Current Practices of Medication Plans in Austrian Patients Undergoing Coronary Angiography: An In-Depth Analysis
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Analysis of Medication Documentation
2.3. Meciation and Discrepancy Analysis
2.4. Statistical Analysis
3. Results
3.1. Medication Documentation
3.2. Medication Plan
3.3. Discrepancy Analysis
3.4. Handwritten Annotations
3.5. Self-Reported Co-Medication
4. Discussion
4.1. General Supply Situation
4.2. Actuality and Completeness
4.3. Implications on Daily Clinical Practice
4.4. Strengths and Limitations
4.5. Implications for Policy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Medication Safety in Polypharmacy: Technical Report; No. WHO/UHC/SDS/2019.11; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bührer, A.; Kappeler, O.; Zanoni, U. Medikationsplan: Weshalb gibt es noch keinen? Prim. Hosp. Care 2021, 21, 415–418. [Google Scholar] [CrossRef]
- Owen, M.C.; Chang, N.M.; Chong, D.H.; Vawdrey, D.K. Evaluation of Medication List Completeness, Safety, and Annotations. AMIA Annu. Symp. Proc. 2011, 2011, 1055–1061. [Google Scholar] [PubMed]
- World Health Organization. Medication Safety in Transitions of Care: Technical Report; WHO/UHC/SDS/2019.9; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Moriarty, F.; Hardy, C.; Bennett, K.; Smith, S.M.; Fahey, T. Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: A repeated cross-sectional study. BMJ Open 2015, 5, e008656. [Google Scholar] [CrossRef]
- Kantor, E.D.; Rehm, C.D.; Haas, J.S.; Chan, A.T.; Giovannucci, E.L. Trends in Prescription Drug Use among Adults in the United States from 1999–2012. JAMA 2015, 314, 1818–1830. [Google Scholar] [CrossRef] [PubMed]
- Oscanoa, T.J.; Lizaraso, F.; Carvajal, A. Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis. Eur. J. Clin. Pharmacol. 2017, 73, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Jen, M.H.; Bottle, A.; Molokhia, M.; Aylin, P.; Bell, D.; Majeed, A. Ten-year trends in hospital admissions for adverse drug reactions in England 1999–2009. J. R. Soc. Med. 2010, 103, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hartholt, K.A.; van der Velde, N.; Looman, C.W.N.; Panneman, M.J.M.; van Beeck, E.F.; Patka, P.; van der Cammen, T.J. Adverse Drug Reactions Related Hospital Admissions in Persons Aged 60 Years and over, The Netherlands, 1981–2007: Less Rapid Increase, Different Drugs. PLoS ONE 2010, 5, e13977. [Google Scholar] [CrossRef] [PubMed]
- Cutler, R.L.; Fernandez-Llimos, F.; Frommer, M.; Benrimoj, C.; Garcia-Cardenas, V. Economic impact of medication non-adherence by disease groups: A systematic review. BMJ Open 2018, 8, e016982. [Google Scholar] [CrossRef] [PubMed]
- Chisholm-Burns, M.A.; Spivey, C.A. The “cost” of medication nonadherence: Consequences we cannot afford to accept. J. Am. Pharm. Assoc. 2012, 52, 823–826. [Google Scholar] [CrossRef]
- Dietrich, F.M.; Hersberger, K.E.; Arnet, I. Benefits of medication charts provided at transitions of care: A narrative systematic review. BMJ Open 2020, 10, e037668. [Google Scholar] [CrossRef]
- Dormann, H.; Maas, R.; Eickhoff, C.; Müller, U.; Schulz, M.; Brell, D.; Thürmann, P.A.; MetropolMediplan 2016; Modellregion Erfurt & PRIMA. Der bundeseinheitliche Medikationsplan in der Praxis. Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz 2018, 61, 1093–1102. [Google Scholar] [CrossRef]
- eHealth Suisse. Einführung Medikationsplan im EPD—Prozesse im Alltag. 2022. Available online: www.e-health-suisse.ch (accessed on 30 August 2023).
- IG eMediplan. eMediplan—Homepage. Available online: https://emediplan.ch/ (accessed on 30 August 2023).
- Bonnan, D.B. Le Bilan Partage de Medication: Evaluation Qualitative et Quantitative de Son Application Depuis 2018. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2021. [Google Scholar]
- Collin, B. Le Schéma de Médication Partagé; Service des soins de santé de l’INAMI: Brussels, Belgium, 2021. [Google Scholar]
- Government of the Netherlands, Ministry of Health Welfare and Sport. Government Encouraging the Use of eHealth (Telehealth)|eHealth (Telehealth)|Government.nl. Available online: https://www.government.nl/topics/ehealth/government-encouraging-use-of-ehealth (accessed on 30 January 2024).
- Gale, N.K.; Heath, G.; Cameron, E.; Rashid, S.; Redwood, S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med. Res. Methodol. 2013, 13, 117. [Google Scholar] [CrossRef]
- Kassenärztliche Bundesvereinigung, Bundesärztekammer, Deutscher Apothekerverband e. V. Anlage 3 zur Vereinbarung gemäß § 31a Abs. 4 Satz 1 SGB V: Spezifikation für einen bundeseinheitlichen Medikationsplan (BMP). 2019.
- IG eMediplan. eMedication Plan CHMED16A. 2023. Available online: https://emediplan.ch/wp-content/uploads/2023/04/eMediplan_CHMED16A_V2.1.pdf (accessed on 21 October 2023).
- Steurbaut, S.; Leemans, L.; Leysen, T.; De Baere, E.; Cornu, P.; Mets, T.; Dupont, A.G. Medication history reconciliation by clinical pharmacists in elderly inpatients admitted from home or a nursing home. Ann Pharmacother. 2010, 44, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Dorit, S.; Levente, K.; Michael, B.; Dorothee, C.D. Die deutsche Version des Medication Regimen Complexity Index (MRCI-D). Krankenhauspharmazie 2012, 33, 204–209. [Google Scholar]
- George, J.; Phun, Y.T.; Bailey, M.J.; Kong, D.C.M.; Stewart, K. Development and Validation of the Medication Regimen Complexity Index. Ann. Pharmacother. 2004, 38, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Irving, G.; Neves, A.L.; Dambha-Miller, H.; Oishi, A.; Tagashira, H.; Verho, A.; Holden, J. International variations in primary care physician consultation time: A systematic review of 67 countries. BMJ Open 2017, 7, e017902. [Google Scholar] [CrossRef] [PubMed]
- Waltering, I.; Schwalbe, O.; Hempel, G. Discrepancies on Medication Plans detected in German Community Pharmacies. J. Eval. Clin. Pract. 2015, 21, 886–892. [Google Scholar] [CrossRef]
- Cornish, P.L.; Knowles, S.R.; Marchesano, R.; Tam, V.; Shadowitz, S.; Juurlink, D.N.; Etchells, E.E. Unintended Medication Discrepancies at the Time of Hospital Admission. Arch. Intern. Med. 2005, 165, 424–429. [Google Scholar] [CrossRef]
- Gleason, K.M.; Groszek, J.M.; Sullivan, C.; Rooney, D.; Barnard, C.; Noskin, G.A. Reconciliation of discrepancies in medication histories and admission orders of newly hospitalized patients. Am. J. Health Syst. Pharm. 2004, 61, 1689–1695. [Google Scholar] [CrossRef]
- Amelung, S.; Bender, B.; Meid, A.; Walk-Fritz, S.; Hoppe-Tichy, T.; Haefeli, W.E.; Seidling, H.M. Wie vollständig ist der Bundeseinheitliche Medikationsplan? Eine Analyse bei Krankenhausaufnahme. Dtsch Med. Wochenschr. 2020, 145, e116. [Google Scholar] [CrossRef] [PubMed]
- Gareth, N.; Meghan, L. How to perform accurate medicines reconciliation. Pharm. J. 2023, 311, 7975. [Google Scholar]
- Grattagliano, I.; Sanitaria, A.; Bari, L.; Degli Studi Di Bari, U.; Moro, A.; Palmieri, V. Avoiding drug interactions: Here’s help. J. Fam. Pract. 2010, 59, 322–329. [Google Scholar] [PubMed]
- Dormann, H.; Maas, R.; Friedland, K.; Jobst, F.; Bangemann, M. Erprobung eines Medikationsplanes in der Praxis hinsichtlich der Akzeptanz und Praktikabilität—MetropolMediplan 2016. 2017. Available online: https://www.bundesgesundheitsministerium.de/service/publikationen/details/erprobung-eines-medikationsplanes-in-der-praxis-hinsichtlich-der-akzeptanz-und-praktikabilitaet-metropolmediplan-2016 (accessed on 30 January 2024).
- Schulz, M.; Wickhoff, C.; Müller, U. Erprobung Eines Medikationsplans in der Praxis Hinsichtlich der Akzeptanz und Praktikabilität—Projekt “PRIMA”; ABDA—Bundesvereinigung Deutscher Apothekerverbände e.V.: Berlin, Germany, 2017. [Google Scholar]
- Downey, J. Technical Information Service, “Strategic Analysis Tools—Topic Gateway Series No. 34”; CIMA: London, UK, 2007. [Google Scholar]
Patients | |||
---|---|---|---|
without MDoc (n = 218) | with MDoc (n = 267) | p-Value | |
Age (years) | 65.4 ± 11.5 | 70.2 ± 10.1 | <0.001 |
Male gender | 165 (75.7%) | 191 (72.1%) | 0.369 |
Native German speaking | 194 (93.3%) | 239 (93.4%) | 0.969 |
Currently smoking | 42 (19.3%) | 37 (14.0%) | 0.121 |
Body mass index (kg/m2) | 23.5 ± 4.2 | 23.7 ± 4.6 | 0.759 |
Systolic BP (mm Hg) | 136.0 ± 40.2 | 135.5 ± 49.5 | 0.325 |
Diastolic BP (mm Hg) | 79.4 ± 23.4 | 77.4 ± 26.2 | 0.728 |
Medication | |||
Drugs per patient | 4.8 ± 2.9 | 7.0 ± 2.8 | <0.001 |
Over-the-counter medication per patient | 0.5 ± 0.7 | 0.7 ± 0.8 | 0.062 |
MRCI | 11.5 ± 7.4 | 17.5 ± 8.3 | <0.001 |
Drug-count ≥ 3 | 173 (79.4%) | 263 (98.5%) | <0.001 |
Polymedication (≥5 drugs) | 102 (46.8%) | 226 (84.7%) | <0.001 |
History of | |||
Myocardial infarction | 50 (22.9%) | 105 (38.5%) | <0.001 |
Cerebrovascular accident | 13 (6.0%) | 25 (9.5%) | 0.148 |
T2DM | 70 (32.1%) | 100 (37.7%) | 0.198 |
Hypertension | 118 (54.4%) | 212 (80.3%) | <0.001 |
Laboratory Values | |||
LDL-C (mg/dL) | 91.9 ± 41.2 | 75.3 ± 34.2 | <0.001 |
HDL-C (mg/dL) | 53.2 ± 17.3 | 51.25 ± 14.0 | 0.420 |
Fasting Glucose (mg/dL) | 116.5 ± 35.8 | 122.3 ± 38.5 | 0.084 |
HbA1c (%) | 6.0 ± 0.7 | 6.2 ± 0.7 | 0.002 |
Items | MPlan (n = 146) | Unstructured Doc. (n = 66) | Physician’s Letter (n = 48) | Other (n = 7 *) | MDoc in Total (n = 266 *) |
---|---|---|---|---|---|
Date of issue | 122 (84.1) | 16 (24.2) | 14 (29.2) | 3 (50) | 156 (58.9) |
Name (incl. first and last name) | 146 (100) | 16 (24.2) | 46 (95.8) | 3 (50) | 211 (79.6) |
Date of birth | 125 (85.6) | 10 (15.2) | 30 (83.0) | 3 (50) | 177 (66.8) |
Insurance number | 36 (24.7) | 7 (10.6) | 3 (6.3) | 3 (50) | 49 (18.5) |
Allergies/contraindications | 28 (19.4) | 1 (1.5) | 4 (8.3) | 0 | 33 (12.6) |
Drug name | 146 (100) | 65 (98.5) | 47 (97.9) | 6 (100) | 264 (99.6) |
Active pharmaceutical ingredient | 1 (0.7) | 2 (3.0) | 1 (2.1) | 0 | 4 (1.5) |
Quantity and quantity unit | 142 (97.3) | 47 (71.2) | 47 (97.9) | 3 (50) | 239 (90.2) |
Posology (simplified dosage scheme with times) | 144 (98.6) | 48 (72.7) | 47 (97.9) | 6 (85.7) | 245 (91.8) |
Indication | 15 (10.3) | 8 (12.1) | 0 | 0 | 23 (8.7) |
Further information | 61 (52.1) | 8 (14.5) | 28 (58.3) | 0 | 97 (45.1) |
Self-medication (e.g., OTC) | 11 (7.5) | 2 (3.0) | 0 | 1 (16.7) | 14 (5.3) |
Machine-readable Data Code | 0 | 1 (1.5) | 0 | 3 (50) | 4 (1.5) |
Originator of Documentation | |||||
Not documented | 21 (14.4) | 58 (87.9) | 2 (4.2) | 4 (66.7) | 86 (32.5) |
General practitioner | 34 (12.8) | 2 (3.0) | 0 | 0 | 34 (12.8) |
Specialist | 71 (26.8) | 1 (1.5) | 11 (22.9) | 2 (33.3) | 71 (26.8) |
Hospital | 68 (25.7) | 1 (1.5) | 33 (68.8) | 0 | 68 (25.7) |
Other health facility | 6 (2.3) | 3 (4.5) | 1 (2.1) | 0 | 6 (2.3) |
Patients’ general practitioner | 7 (4.8) | 2 (3.0) | 0 | 0 | 9 (3.4) |
Strengths | Weaknesses | |
---|---|---|
Internal | Comprehensive data collection: The dataset includes detailed information on patients, their medical history, medication and laboratory parameters, MDoc and MPlan, discrepancies between MDoc and medication anamesis at hospital admission, handwritten annotations, co-medication, OTCs and interviews, providing a thorough basis for analysis. Real-world data: Being based on actual clinical practice, the dataset reflects real-world scenarios, enhancing the applicability of the findings. National data: Significant differences among healthcare systems across nations (e.g., competencies, digitalization levels, professional responsibilities) hinder the transferability of study data. Thus, national data plays an important role in addressing specific healthcare challenges. Volume of data: The large dataset and the long period of time offer more robust insights into this topic. Standardization and interoperability: The data is standardized to the best possible extent according to established research methods and classifications, as well as according to standardized MPlans from other countries. This facilitates comparison across different studies and might enhance compatibility with other healthcare research databases (e.g., for meta-analyses) Multidisciplinary team: In order to have complete information and to cover the most crucial aspects from different point of views on this issue, the study was conducted by a multidisciplinary healthcare professional team consisting of community pharmacists, hospital and IT-pharmacists, general physicians, cardiologists, endocrinologists and medical laboratory scientists. | Biases: The dataset might contain biases, such as over-representation of certain patient groups due to the study’s monocentric nature. Referral for CAG should not, but can differ from geographical regions in Austria. Temporal relevance: Data may become outdated once eHealth solutions are established nationwide. Then, new data will be necessary to assess the situation. Documentation variability: Huge differences in how medications are documented (MDoc) had to be overcome through classification and standardization. Although this has been done with great diligence through multiple researches and according to scientific standards, it might be possible that there is a variability between different research groups which affects data comparability. |
Opportunities | Threats | |
External | Improved patient outcomes: This data can help leading to better patient care strategies. Enhanced clinical guidelines: “High-risk spots” through the whole medication documentation process could be identified through this study. This could help to enhance hospital internal processes (e.g., systematically addressing OTC medication and supplements in a standardized medication history anamnesis; MPlan at discharge for all patients taking 3 or more drugs). Policy development: Findings can support healthcare policy changes aimed at improving patient safety and health system efficiency at a macro-economic level. Economic efficiency: Adequate sharing of medication information can reduce healthcare costs by decreasing medication errors, hospital readmissions, adverse drug events and by accelerating anamnesis processes at every transition point of care. Integration with technology: The dataset supports promotion of implementing eHealth solutions. Research collaboration: The dataset can foster collaborations among researchers, potentially broaden the project’s research impact and leading to innovations in patient safety. | Data misinterpretation: Misinterpretation of the study data is a risk that can lead to incorrect conclusions and actions. Regulatory changes: Changes in healthcare regulations or data protection might impact how data can be used and shared in future. Economic fluctuations: macro-economic factors, such as healthcar funding cuts or economic downturns, could hinder the utilization of this data for further developing and implementing improvements in (digital) healthcare. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, J.B.; Neyer, M.; Elsner, P.; Vonbank, A.; Plattner, T.; Saely, C.H.; Leiherer, A.; Drexel, H. Current Practices of Medication Plans in Austrian Patients Undergoing Coronary Angiography: An In-Depth Analysis. J. Clin. Med. 2024, 13, 3187. https://doi.org/10.3390/jcm13113187
Vogel JB, Neyer M, Elsner P, Vonbank A, Plattner T, Saely CH, Leiherer A, Drexel H. Current Practices of Medication Plans in Austrian Patients Undergoing Coronary Angiography: An In-Depth Analysis. Journal of Clinical Medicine. 2024; 13(11):3187. https://doi.org/10.3390/jcm13113187
Chicago/Turabian StyleVogel, Johannes B., Magdalena Neyer, Pascal Elsner, Alexander Vonbank, Thomas Plattner, Christoph H. Saely, Andreas Leiherer, and Heinz Drexel. 2024. "Current Practices of Medication Plans in Austrian Patients Undergoing Coronary Angiography: An In-Depth Analysis" Journal of Clinical Medicine 13, no. 11: 3187. https://doi.org/10.3390/jcm13113187
APA StyleVogel, J. B., Neyer, M., Elsner, P., Vonbank, A., Plattner, T., Saely, C. H., Leiherer, A., & Drexel, H. (2024). Current Practices of Medication Plans in Austrian Patients Undergoing Coronary Angiography: An In-Depth Analysis. Journal of Clinical Medicine, 13(11), 3187. https://doi.org/10.3390/jcm13113187