–262.5) [IQR: 165.0–229.4] | 0.432 |
Rescue Analgesic Count | 3 (15.0) | 6 (30.0) | 0.451 |
Total MME (mg) | 178.0 (108.0–265.0) [IQR: 138.5–230.8] | 208.5 (103.0–267.0) [IQR: 170.8–235.5] | 0.394 |
Recovery Parameters | |||
Extubation Time (h) | 5.3 (3.1–7.1) | 5.0 (3.0–7.3) | 0.675 |
ICU CO2 Level | 41.9 (29.5–48.9) | 39.5 (31.1–49.6) | 0.925 |
Drainage Amount (mL) | 250.0 (150.0–300.0) | 200.0 (150.0–250.0) | 0.145 |
NIRS Change | −4.6 (−7.7–0.9) | −5.1 (−9.9–2.0) | 0.218 |
PONV, n (%) | 2 (10.0) | 4 (20.0) | 0.661 |
MIDCAB | Valve Surgery | |||||
---|---|---|---|---|---|---|
ESPB (n = 16) | IPB + SAPB (n = 10) | p | ESPB (n = 4) | IPB + SAPB (n = 10) | p | |
Total MMEs (mg) | 178.0 (108.0–265.0) | 209.0 (103.0–263.0) | 0.916 | 162.0 (124.0–246.0) | 208.0 (140.0–267.0) | 0.179 |
Extubation Time (h) | 5.2 (3.1–7.1) | 5.5 (3.7–7.3) | 0.341 | 5.4 (4.9–5.9) | 4.8 (3.0–6.5) | 0.076 |
PONV n (%) | 2 (12.5) | 3 (30.0) | 0.340 | 0 (0.0) | 1 (10.0) | 0.999 |
NRS at 24 h | 3.0 (0.0–5.0) | 4.0 (0.0–4.0) | 0.345 | 2.0 (0.0–4.0) | 2.0 (0.0–5.0) | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran, O.; Şahin, A.; Gürkan, S.; Gür, Ö.; Arar, C. Optimizing Analgesia After Minimally Invasive Cardiac Surgery: A Randomized Non-Inferiority Trial Comparing Interpectoral Plane Block Plus Serratus Anterior Plane Block to Erector Spinae Plane Block. J. Clin. Med. 2025, 14, 3786. https://doi.org/10.3390/jcm14113786
Baran O, Şahin A, Gürkan S, Gür Ö, Arar C. Optimizing Analgesia After Minimally Invasive Cardiac Surgery: A Randomized Non-Inferiority Trial Comparing Interpectoral Plane Block Plus Serratus Anterior Plane Block to Erector Spinae Plane Block. Journal of Clinical Medicine. 2025; 14(11):3786. https://doi.org/10.3390/jcm14113786
Chicago/Turabian StyleBaran, Onur, Ayhan Şahin, Selami Gürkan, Özcan Gür, and Cavidan Arar. 2025. "Optimizing Analgesia After Minimally Invasive Cardiac Surgery: A Randomized Non-Inferiority Trial Comparing Interpectoral Plane Block Plus Serratus Anterior Plane Block to Erector Spinae Plane Block" Journal of Clinical Medicine 14, no. 11: 3786. https://doi.org/10.3390/jcm14113786
APA StyleBaran, O., Şahin, A., Gürkan, S., Gür, Ö., & Arar, C. (2025). Optimizing Analgesia After Minimally Invasive Cardiac Surgery: A Randomized Non-Inferiority Trial Comparing Interpectoral Plane Block Plus Serratus Anterior Plane Block to Erector Spinae Plane Block. Journal of Clinical Medicine, 14(11), 3786. https://doi.org/10.3390/jcm14113786