Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,618)

Search Parameters:
Keywords = drinking water treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 161
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

19 pages, 2547 KiB  
Article
Artificial Intelligence Optimization of Polyaluminum Chloride (PAC) Dosage in Drinking Water Treatment: A Hybrid Genetic Algorithm–Neural Network Approach
by Darío Fernando Guamán-Lozada, Lenin Santiago Orozco Cantos, Guido Patricio Santillán Lima and Fabian Arias Arias
Computation 2025, 13(8), 179; https://doi.org/10.3390/computation13080179 - 1 Aug 2025
Viewed by 186
Abstract
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural [...] Read more.
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural networks (ANN) with genetic algorithms (GA) to optimize PAC dosage under variable raw water conditions. Operational data from 400 jar test experiments, collected between 2022 and 2024 at the Yanahurco water treatment plant (Ecuador), were used to train an ANN model capable of predicting six post-treatment water quality indicators, including turbidity, color, and pH. The ANN achieved excellent predictive accuracy (R2 > 0.95 for turbidity and color), supporting its use as a surrogate model within a GA-based optimization scheme. The genetic algorithm evaluated dosage strategies by minimizing treatment costs while enforcing compliance with national water quality standards. The results revealed a bimodal dosing pattern, favoring low PAC dosages (~4 ppm) during routine conditions and higher dosages (~12 ppm) when influent quality declined. Optimization yielded a 49% reduction in median chemical costs and improved color compliance from 52% to 63%, while maintaining pH compliance above 97%. Turbidity remained a challenge under some conditions, indicating the potential benefit of complementary coagulants. The proposed ANN–GA approach offers a scalable and adaptive solution for enhancing chemical dosing efficiency in water treatment operations. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 303
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 407
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 494
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

26 pages, 2177 KiB  
Article
Explaining and Predicting Microbiological Water Quality for Sustainable Management of Drinking Water Treatment Facilities
by Goran Volf, Ivana Sušanj Čule, Nataša Atanasova, Sonja Zorko and Nevenka Ožanić
Sustainability 2025, 17(15), 6659; https://doi.org/10.3390/su17156659 - 22 Jul 2025
Viewed by 420
Abstract
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking [...] Read more.
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking water supply, posing serious risks to public health. This research presents an in-depth data analysis using machine learning tools for the induction of models to describe and predict microbiological water quality for the sustainable management of the Butoniga drinking water treatment facility in Istria (Croatia). Specifically, descriptive and predictive models for total coliforms and E. coli bacteria (i.e., classes), which are recognized as key sanitary indicators of microbiological contamination under both EU and Croatian water quality legislation, were developed. The descriptive models provided useful information about the main environmental factors that influence the microbiological water quality. The most significant influential factors were found to be pH, water temperature, and water turbidity. On the other hand, the predictive models were developed to estimate the concentrations of total coliforms and E. coli bacteria seven days in advance using several machine learning methods, including model trees, random forests, multi-layer perceptron, bagging, and XGBoost. Among these, model trees were selected for their interpretability and potential integration into decision support systems. The predictive models demonstrated satisfactory performance, with a correlation coefficient of 0.72 for total coliforms, and moderate predictive accuracy for E. coli bacteria, with a correlation coefficient of 0.48. The resulting models offer actionable insights for optimizing operational responses in water treatment processes based on real-time and predicted microbiological conditions in the Butoniga reservoir. Moreover, this research contributes to the development of predictive frameworks for microbiological water quality management and highlights the importance of further research and monitoring of this key aspect of the preservation of the environment and public health. Full article
Show Figures

Graphical abstract

14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 385
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

14 pages, 1835 KiB  
Article
Enhanced Nematode Reduction in Drinking Water Using Sodium Hypochlorite and Ozone
by Bojan Đurin, Ebrahim Alamatian, Mahmood Ramezani, Sara Dadar and Domagoj Nakić
Water 2025, 17(14), 2148; https://doi.org/10.3390/w17142148 - 18 Jul 2025
Viewed by 336
Abstract
Nematodes are among the organisms found in treated water. While generally considered harmless to human health, under certain conditions, they may serve as vectors for pathogenic viruses and bacteria, posing potential risks. Conventional disinfection processes in water treatment can contribute to the inactivation [...] Read more.
Nematodes are among the organisms found in treated water. While generally considered harmless to human health, under certain conditions, they may serve as vectors for pathogenic viruses and bacteria, posing potential risks. Conventional disinfection processes in water treatment can contribute to the inactivation or removal of nematodes, but their effectiveness varies. This study, conducted at a water treatment plant (WTP) in Mashhad, Iran, aimed to determine the optimal dose and contact time of sodium hypochlorite and ozone for enhancing nematode inactivation in the affected surface water. This research combined primary disinfection using sodium hypochlorite at the existing WTP with a pilot ozone injection system to evaluate their individual and combined effectiveness. The results show that sodium hypochlorite at a concentration of 2 mg/L achieved 68% nematode inactivation. At 2.0 mg/L, with a 20 min contact time, ozone disinfection resulted in 39% inactivation. However, the combined application of sodium hypochlorite and ozone significantly improved efficiency, reaching 92% nematode inactivation when sodium hypochlorite and ozone were applied at 2 mg/L and 3 mg/L, respectively, with a 20 min ozone contact time. These findings indicate that, among the disinfection methods examined, the combined use of sodium hypochlorite and ozone is the most effective approach for nematode inactivation in drinking water, offering a promising strategy for improving water quality and safety. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 5039 KiB  
Article
Global Research Trends on Water Contamination by Microorganisms: A Bibliometric Analysis
by Zoila Isabel Cárdenas Tirado, Isaías Wilmer Duenas Sayaverde, Rosario del Socorro Avellaneda Yajahuanca, Sdenka Caballero Aparicio, Kelly Myriam Jiménez de Aliaga, Edo Gallegos Aparicio, Maria Antonieta Rubio Tyrrel, Maria do Livramento Fortes Figueiredo, José Wicto Pereira Borges, Rosilane de Lima Brito Magalhães, Denise Andrade, Daniela Reis Joaquim de Freitas, Ana Raquel Batista de Carvalho and Maria Eliete Batista Moura
Int. J. Environ. Res. Public Health 2025, 22(7), 1128; https://doi.org/10.3390/ijerph22071128 - 17 Jul 2025
Viewed by 365
Abstract
Water is an essential resource for life; however, the quality of available water on the planet has been compromised due to various factors, including microbiological contamination. Objective: To analyze the global scientific production of microbiological water contamination using bibliometric methods. Method: A search [...] Read more.
Water is an essential resource for life; however, the quality of available water on the planet has been compromised due to various factors, including microbiological contamination. Objective: To analyze the global scientific production of microbiological water contamination using bibliometric methods. Method: A search for scientific articles was conducted using the advanced query function in the Web of Science™ database, specifically in its core collection, on 26 February 2025. Data from 2000 articles were analyzed using the Bibliometrix package in R (version 4.2.1) and the Biblioshiny application (version 2.0). Results: The evaluated articles were published between 1952 and 2025, with a peak in publications in 2022. The journal Water Research stood out as the most relevant, publishing 128 articles. The Egyptian Knowledge Bank was identified as the most productive institution, while China had the highest number of contributing authors. The most cited article received 475 citations. Additionally, KeyWords Plus™ highlighted the focus of the studies on ecological and biotechnological methods for contaminant removal, as well as the presence of waterborne pathogens and their inactivation methods. Conclusions: The results show a growing interest in the development of ecological and biotechnological methods for contaminant removal and pathogen inactivation in water. The integration of artificial intelligence with real-time monitoring systems emerges as a promising strategy for improving water quality management. These findings highlight the relevance of the topic for public health and health education. Full article
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
The Influence of Some Physicochemical Parameters of Surface Waters on the Formation of Trihalomethanes During the Drinking Water Treatment Process
by Alexandra Scarlat (Matei), Cristina Modrogan, Magdalena Bosomoiu and Oanamari Daniela Orbuleț
Molecules 2025, 30(14), 2983; https://doi.org/10.3390/molecules30142983 - 16 Jul 2025
Viewed by 321
Abstract
Trihalomethanes (THMs) are a class of disinfectant by-products present in chlorinated tap water. Mainly due to their carcinogenic potential, their concentration in drinking water is now limited by regulations. In Romania, little is known about their distribution in urban drinking water supply systems, [...] Read more.
Trihalomethanes (THMs) are a class of disinfectant by-products present in chlorinated tap water. Mainly due to their carcinogenic potential, their concentration in drinking water is now limited by regulations. In Romania, little is known about their distribution in urban drinking water supply systems, their magnitude, or their seasonal variation. Drinking water suppliers periodically adapt and optimise their water treatment methods for economic reasons and in response to regulatory changes and technological developments. The formation of THMs is influenced by the physicochemical parameters of water (pH, temperature, total organic carbon—TOC) and by environmental factors (geographical, climatological). Most of these factors have significant seasonal variations that lead to the formation of THMs in variable concentrations. In this study, we analysed the seasonal trends in surface water quality (considering variations in temperature, pH, and TOC) and correlated them with the concentration of THMs in drinking water over two calendar years. Water samples were collected from the Arges River, in a geographical area comprised of plains. The results show that the formation of THMs is enhanced by increasing temperature over the course of a year, with the highest concentrations being obtained in July 2022 (98.7 µg/L THMs at 30.5 °C) and in August 2023 (81.9 µg/L THMs at 30.4 °C). The main parameters that trigger the formation of THMs are the organic matter content and the disinfectant dose; the pH has a moderate effect, and its effect is correlated with the concentration of organic matter. There were noted strong seasonal changes in the concentration of THMs, with the maximum peak being in the middle and late summer and the minimum peak being in winter. This indicates the possibility that the quality of drinking water may change as a result of climate change. In addition, monitoring and chlorination experiments have established that the concentration of THMs is directly proportional with the TOC. Full article
Show Figures

Figure 1

22 pages, 3865 KiB  
Article
An Assessment of Bio-Physical and Social Drivers of River Vulnerability and Risks
by Komali Kantamaneni, John Whitton, Sigamani Panneer, Iqbal Ahmad, Anil Gautam and Debashish Sen
Earth 2025, 6(3), 77; https://doi.org/10.3390/earth6030077 - 11 Jul 2025
Viewed by 711
Abstract
In recent decades, the River Ganges in India has been heavily contaminated with domestic waste and industrial toxins because of cultural activities, a lack of community awareness, an absence of sewage disposal facilities, and rapid population growth. Previous studies have focused separately on [...] Read more.
In recent decades, the River Ganges in India has been heavily contaminated with domestic waste and industrial toxins because of cultural activities, a lack of community awareness, an absence of sewage disposal facilities, and rapid population growth. Previous studies have focused separately on either the physical or social factors associated with River Ganges pollution but have not combined these elements in a single study. To fill this research gap, our study assesses the bio-physical and social vulnerability of the River Ganges by using a holistic approach. The following four sampling stations were selected: Rishikesh, Haridwar, Kanpur, and Varanasi. These locations were chosen to test the water quality in bio-physical aspects and to assess the social perceptions of river vulnerability among the residents and visitors. Perceptions of river water quality and likely sources of pollution were gathered via the distribution of over 1000 questionnaires. Data collection took place in the winter and summer of 2022 and 2023. The results showed that river water quality is not suitable for drinking purposes at any of the four cities without conventional treatment, and that the river is unsuitable for bathing at all locations, except upstream of Rishikesh. Nearly 50% of those questioned agreed that the river is polluted, whilst 74% agreed that pollution has increased in recent decades, particularly in the last 10 years. These compelling results are critical for policymakers and decision makers. They highlight the urgent need for novel strategies that address Ganges pollution while fostering community health education and environmental management. By dispelling myths surrounding river quality, this study strengthens the ongoing efforts to restore the Ganges, ensuring that it remains a vital lifeline for present and future generations. Full article
Show Figures

Figure 1

21 pages, 2210 KiB  
Article
Thiamine Compounds Alleviate Oxidative Stress, Over-Expression of Pro-Inflammatory Markers and Behavioral Abnormalities in a Mouse Predation Model of PTSD
by Tatyana Strekalova, Anna Gorlova, Joao Costa-Nunes, Aleksandr Litavrin, Johannes P. M. de Munter, Alexei Lyundup, Aleksei Umriukhin, Andrey Proshin, Allan V. Kalueff, Edna Grünblatt and Susanna Walitza
Int. J. Mol. Sci. 2025, 26(14), 6627; https://doi.org/10.3390/ijms26146627 - 10 Jul 2025
Viewed by 427
Abstract
Experiences of life-threatening stimuli can induce post-traumatic stress disorder (PTSD), which is associated with long-lasting behavioral and neurochemical abnormalities. Despite its increased global incidence, the current treatment options for PTSD remain limited, highlighting the need for novel therapeutic strategies. As oxidative stress and [...] Read more.
Experiences of life-threatening stimuli can induce post-traumatic stress disorder (PTSD), which is associated with long-lasting behavioral and neurochemical abnormalities. Despite its increased global incidence, the current treatment options for PTSD remain limited, highlighting the need for novel therapeutic strategies. As oxidative stress and neuroinflammation contribute to PTSD, the use of powerful antioxidants such as thiamine (B1 vitamin) compounds may counteract disease development. Young C57BL/6 mice received thiamine or benfotiamine in drinking water (each at a dose of 200 mg/kg/day) for 21 days, and for the last five days, they were subjected to rat exposure. Mice were studied for anxiety-like behavior, exploration, locomotion, grooming, social interactions, pain sensitivity, brain changes in protein carbonyl (PC), total glutathione (TG), and gene expression of distress and inflammation markers. Rat exposure induced anxiety-like behavior, excessive grooming, and alteration in locomotion, along with other abnormalities. Stressed, untreated mice had elevated levels of PC and TG in the prefrontal cortex, hippocampus, amygdala, and striatum and increased expression of Il-1β, Tnf, c-Fos, Cox-1, and Cox-2. Treatment with thiamine or benfotiamine significantly ameliorated most of these changes in the stressed groups. Thus, thiamine compounds may have therapeutic potential in patients with PTSD, owing to their antioxidant and anti-inflammatory properties. Full article
Show Figures

Figure 1

19 pages, 2326 KiB  
Article
N-Acetylcysteine Treatment Restores the Protective Effect of Heart Ischemic Postconditioning in a Murine Model in the Early Stages of Atherosclerosis
by Tamara Zaobornyj, Virginia Perez, Georgina Ossani, Tamara Mazo, Eugenia Godoy, Jorge Godoy, Yohana Yanaje, Camila Musci-Ferrari, Mario Contin, Valeria Tripodi, Magali Barchuk, Gabriela Berg, Ricardo J. Gelpi, Martin Donato and Veronica D’Annunzio
Pharmaceuticals 2025, 18(7), 1014; https://doi.org/10.3390/ph18071014 - 8 Jul 2025
Viewed by 466
Abstract
Background/Objectives: Ischemic postconditioning (IP) is a well-established intervention that mitigates this damage by activating endogenous cardioprotective pathways. However, the presence of comorbidities such as dyslipidemia can disrupt these protective mechanisms and abolish the infarct-sparing effect typically induced by IP. In this context, identifying [...] Read more.
Background/Objectives: Ischemic postconditioning (IP) is a well-established intervention that mitigates this damage by activating endogenous cardioprotective pathways. However, the presence of comorbidities such as dyslipidemia can disrupt these protective mechanisms and abolish the infarct-sparing effect typically induced by IP. In this context, identifying pharmacological strategies to restore cardioprotection is of clinical relevance. This study aimed to evaluate whether N-acetylcysteine (NAC), a glutathione precursor with antioxidant properties, can restore the infarct-limiting effect of IP compromised by HFD-induced oxidative stress. Methods: Male mice were fed a control diet (CD) or HFD for 12 weeks. NAC (10 mM) was administered in drinking water for 3 weeks before ex vivo myocardial ischemia/reperfusion (I/R) injury (30 min ischemia/60 min reperfusion). In IP groups, six cycles of brief I/R were applied at the onset of reperfusion. Infarct size, ventricular function, redox status (GSH/GSSG), lipid profile, and histology were evaluated. Results: NAC improved the lipid profile (HDL/non-HDL ratio) and enhanced the infarct-sparing effect of IP in CD-fed mice. In HFD-fed mice, NAC restored the efficacy of IP, significantly reducing infarct size (HFD-I/R-NAC: 39.7 ± 4.5% vs. HFD-IP-NAC: 26.4 ± 2.0%, p < 0.05) without changes in ventricular function. The ratio of oxidized/reduced glutathione (GSSG/GSH) is depicted. Under basal conditions, the hearts of mice fed an HFD exhibited a shift towards a more oxidized state compared to the control diet CD group. In the I/R protocol, a significant shift towards a more oxidized state was observed in both CD and HFD-fed animals. In the IP protocol, the GSSG/GSH ratio revealed a tendency to basal values in comparison to the I/R protocol. The analysis indicates that animals subjected to I/R and IP protocols in conjunction with NAC show a tendency to reach basal values, thus suggesting a potential for the reduction in ROS. Conclusions: NAC treatment mitigates oxidative stress and restores the cardioprotective effect of ischemic postconditioning in a model of early-stage atherosclerosis. These findings support NAC as a potential adjunct therapy to improve myocardial resistance to reperfusion injury under dyslipidemic conditions Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

13 pages, 1288 KiB  
Article
A Novel Synthesis of Highly Efficient Antimicrobial Quaternary Ammonium Pyridine Resin and Its Application in Drinking Water Treatment
by Huaicheng Zhang, Haolin Liu, Wei Wang, Fengxia Dong, Yanting Zuo, Shouqiang Huang, Daqian Zhang, Ji Wu, Shi Cheng and Aimin Li
Polymers 2025, 17(13), 1885; https://doi.org/10.3390/polym17131885 - 7 Jul 2025
Viewed by 416
Abstract
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous [...] Read more.
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous water disinfection and purification, their limited bactericidal efficacy hinders broader utilization. Therefore, a deeper understanding of the structure-dependent antimicrobial mechanism in QAPRs is crucial for improving their antibacterial performance. Hexyl (C6) was proved to be the optimal antibacterial alkyl in the QAPRs. A new antibacterial quaternary ammonium pyridine resin Py-61 was prepared by more surficial bactericidal N+ groups and higher efficient antibacterial hexyl, performing with the excellent antibacterial efficiency of 99.995%, far higher than the traditional resin Py-6C (89.53%). The antibacterial resin Py-61 completed the disinfection of sand-filtered water independently to produce safe drinking water, removing the viable bacteria from 3600 to 17 CFU/mL, which meets the drinking water standard of China in GB5749-2022 (<100 CFU/mL). Meanwhile, the contaminants in sand-filtered water were obviously removed by the resin Py-61, including anions and dissolved organic matter (DOM). The resin Py-61 can be regenerated by 15% NaCl solution, and keeps the reused antibacterial efficiency of >99.97%. As an integrated disinfection–purification solution, the novel antibacterial resin presents a promising alternative for enhancing safety in drinking water treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop