High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified PVDF Substrate and PVDF-Supported TFC NF Membrane
2.3. Membrane Characterization
2.4. Evaluation of Membrane Separation Performance
3. Results and Discussion
3.1. Influence of SPANI/HPE Doping Modification on PVDF Substrate
3.2. Effect of TMC Cross-Linking on Modification of PVDF Substrate
3.3. Impact of PVDF Substrate on Performance of Resultant TFC NF Membranes
3.4. Performance Evaluation of PVDF-Supported TFC NF Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Wu, C.; Tang, C.Y. Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? Water Res. X 2023, 19, 100172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, Q.; Tian, J.; Van der Bruggen, B.; Zhu, J. Non-polyamide nanofiltration (NPA-NF) membrane: A non-mainstream but indispensable member of the “membrane family”. Desalination 2023, 564, 116772. [Google Scholar] [CrossRef]
- Shen, Q.; Xu, S.-J.; Dong, Z.-Q.; Zhang, H.-Z.; Xu, Z.-L.; Tang, C.Y. Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water. J. Membr. Sci. 2020, 610, 118220. [Google Scholar] [CrossRef]
- Tian, J.; Chang, H.; Gao, S.; Zhang, R. How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC? Desalination 2020, 491, 114499. [Google Scholar] [CrossRef]
- Abedi, F.; Dubé, M.A.; Kruczek, B. Adsorption of heavy metals on the surface of nanofiltration membranes: “A curse or blessing”? J. Membr. Sci. 2023, 685, 121988. [Google Scholar] [CrossRef]
- Wu, B.; Wang, N.; Shen, Y.; Jin, C.-G.; An, Q.-F. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J. Membr. Sci. 2023, 666, 121144. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Wu, H.; Cong, C.; Zhang, H.; Wang, J.; Wang, Z. Antifouling streptomycin-based nanofiltration membrane with high permselectivity for dye/salt separation. Sep. Purif. Technol. 2022, 297, 121443. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Januszewski, B.; Liu, Y.; Li, D.; Fu, R.; Elimelech, M.; Huang, X. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 2022, 51, 672–719. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Han, X.; Liu, Y.; Wang, C.; Yan, F.; Wang, J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021, 640, 119765. [Google Scholar] [CrossRef]
- An, X.C.; Ming, S.J.; Xiang, Y.X.; He, J.S.; Zhang, K.; Luo, H.B.; Fan, L.Q.; Chen, W.; Ma, D.D.; Cheng, L. Hierarchical graphitic carbon nitride modified interface supported ultrathin polyamide layer for dye/salt separation. Appl. Surf. Sci. 2024, 671, 160732. [Google Scholar] [CrossRef]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Ormanci-Acar, T.; Tas, C.E.; Keskin, B.; Ozbulut, E.B.S.; Turken, T.; Imer, D.; Tufekci, N.; Menceloglu, Y.Z.; Unal, S.; Koyuncu, I. Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer. J. Membr. Sci. 2020, 608, 118172. [Google Scholar] [CrossRef]
- Zhan, Z.-M.; Xu, Z.-L.; Zhu, K.-K.; Tang, Y.-J. How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane. J. Membr. Sci. 2020, 597, 117640. [Google Scholar] [CrossRef]
- Johnson, D.J.; Hilal, N. Nanocomposite nanofiltration membranes: State of play and recent advances. Desalination 2022, 524, 115480. [Google Scholar] [CrossRef]
- Guo, S.; Chen, X.; Wan, Y.; Feng, S.; Luo, J. Custom-tailoring loose nanofiltration membrane for precise biomolecule fractionation: New insight into post-treatment mechanisms. ACS Appl. Mater. Interfaces 2020, 12, 13327–13337. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.-J.; Lai, G.-S.; Li, J.; Gray, S.; Hu, Y.; Misdan, N.; Goh, P.-S.; Matsuura, T.; Azelee, I.W.; Ismail, A.F. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. J. Ind. Eng. Chem. 2019, 77, 25–59. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Lai, G.S.; Zhao, Y.; Torres, J.; Wang, R. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes. J. Membr. Sci. 2021, 640, 119805. [Google Scholar] [CrossRef]
- Li, P.; Xie, H.X.; Bi, Y.F.; Miao, C.C.; Chen, K.; Xie, T.T.; Zhao, S.C.; Sun, H.X.; Yang, X.J.; Hou, Y.F.; et al. Preparation of high flux organic solvent nanofiltration membrane based on polyimide/Noria composite ultrafiltration membrane. Appl. Surf. Sci. 2023, 618, 156650. [Google Scholar] [CrossRef]
- Peng, L.E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C.Y. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci. 2022, 641, 119871. [Google Scholar] [CrossRef]
- Tian, J.; Chang, H.; Gao, S.; Zong, Y.; Van der Bruggen, B.; Zhang, R. Direct generation of an ultrathin (8.5 nm) polyamide film with ultrahigh water permeance via in-situ interfacial polymerization on commercial substrate membrane. J. Membr. Sci. 2021, 634, 119450. [Google Scholar] [CrossRef]
- He, M.; Li, T.; Hu, M.; Chen, C.; Liu, B.; Crittenden, J.; Chu, L.-Y.; Ng, H.Y. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates. Sep. Purif. Technol. 2020, 230, 115855. [Google Scholar] [CrossRef]
- Zou, D.; Lee, Y.M. Design strategy of poly (vinylidene fluoride) membranes for water treatment. Prog. Polym. Sci. 2022, 128, 101535. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, J.; Zhao, Z.; Han, C.C. Role of wettability in interfacial polymerization based on PVDF electrospun nanofibrous scaffolds. J. Membr. Sci. 2013, 442, 124–130. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, J.; Yu, H.; Zhang, F.; Hu, S.; Chen, H.; Zhang, C.; Wu, H.; Yu, L.; Wang, X. Novel PA/PVDF hollow fiber nanofiltration membrane with high permeability and Ca2+/antibiotics selectivity for drinking water purification. Adv. Membr. 2024, 4, 100102. [Google Scholar] [CrossRef]
- Marquez, J.A.D.; Ang, M.B.M.Y.; Doma, B.T., Jr.; Huang, S.-H.; Tsai, H.-A.; Lee, K.-R.; Lai, J.-Y. Application of cosolvent-assisted interfacial polymerization technique to fabricate thin-film composite polyamide pervaporation membranes with PVDF hollow fiber as support. J. Membr. Sci. 2018, 564, 722–731. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, H.H.; Seo, J.A.; Park, H.S.; Park, J.; Min, B.R. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization. Appl. Surf. Sci. 2015, 356, 1207–1213. [Google Scholar] [CrossRef]
- Lee, J.S.; Seo, J.A.; Lee, H.H.; Min, B.R. Salt rejection characterization of PA/PVDF composite membranes prepared by pressurization method. Chem. Lett. 2015, 44, 1404–1406. [Google Scholar] [CrossRef]
- Wu, J.; Xia, M.; Li, Z.; Shen, L.; Li, R.; Zhang, M.; Jiao, Y.; Xu, Y.; Lin, H. Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size. J. Membr. Sci. 2021, 638, 119699. [Google Scholar] [CrossRef]
- Kim, E.-S.; Kim, Y.J.; Yu, Q.; Deng, B. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Membr. Sci. 2009, 344, 71–81. [Google Scholar] [CrossRef]
- Dai, R.B.; Yang, Z.; Qiu, Z.W.; Long, L.; Tang, C.Y.; Wang, Z.W. Distinct impact of substrate hydrophilicity on performance and structure of TFC NF and RO polyamide membranes. J. Membr. Sci. 2022, 662, 120966. [Google Scholar] [CrossRef]
- Sun, Q.Z.; Chai, Z.X.; An, Z.X.; Dong, J.L.; Zhang, R.J. Construction of a high-performance hollow fiber composite NF membrane via the simultaneous modification of substrate and selective layer. Sep. Purif. Technol. 2024, 341, 126908. [Google Scholar] [CrossRef]
- Geng, C.B.; Zhao, F.B.; Niu, H.Y.; Zhang, J.M.; Dong, H.X.; Li, Z.G.; Chen, H.X. Enhancing the permeability, anti-biofouling performance and long-term stability of TFC nanofiltration membrane by imidazole-modified carboxylated graphene oxide/polyethersulfone substrate. J. Membr. Sci. 2022, 664, 121099. [Google Scholar] [CrossRef]
- Miller, J.D.; Staddon, C.; Salzberg, A.; Lucks, J.B.; de Bruin, W.B.; Young, S.L. Self-reported anticipated harm from drinking water across 141 countries. Nat. Commun. 2024, 15, 7320. [Google Scholar] [CrossRef] [PubMed]
- T/BJWA 001-2021; Health Drinking Water Quality Standard. Comprehensive Testing Center of Chinese Academy of Inspection and Quarantine: Beijing, China, 2021.
- Liu, L.; Lan, H.C.; Cui, Y.Q.; Tang, Q.W.; Bai, J.Q.; An, X.Q.; Sun, M.; Liu, H.J.; Qu, J.H. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. Sci. Adv. 2024, 10, 8696. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.; Ryberg, E.C.; Alvarez, P.J.J.; Kim, J.H. Technology assessment of solar disinfection for drinking water treatment. Nat. Sustain. 2022, 5, 801–808. [Google Scholar] [CrossRef]
- Ruohomäki, K.; Väisänen, P.; Metsämuuronen, S.; Kulovaara, M.; Nyström, M. Characterization and removal of humic substances in ultra-and nanofiltration. Desalination 1998, 118, 273–283. [Google Scholar] [CrossRef]
- Geng, C.; Zhao, F.; Niu, H.; Zhang, J.; Liu, Y.; Liu, L.; Dong, H.; Li, Z.; Chen, H. Zwitterionic loose polyamide nanofiltration membrane with good antifouling properties for efficient removal of humic acid and dyes. J. Environ. Chem. Eng. 2023, 11, 110285. [Google Scholar] [CrossRef]
Index | Content | Unit |
---|---|---|
pH | 7.4~7.7 | - |
TOC | 2.2 | mg/L |
TDS | 155.2 | mg/L |
Na+ | 9.32 | mg/L |
K+ | 2.19 | mg/L |
Ca2+ | 45.33 | mg/L |
Mg2+ | 7.45 | mg/L |
Cl− | 8.99 | mg/L |
SO42− | 29.34 | mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Sun, Q.; Feng, X.; Zhang, R. High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate. Membranes 2025, 15, 216. https://doi.org/10.3390/membranes15070216
Dong J, Sun Q, Feng X, Zhang R. High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate. Membranes. 2025; 15(7):216. https://doi.org/10.3390/membranes15070216
Chicago/Turabian StyleDong, Junliang, Qianzhi Sun, Xiaolin Feng, and Ruijun Zhang. 2025. "High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate" Membranes 15, no. 7: 216. https://doi.org/10.3390/membranes15070216
APA StyleDong, J., Sun, Q., Feng, X., & Zhang, R. (2025). High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate. Membranes, 15(7), 216. https://doi.org/10.3390/membranes15070216