Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (582)

Search Parameters:
Keywords = nanofiltration membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

8 pages, 3048 KiB  
Communication
Layer-by-Layer Nanoassembly of Cu(OH)2 Multilayer Membranes for Nanofiltration
by Wenbo Sun, Yanpeng Xue and Guozhi Liu
Coatings 2025, 15(8), 895; https://doi.org/10.3390/coatings15080895 (registering DOI) - 1 Aug 2025
Viewed by 171
Abstract
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time [...] Read more.
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time of the liquid–liquid reaction on membrane structure and pore sizes were studied by SEM, TEM, and X-ray diffraction. The growth mechanism of the membrane was discussed and the formation process model was proposed. It was found that the reaction temperature was a key factor in obtaining a Cu(OH)2 monolayer, and this could be used to adjust the thickness and pore size of the monolayer. The as-prepared Cu(OH)2 membranes exhibited excellent filtration performance with the pure water fluxes of 156.2 L·m−2 h−1 bar−1 and retention rates of 100% for methylene blue (50 ppm) at a pressure of 0.1 MPa. This successfully opens up a new method of synthesizing multilayer nanoarrays’ Cu(OH)2 structure for nanofiltration. Full article
(This article belongs to the Special Issue Deposition-Based Coating Solutions for Enhanced Surface Properties)
Show Figures

Graphical abstract

15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 262
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

23 pages, 4900 KiB  
Article
Degradation of Glyphosate in Water by Electro-Oxidation on Magneli Phase: Application to a Nanofiltration Concentrate
by Wiyao Maturin Awesso, Ibrahim Tchakala, Sophie Tingry, Geoffroy Lesage, Julie Mendret, Akpénè Amenuvevega Dougna, Eddy Petit, Valérie Bonniol, Mande Seyf-Laye Alfa-Sika and Marc Cretin
Molecules 2025, 30(15), 3153; https://doi.org/10.3390/molecules30153153 - 28 Jul 2025
Viewed by 309
Abstract
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), [...] Read more.
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), the mineralization efficiency and fate of degradation by-products of the treated solution were determined using a total organic carbon (TOC) analyzer and HPLC/MS, respectively. The results showed that at pH = 3, glyphosate degradation and mineralization are enhanced by the increased generation of hydroxyl radicals (OH) at the anode surface. A current density of 14 mA cm2 enables complete glyphosate removal with 77.8% mineralization. Compared with boron-doped diamond (BDD), Ti4O7 shows close performance for treatment of a concentrated glyphosate solution (0.41 mM), obtained after nanofiltration of a synthetic ionic solution (0.1 mM glyphosate), carried out using an NF-270 membrane at a conversion rate (Y) of 80%. At 10 mA cm2 for 8 h, Ti4O7 achieved 81.3% mineralization with an energy consumption of 6.09 kWh g1 TOC, compared with 90.5% for BDD at 5.48 kWh g1 TOC. Despite a slight yield gap, Ti4O7 demonstrates notable efficiency under demanding conditions, suggesting its potential as a cost-effective alternative to BDD for glyphosate electro-oxidation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 699
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 7169 KiB  
Article
Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology
by Nkechi Ezeogu, Petr Mikulášek, Chijioke Elijah Onu, Obinna Anike and Jiří Cuhorka
Membranes 2025, 15(8), 222; https://doi.org/10.3390/membranes15080222 - 24 Jul 2025
Viewed by 378
Abstract
The integration of computational intelligence techniques into pharmaceutical wastewater treatment offers promising opportunities to improve process efficiency and minimize operational costs. This study compares the predictive capabilities of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models in forecasting the rejection efficiencies [...] Read more.
The integration of computational intelligence techniques into pharmaceutical wastewater treatment offers promising opportunities to improve process efficiency and minimize operational costs. This study compares the predictive capabilities of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models in forecasting the rejection efficiencies of caffeine and paracetamol using AFC 40 and AFC 80 nanofiltration (NF) membranes. Experiments were conducted under varying operating conditions, including transmembrane pressure, feed concentration, and flow rate. The predictive performance of both models was evaluated using statistical metrics such as the Coefficient of Determination (R2), Root Mean Square Error (RMSE), Marquardt’s Percentage Squared Error Deviation (MPSED), Hybrid fractional error function (HYBRID), and Average Absolute Deviation (AAD). Both models demonstrated strong predictive accuracy, with R2 values of 0.9867 and 0.9832 for RSM and ANN, respectively, in AFC 40 membranes, and 0.9769 and 0.9922 in AFC 80 membranes. While both approaches closely matched the experimental results, the ANN model consistently yielded lower error values and higher R2 values, indicating superior predictive performance. These findings support the application of ANNs as a robust modelling tool in optimizing NF membrane processes for pharmaceutical removal. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

23 pages, 3520 KiB  
Article
Intrinsic Performances of Reverse Osmosis and Nanofiltration Membranes for the Recovery and Concentration of Multicomponent Mixtures of Volatile Fatty Acids: A Semi-Pilot Study
by Omar Atiq, Gonzalo Agustin Martinez, Lorenzo Bertin and Serena Bandini
Membranes 2025, 15(8), 221; https://doi.org/10.3390/membranes15080221 - 23 Jul 2025
Viewed by 388
Abstract
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation [...] Read more.
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation equilibria was developed to estimate interfacial concentrations, enabling accurate analysis of concentration polarization, real rejection, and effective transmembrane driving force. Concentration polarization strongly affects NF membranes, resulting in real rejections up to 20% higher than apparent values, while its effect is negligible for RO membranes. NF rejections show marked sensitivity to pH and VFA feed concentration: at 20 g/L and highest flux, acetic acid real rejection increases from 80% to 91% as pH rises from 6 to 9. At pH 7, rejections decline with feed concentration, with acetic acid dropping from 55% at 20 g/L to 32% at 63 g/L, at the same flux. These changes correlate with the molecular weight of the acids. Conversely, RO rejections are marginally affected by pH and not influenced by concentration due to dominant steric exclusion. Membrane permeabilities remain unaffected by VFAs and align with pure water values. The data analysis framework is effective and applicable across a wide range of conditions and membranes. Full article
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 509
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 3804 KiB  
Article
Maintaining Glycerol-Based Hexagonal Structures by Crosslinkers for High Permeability Nanofiltration
by Senlin Gu, Luke A. O’Dell and Lingxue Kong
Crystals 2025, 15(7), 664; https://doi.org/10.3390/cryst15070664 - 20 Jul 2025
Viewed by 245
Abstract
Hypothesis: Structural optimization of crosslinkers within a reactive glycerol-based hexagonal lyotropic liquid crystal (HLLC) system is proposed to enhance the interfacial stability of hexagonal mesophases and improve the hexagonal structure retention during polymerization. This targeted modification is anticipated to significantly improve the water [...] Read more.
Hypothesis: Structural optimization of crosslinkers within a reactive glycerol-based hexagonal lyotropic liquid crystal (HLLC) system is proposed to enhance the interfacial stability of hexagonal mesophases and improve the hexagonal structure retention during polymerization. This targeted modification is anticipated to significantly improve the water filtration efficiency of HLLC-templated nanofiltration. Experiments: The effect of crosslinkers on the interfacial stability of glycerol-based hexagonal mesophases was studied by evaluating their concentration accommodation within the mesophases using 13C solid NMR, FTIR and SAXS. Findings: A hydrophilic crosslinker consisting of ten ethylene glycol units shows less interference with the interfacial stability of hexagonal mesophases, therefore contributing to a higher concentration accommodation compared to the one with three ethylene glycol units. This long-chain crosslinker, despite having a low content of reactive groups, effectively connects the cylinders and better retains the hexagonal structures during polymerization than the hydrophobic crosslinker with shorter ethylene glycol units but a higher content of reactive groups. The retained hexagonal nanofiltration membranes show a remarkable pure water permeability of 40 L m−2 h−1 bar−1 µm, resulting from the strong hygroscopic effect of glycerol and the crumpled surface of membranes due to the flexible nature of the system plasticized by glycerol. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 392
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

18 pages, 3346 KiB  
Article
Influence of Membrane Salt Rejection Properties on Cake-Enhanced Concentration Polarization Effects During Colloidal Fouling of Nanofiltration Membranes
by Oranso Themba Mahlangu and Bhekie Brilliance Mamba
Membranes 2025, 15(7), 215; https://doi.org/10.3390/membranes15070215 - 19 Jul 2025
Viewed by 459
Abstract
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties [...] Read more.
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties of the membrane. Furthermore, the decline in salt rejection during fouling has not been related to the decreasing flux, to elucidate the effects of flux on solution rejection as described by the solution-diffusion (SD) model. Therefore, this work examined whether CECP is substantial in membranes with poor salt-rejection properties. Fouling was performed using sodium alginate, Al2O3, latex, and SiO2. The effects of fouling on salt rejection were studied using two nanofiltration (NF) membranes, namely NF270 membrane (46% NaCl rejection) and NF90 membrane (>97% NaCl rejection). The measured flux and salt rejection profiles were compared to those predicted by the CECP and SD models. Overall, the flux declined more (30–60%) for the NF90 membrane (contact angle: 50 ± 3°) compared to the NF270 membrane (10–55%, contact angle: 39 ± 2°) under similar hydrodynamic conditions. Moreover, fouling had more effects on NaCl rejection for the NF90 membrane (2–45% decline) compared to the NF270 membrane (10–30% decline). The decrease in NaCl rejection for the NF90 membrane was ascribed to CECP effects and declining flux. Contrary, CECP effects were less important for the NF270 membrane, and rejection declined due to reduction in flux as predicted by the SD model, indicating that CECP may not be predominant in membranes that poorly reject salts. Full article
Show Figures

Figure 1

46 pages, 1588 KiB  
Review
Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications
by Shivshankar Chaudhari, Sunilesh Chakravarty, YoungHo Cho, JinWon Seo, MinYoung Shon and SeungEun Nam
Processes 2025, 13(7), 2212; https://doi.org/10.3390/pr13072212 - 10 Jul 2025
Viewed by 561
Abstract
Organic solvent nanofiltration (OSN) has emerged as a transformative platform for molecular separation, offering energy-efficient and high-performance alternatives to conventional separation techniques across the food, petrochemical, and pharmaceutical industries. At the core of this advancement lie polyamide membranes, whose exceptional chemical resilience, tunable [...] Read more.
Organic solvent nanofiltration (OSN) has emerged as a transformative platform for molecular separation, offering energy-efficient and high-performance alternatives to conventional separation techniques across the food, petrochemical, and pharmaceutical industries. At the core of this advancement lie polyamide membranes, whose exceptional chemical resilience, tunable architecture, and compatibility with a wide range of organic solvents have positioned them as the material of choice for industrial OSN applications. Recent progress encompassing nanostructured additives, controlled interfacial polymerization, and advanced crosslinking strategies has led to significant improvements in membrane selectivity, permeability, and operational stability. As OSN continues to gain traction in sustainable chemical processing, enabling reductions in both energy consumption and environmental waste, ongoing challenges such as membrane fouling, structural degradation, and limited solvent resistance remain critical barriers to broader adoption. This review critically examines the role of polyamide membranes in OSN, emphasizing their structural versatility, physicochemical attributes, and capacity to meet the growing demands of sustainable separation technologies. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 3292 KiB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Viewed by 780
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

22 pages, 3169 KiB  
Review
A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control
by Honghuan Yin and Zhonglong Yin
Membranes 2025, 15(7), 191; https://doi.org/10.3390/membranes15070191 - 25 Jun 2025
Viewed by 597
Abstract
Although membrane technology has been widely applied in water treatment, membrane fouling is an inevitable issue that has largely limited its application. Benefiting from the advantages of green power, easy integration and low chemical consumption, electrocatalytic membrane (ECM) technology received attention, using it [...] Read more.
Although membrane technology has been widely applied in water treatment, membrane fouling is an inevitable issue that has largely limited its application. Benefiting from the advantages of green power, easy integration and low chemical consumption, electrocatalytic membrane (ECM) technology received attention, using it to enable electrically driven self-cleaning performance recently, making it highly desirable for sustainable fouling control. In this work, we comprehensively summarized the conventional (e.g., carbonaceous materials, metal and metal oxide) and emerging (e.g., metal–organic framework and MXene) materials for the fabrication of an ECM. Then the fabrication methods and operating modes of an ECM were emphasized. Afterwards, the application of different ECM materials in membrane fouling control was highlighted and the corresponding mechanism was revealed. Based on existing research findings, we proposed the challenges and future prospects of ECM materials for practical application. This study provides enlightening knowledge into the development of ECM materials for sustainable fouling control. Full article
Show Figures

Figure 1

28 pages, 6673 KiB  
Article
Valorization of Anaerobic Liquid Digestates Through Membrane Processing and Struvite Recovery—The Case of Dairy Effluents
by Anthoula C. Karanasiou, Charikleia K. Tsaridou, Dimitrios C. Sioutopoulos, Christos Tzioumaklis, Nikolaos Patsikas, Sotiris I. Patsios, Konstantinos V. Plakas and Anastasios J. Karabelas
Membranes 2025, 15(7), 189; https://doi.org/10.3390/membranes15070189 - 24 Jun 2025
Viewed by 653
Abstract
An integrated process scheme is developed for valorizing filtered liquid digestates (FLD) from an industrial anaerobic digestion (AD) plant treating dairy-processing effluents with relatively low nutrient concentrations. The process scheme involves FLD treatment by nanofiltration (NF) membranes, followed by struvite recovery from the [...] Read more.
An integrated process scheme is developed for valorizing filtered liquid digestates (FLD) from an industrial anaerobic digestion (AD) plant treating dairy-processing effluents with relatively low nutrient concentrations. The process scheme involves FLD treatment by nanofiltration (NF) membranes, followed by struvite recovery from the NF-retentate. An NF pilot unit (designed for this purpose) is combined with a state-of-the-art NF/RO process simulator. Validation of simulator results with pilot data enables reliable predictions required for scaling up NF systems. The NF permeate meets the standards for restricted irrigation and/or reuse. Considering the significant nutrient concentrations in the NF retentate (i.e., ~500 mg/L NH4-N, ~230 mg/L PO4-P), struvite recovery/precipitation is investigated, including determination of near-optimal processing conditions. Maximum removal of nutrients, through production of struvite-rich precipitate, is obtained at a molar ratio of NH4:Mg:PO4 = 1:1.5:1.5 and pH = 10 in the treated stream, attained through the addition of Κ2HPO4, ΜgCl2·6H2O, and NaOH. Furthermore, almost complete struvite precipitation is achieved within ~30 min, whereas precipitate/solid drying at modest/ambient temperature is appropriate to avoid struvite degradation. Under the aforementioned conditions, a significant amount of dry precipitate is obtained, i.e., ~12 g dry mass per L of treated retentate, including crystalline struvite. The approach taken and the obtained positive results provide a firm basis for further development of this integrated process scheme towards sustainable large-scale applications. Full article
Show Figures

Figure 1

Back to TopTop