Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,294)

Search Parameters:
Keywords = membrane fouling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

13 pages, 2939 KiB  
Review
A Review of Maricultural Wastewater Treatment Using an MBR: Insights into the Mechanism of Membrane Fouling Mitigation Through a Microalgal–Bacterial Symbiotic and Microbial Ecological Network
by Yijun You, Shuyu Zhao, Binghan Xie, Zhipeng Li, Weijia Gong, Guoyu Zhang, Qinghao Li, Xiangqian Zhao, Zhaofeng Xin, Jinkang Wu, Yuanyuan Gao and Han Xiang
Membranes 2025, 15(8), 234; https://doi.org/10.3390/membranes15080234 - 1 Aug 2025
Viewed by 208
Abstract
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and [...] Read more.
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and improving the salinity tolerance of bacteria and algae. This study centered on the mechanisms of membrane fouling mitigation via the microalgal–bacterial interactions in the MBSS, including improving the pollutant removal, optimizing the system parameters, and controlling the gel layer formation. Moreover, the contribution of electrochemistry to decreasing the inhibitory effects of high-salinity stress was investigated in the MBSS. Furthermore, patterns of shifts in microbial communities and the impacts have been explored using metagenomic technology. Finally, this review aims to offer new insights for membrane fouling mitigation in actual maricultural wastewater treatment. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

13 pages, 5177 KiB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 428
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 879 KiB  
Article
Multiblock Metabolomics Responses of the Diatom Phaeodactylum tricornutum Under Benthic and Planktonic Culture Conditions
by Andrea Castaldi, Mohamed Nawfal Triba, Laurence Le Moyec, Cédric Hubas, Gaël Le Pennec and Marie-Lise Bourguet-Kondracki
Mar. Drugs 2025, 23(8), 314; https://doi.org/10.3390/md23080314 - 31 Jul 2025
Viewed by 320
Abstract
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated [...] Read more.
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated on three laboratory substrates (glass, polystyrene, and polydimethylsiloxane) and under planktonic conditions. Our results revealed metabolic differences between adherent and planktonic cultures, particularly concerning the lipid and carbohydrate contents. Adherent cultures showed a metabolic profile with an increase in betaine lipids (DGTA/S), fatty acids (tetradecanoic and octadecenoic acids), and sugars (myo-inositol and ribose), suggesting modifications in membrane composition and lipid remodeling, which play a potential role in adhesion. In contrast, planktonic cultures displayed a higher content of cellobiose, specialized metabolites such as dihydroactinidiolide, quinic acid, catechol, and terpenes like phytol, confirming different membrane composition, energy storage capacity, osmoregulation, and stress adaptation. The adaptative strategies do not only concern adherent and planktonic states, but also different adherent culture conditions, with variations in lipid, amino acid, terpene, and carbohydrate contents depending on the physical properties of the support. Our results highlight the importance of metabolic adaptation in adhesion, which could explain the fouling process. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 195
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

21 pages, 5748 KiB  
Article
Potential and Challenges of a Targeted Membrane Pre-Fouling: Process Performance of Milk Protein Fractionation After the Application of a Transglutaminase Treatment of Casein Micelles
by Michael Reitmaier, Ulrich Kulozik and Petra Först
Foods 2025, 14(15), 2682; https://doi.org/10.3390/foods14152682 - 30 Jul 2025
Viewed by 196
Abstract
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce [...] Read more.
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce amount-dependent modifications of all milk proteins in SM and a reduction in deposit resistance for laboratory dead-end filtrations of up to 20%. This improvement in process performance could partially be confirmed in pilot-scale cross-flow filtrations of Tgase-pretreated SM and micellar casein solutions (MCC). These comparative trials with untreated retentates under a variation of ΔpTM (0.5–2 bar) at 10 and 50° revealed distinct differences in deposit behavior and achieved the reduction in deposit resistance in a range of 0–20%. The possibility of pre-fouling with enzymatically pretreated MCC prior to SM filtration was also investigated. Under different pre-fouling conditions, practical modes of retentate change, and pre-foulant compositions, a switch to untreated SM consistently resulted in an immediate and major increase in deposit resistance by 50–150%. This was partially related to the change in the ionic environment and the protein fraction. Nevertheless, our results underline the potential of Tgase pretreatment and pre-fouling approaches to alter filtration performance for different applications. Full article
(This article belongs to the Special Issue Membranes for Innovative Bio-Food Processing)
Show Figures

Graphical abstract

17 pages, 2524 KiB  
Article
A Model-Driven Approach to Assessing the Fouling Mechanism in the Crossflow Filtration of Laccase Extract from Pleurotus ostreatus 202
by María Augusta Páez, Mary Casa-Villegas, Vanesa Naranjo-Moreno, Neyda Espín Félix, Katty Cabezas-Terán and Alfonsina Andreatta
Membranes 2025, 15(8), 226; https://doi.org/10.3390/membranes15080226 - 29 Jul 2025
Viewed by 353
Abstract
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a [...] Read more.
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a comparative analysis with dead-end filtration models. One crossflow microfiltration (MF) and six consecutive ultrafiltration (UF) stages were implemented to concentrate laccase extracts from Pleurotus ostreatus 202 fungi. The complete pore-blocking mechanism significantly impacts the MF, UF 1000, UF 100 and UF 10 stages, with the highest related filtration constant (KbF) estimated at 12.60 × 10−4 (m−1). Although the intermediate pore-blocking mechanism appears across all filtration stages, UF 100 is the most affected, with an associated filtration constant (KiF) of 16.70 (m−1). This trend is supported by the highest purification factor (6.95) and the presence of 65, 62 and 56 kDa laccases in the retentate. Standard pore blocking occurs at the end of filtration, only in the MF and UF 1000 stages, with filtration constants (KsF) of 29.83 (s−0.5m−0.5) and 31.17 (s−0.5m−0.5), respectively. The absence of cake formation and the volume of permeate recovered indicate that neither membrane was exposed to exhaustive fouling that could not be reversed by backwashing. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

13 pages, 3429 KiB  
Article
Membrane Fouling Control and Treatment Performance Using Coagulation–Tubular Ceramic Membrane with Concentrate Recycling
by Yawei Xie, Yichen Fang, Dashan Chen, Jiahang Wei, Chengyue Fan, Xiwang Zhu and Hongyuan Liu
Membranes 2025, 15(8), 225; https://doi.org/10.3390/membranes15080225 - 27 Jul 2025
Viewed by 289
Abstract
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with [...] Read more.
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with concentrate recycling (C-TCM-CR). Experimental results demonstrated that under constant flux operation at 75 L/(m2·h) for 8 h, the C-TCM-CR process reduced the transmembrane pressure (TMP) increase by 83% and 35% compared to DF-TCM and C-TCM, respectively. Floc size distribution analysis and cake layer characterization revealed that the C-TCM-CR process enhanced coagulation efficiency and formed high-porosity cake layers on membrane surfaces, thereby mitigating fouling development. Notably, the coagulation-assisted processes demonstrated improved organic matter removal, with 13%, 10%, and 10% enhancement in CODMn, UV254, and medium molecular weight organics (2000–10,000 Da) removal compared to DF-TCM, along with a moderate enhancement in fluorescent substances removal efficiency. All three processes achieved over 99% turbidity removal efficiency, as the ceramic membranes demonstrate excellent filtration performance. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

18 pages, 2328 KiB  
Article
Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance
by Zainab E. Alhadithy, Ali A. Abbas Aljanabi, Adnan A. AbdulRazak, Qusay F. Alsalhy, Raluca Isopescu, Daniel Dinculescu and Cristiana Luminița Gîjiu
Materials 2025, 18(15), 3494; https://doi.org/10.3390/ma18153494 - 25 Jul 2025
Viewed by 297
Abstract
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance [...] Read more.
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance membrane performance, hydrophilicity, contact angle, porosity, and resistance to fouling. Modeling and optimization techniques were used to examine the effects of important operational and fabrication parameters, such as pH, contaminant concentration, nanoadditive (MXene) content, and operating pressure. Predictive models were developed using experimental data to assess the membranes’ performance in terms of flux and Pb2+ rejection. The ideal circumstances that struck a balance between long-term operating stability and high removal efficiency were found through multi-variable optimization. The optimized conditions for the best rejection of Pb2+ ions and the most stable permeability over time among the membranes that were manufactured were the initial metal ions concentration (2 mg/L), pH (7.89), pressure (2.99 bar), and MXene mass (0.3 g). The possibility of combining MXene nanoparticles with methodical optimization techniques to create efficient membranes for the removal of heavy metals in wastewater treatment applications is highlighted by this work. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 287
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

26 pages, 2652 KiB  
Article
Predictive Framework for Membrane Fouling in Full-Scale Membrane Bioreactors (MBRs): Integrating AI-Driven Feature Engineering and Explainable AI (XAI)
by Jie Liang, Sangyoup Lee, Xianghao Ren, Yingjie Guo, Jeonghyun Park, Sung-Gwan Park, Ji-Yeon Kim and Moon-Hyun Hwang
Processes 2025, 13(8), 2352; https://doi.org/10.3390/pr13082352 - 24 Jul 2025
Viewed by 345
Abstract
Membrane fouling remains a major challenge in full-scale membrane bioreactor (MBR) systems, reducing operational efficiency and increasing maintenance needs. This study introduces a predictive and analytic framework for membrane fouling by integrating artificial intelligence (AI)-driven feature engineering and explainable AI (XAI) using real-world [...] Read more.
Membrane fouling remains a major challenge in full-scale membrane bioreactor (MBR) systems, reducing operational efficiency and increasing maintenance needs. This study introduces a predictive and analytic framework for membrane fouling by integrating artificial intelligence (AI)-driven feature engineering and explainable AI (XAI) using real-world data from an MBR treating food processing wastewater. The framework refines the target parameter to specific flux (flux/transmembrane pressure (TMP)), incorporates chemical oxygen demand (COD) removal efficiency to reflect biological performance, and applies a moving average function to capture temporal fouling dynamics. Among tested models, CatBoost achieved the highest predictive accuracy (R2 = 0.8374), outperforming traditional statistical and other machine learning models. XAI analysis identified the food-to-microorganism (F/M) ratio and mixed liquor suspended solids (MLSSs) as the most influential variables affecting fouling. This robust and interpretable approach enables proactive fouling prediction and supports informed decision making in practical MBR operations, even with limited data. The methodology establishes a foundation for future integration with real-time monitoring and adaptive control, contributing to more sustainable and efficient membrane-based wastewater treatment operations. However, this study is based on data from a single full-scale MBR treating food processing wastewater and lacks severe fouling or cleaning events, so further validation with diverse datasets is needed to confirm broader applicability. Full article
(This article belongs to the Special Issue Membrane Technologies for Desalination and Wastewater Treatment)
Show Figures

Figure 1

1 pages, 122 KiB  
Retraction
RETRACTED: Yang et al. Biological Activated Carbon Filtration Controls Membrane Fouling and Reduces By-Products from Chemically Enhanced Backwashing During Ultrafiltration Treatment. Water 2023, 15, 3803
by Yao Yang, Shuai Zhang, Guangfei Yang, Haihui Li, Jinjin Wang and Wenyan Li
Water 2025, 17(15), 2169; https://doi.org/10.3390/w17152169 - 22 Jul 2025
Viewed by 153
Abstract
The journal retracts the article titled “Biological Activated Carbon Filtration Controls Membrane Fouling and Reduces By-Products from Chemically Enhanced Backwashing During Ultrafiltration Treatment” [...] Full article
14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 479
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

18 pages, 3346 KiB  
Article
Influence of Membrane Salt Rejection Properties on Cake-Enhanced Concentration Polarization Effects During Colloidal Fouling of Nanofiltration Membranes
by Oranso Themba Mahlangu and Bhekie Brilliance Mamba
Membranes 2025, 15(7), 215; https://doi.org/10.3390/membranes15070215 - 19 Jul 2025
Viewed by 450
Abstract
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties [...] Read more.
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties of the membrane. Furthermore, the decline in salt rejection during fouling has not been related to the decreasing flux, to elucidate the effects of flux on solution rejection as described by the solution-diffusion (SD) model. Therefore, this work examined whether CECP is substantial in membranes with poor salt-rejection properties. Fouling was performed using sodium alginate, Al2O3, latex, and SiO2. The effects of fouling on salt rejection were studied using two nanofiltration (NF) membranes, namely NF270 membrane (46% NaCl rejection) and NF90 membrane (>97% NaCl rejection). The measured flux and salt rejection profiles were compared to those predicted by the CECP and SD models. Overall, the flux declined more (30–60%) for the NF90 membrane (contact angle: 50 ± 3°) compared to the NF270 membrane (10–55%, contact angle: 39 ± 2°) under similar hydrodynamic conditions. Moreover, fouling had more effects on NaCl rejection for the NF90 membrane (2–45% decline) compared to the NF270 membrane (10–30% decline). The decrease in NaCl rejection for the NF90 membrane was ascribed to CECP effects and declining flux. Contrary, CECP effects were less important for the NF270 membrane, and rejection declined due to reduction in flux as predicted by the SD model, indicating that CECP may not be predominant in membranes that poorly reject salts. Full article
Show Figures

Figure 1

Back to TopTop