Next Article in Journal
Chemical Composition and Antioxidant Activity of the Main Fruits Consumed in the Western Coastal Region of Ecuador as a Source of Health-Promoting Compounds
Next Article in Special Issue
Maltol Improves APAP-Induced Hepatotoxicity by Inhibiting Oxidative Stress and Inflammation Response via NF-κB and PI3K/Akt Signal Pathways
Previous Article in Journal
Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress
Previous Article in Special Issue
Polydatin Encapsulated Poly [Lactic-co-glycolic acid] Nanoformulation Counteract the 7,12-Dimethylbenz[a] Anthracene Mediated Experimental Carcinogenesis through the Inhibition of Cell Proliferation
Open AccessArticle

Sulfuric Odor Precursor S-Allyl-l-Cysteine Sulfoxide in Garlic Induces Detoxifying Enzymes and Prevents Hepatic Injury

1
Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan
2
Department of Bioscience in Daily Life, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan
*
Author to whom correspondence should be addressed.
Antioxidants 2019, 8(9), 385; https://doi.org/10.3390/antiox8090385
Received: 9 August 2019 / Revised: 7 September 2019 / Accepted: 8 September 2019 / Published: 10 September 2019
(This article belongs to the Special Issue Phytochemical Antioxidants and Health)
S-Allyl-l-cysteine sulfoxide (ACSO) is a precursor of garlic-odor compounds like diallyl disulfide (DADS) and diallyl trisulfide (DATS) known as bioactive components. ACSO has suitable properties as a food material because it is water-soluble, odorless, tasteless and rich in bulbs of fresh garlic. The present study was conducted to examine the preventive effect of ACSO on hepatic injury induced by CCl4 in rats. ACSO, its analogs and garlic-odor compounds were each orally administered via gavage for five consecutive days before inducing hepatic injury. Then, biomarkers for hepatic injury and antioxidative state were measured. Furthermore, we evaluated the absorption and metabolism of ACSO in the small intestine of rats and NF-E2-related factor 2 (Nrf2) nuclear translocation by ACSO using HepG2 cells. As a result, ACSO, DADS and DATS significantly suppressed the increases in biomarkers for hepatic injury such as the activities of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH), and decreases in antioxidative potency such as glutathione (GSH) level and the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx). We also found ACSO was absorbed into the portal vein from the small intestine but partially metabolized to DADS probably in the small intestine. In in vitro study, ACSO induced Nrf2 nuclear translocation in HepG2 cells, which is recognized as an initial trigger to induce antioxidative and detoxifying enzymes. Taken together, orally administered ACSO probably reached the liver and induced antioxidative and detoxifying enzymes by Nrf2 nuclear translocation, resulting in prevention of hepatic injury. DADS produced by the metabolism of ACSO in the small intestine might also have contributed to the prevention of hepatic injury. These results suggest potential use of ACSO in functional foods that prevent hepatic injury and other diseases caused by reactive oxygen species (ROS). View Full-Text
Keywords: organosulfur compound; odor precursor; garlic; hepatic injury; Nrf2 organosulfur compound; odor precursor; garlic; hepatic injury; Nrf2
Show Figures

Graphical abstract

MDPI and ACS Style

Yamaguchi, Y.; Honma, R.; Yazaki, T.; Shibuya, T.; Sakaguchi, T.; Uto-Kondo, H.; Kumagai, H. Sulfuric Odor Precursor S-Allyl-l-Cysteine Sulfoxide in Garlic Induces Detoxifying Enzymes and Prevents Hepatic Injury. Antioxidants 2019, 8, 385.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop