Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Processing of Pearl Millet
2.3. Preparation of Pearl Millet Extracts
2.4. DPPH Radical Scavenging Activity
2.5. Reducing Power Assay
2.6. FRAP (Ferric Reducing Antioxidant Power Assay)
2.7. Antioxidant Components
2.8. Statistical Analysis
3. Results and Discussion
3.1. Yield of Methanolic Extracts (g/100 g)
Processing | K | MRB |
---|---|---|
WF (Raw) | 5.8 cd ± 1.20 | 4.4 bc ± 0.87 |
SRF | 4.8 bc ± 0.30 | 3.7 abc ± 0.26 |
BRF | 2.1 a ± 0.05 | 3.2 ab ± 0.15 |
B | 2.4 ab ± 0.38 | 2.2 ab ± 0.14 |
PC | 2.2 a ± 0.10 | 1.8 a ± 0.04 |
R | 3.0 ab ± 0.03 | 2.3 ab ± 0.04 |
G | 7.7 d ± 0.12 | 6.1 c ± 0.34 |
3.2. Antioxidant Components
Processing treatments | Tannins (g/100 g) † | Phytic acid (g/100 g) | Flavonoids (mg/g) £ | |||
---|---|---|---|---|---|---|
K | MRB | K | MRB | K | MRB | |
WF (Raw) | 0.23 c ± 0.01 | 0.21 a ± 0.02 | 0.78 c ± 0.02 | 0.57 cd ± 0.07 | 0.27 ab ± 0.04 | 0.21 a ± 0.02 |
SRF | 0.21 b ± 0.01 | 0.19 a ± 0.01 | 0.66 b ± 0.06 | 0.33 ab ± 0.09 | 0.20 a ± 0.07 | 0.18 a ± 0.02 |
BRF | 0.31 d ± 0.01 | 0.32 b ± 0.01 | 0.99 d ± 0.06 | 0.61 d ± 0.10 | 0.19 a ± 0.01 | 0.18 a ± 0.00 |
Bo | 0.18 a ± 0.01 | 0.19 a ± 0.01 | 0.57 b ± 0.11 | 0.39 ab ± 0.04 | 0.32 abc ± 0.1 | 0.13 a ± 0.00 |
PC | 0.18 a ± 0.01 | 0.22 a ± 0.02 | 0.58 b ± 0.04 | 0.60 d ± 0.06 | 0.36 bc ± 0.06 | 0.13 a ± 0.01 |
Ro | 0.20 b ± 0.00 | 0.23 a ± 0.03 | 0.43 a ± 0.06 | 0.45 bc ± 0.11 | 0.44 c ± 0.10 | 0.27 a ± 0.07 |
G | 0.36 e ± 0.01 | 0.28 a ± 0.01 | 0.37 a ± 0.07 | 0.26 a ± 0.01 | 0.17 a ± 0.02 | 0.10 a ± 0.02 |
3.3. Radical Scavenging Activity by DPPH
3.4. Reducing Power Assay
3.5. Ferric Reducing Antioxidant Power (FRAP)
Processing | Kalukombu | MRB |
---|---|---|
Whole flour (Raw) | 2.24 ab ± 0.57 | 1.85 ab ± 0.21 |
SRF | 2.89 b ± 0.54 | 1.63 a ± 0.20 |
BRF | 2.08 ab ± 0.05 | 1.72 ab ± 0.09 |
Bo | 2.18 ab ± 0.03 | 1.99 ab ± 0.07 |
PC | 1.54 a ± 0.11 | 1.80 ab ± 0.00 |
Ro | 2.58 b ± 0.33 | 2.17 b ± 0.12 |
G | 2.69 b ± 0.07 | 1.66 a ± 0.23 |
3.6. Correlations of Yield and Antioxidant Components with Antioxidant Activity
Pearl millet | Yield | Phytic acid | Tannins | Flavonoids |
---|---|---|---|---|
Kalukombu | ||||
DPPH | −0.629 ** | −0.130 | −0.557 ** | 0.712 ** |
Reducing power | −0.361 | 0.222 | −0.100 | 0.456 * |
FRAP | 0.478 * | −0.148 | 0.165 | −0.078 |
Maharashtra Rabi Bajra | ||||
DPPH | −0.317 | −0.279 | −0.121 | −0. 282 |
Reducing power | −0.317 | −0.273 | −0.110 | −0.282 |
FRAP | −0.322 | 0.276 | −0.141 | 0.181 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and Ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Y.S.; Mazza, G.; Gai, L.; Oomah, B.P. Antioxidant activity and total polyphenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Hudson, B.J.F. Food Antioxidants; Elsevier Applied Science: London, UK, 1990. [Google Scholar]
- Choi, Y.; Jeong, H.-S.; Lee, J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 2007, 103, 130–138. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of bean extracts from selected wheat varieties commercially available in Pakistan. LWT-Food Sci. Technol. 2007, 40, 361–367. [Google Scholar] [CrossRef]
- Hegde, P.S.; Chandra, T.S. ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chem. 2005, 92, 177–182. [Google Scholar] [CrossRef]
- Anu Sehgal, S.; Kwatra, A. Nutritional evaluation of pearl millet based sponge cake. J. Food Sci. Technol. 2006, 43, 312–313. [Google Scholar]
- Malik, M.; Singh, U.; Dahiya, S. Nutrient composition of pearl millet as influenced by genotypes and cooking methods. J. Food Sci. Technol. 2002, 39, 463–468. [Google Scholar]
- Anon. All India Coordinated Pearl Millet Improvement Project, Annual Report 2009–2010; Project Coordinating unit, Agricultural Research Station: Mandor, India, 2010. [Google Scholar]
- Badau, M.H.; Nkama, I.; Jideani, I.A. Phytic acid content and hydrochloric acid extractability of minerals in pearl millet as affected by germination time and cultivar. Food Chem. 2005, 92, 425–435. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature 1958. [Google Scholar] [CrossRef]
- Yildrim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. [Google Scholar] [CrossRef]
- Benzine, F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurements of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23. [Google Scholar] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis, 10th ed.; AOAC: Washington, DC, USA, 1970; pp. 154–170. [Google Scholar]
- Thompson, D.B.; Erdman, J.W. Phytic acid determination in soybeans. J. Food Sci. 1982, 47, 513–517. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Suma, P.F.; Urooj, A. Antioxidant activity of extracts from foxtail millet (Setaria italica). J. Food Sci. Technol. 2010. [Google Scholar] [CrossRef]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomogranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef]
- Aganga, A.A.; Mosase, K.W. Tannin content, nutritive value and dry matter digestibility of Lonchocarpus capassa, Zizphus mucronata, Sclerocarya birrea, Kirkia acuminate and Rhus lancea seeds. Anim. Feed Sci. Technol. 2001, 91, 107–113. [Google Scholar] [CrossRef]
- Krings, U.; El-Saharty, Y.S.; El-Seany, B.A.; Pabel, B.; Berger, K. Antioxidant activity of extracts from roasted wheat germs. Food Chem. 2000, 71, 91–95. [Google Scholar] [CrossRef]
- Graf, E.; Eaton, J.W. Antioxidant functions of phytic acid. Free Radic. Biol. Med. 1990, 8, 61–69. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Musilova, J.; Hejtmankova, K.; Kotikova, Z.; Pazderu, K.; Domkarova, J.; Pivec, V.; Cimr, J. Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem. 2013, 138, 1189–1197. [Google Scholar] [CrossRef]
- Pradeep, R.S.; El-Sayed, A.-A.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Pradeep, S.R.; Guha, M. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem. 2011, 126, 1643–1647. [Google Scholar] [CrossRef]
- Chuah, A.M.; Lee, Y.-C.; Yamaguchi, T.; Takamura, H.; Yin, L.-J.; Matoba, T. Effect of cooking on the antioxidant properties of colored peppers. Food Chem. 2008, 111, 20–28. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pushparaj, F.S.; Urooj, A. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing. Antioxidants 2014, 3, 55-66. https://doi.org/10.3390/antiox3010055
Pushparaj FS, Urooj A. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing. Antioxidants. 2014; 3(1):55-66. https://doi.org/10.3390/antiox3010055
Chicago/Turabian StylePushparaj, Florence Suma, and Asna Urooj. 2014. "Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing" Antioxidants 3, no. 1: 55-66. https://doi.org/10.3390/antiox3010055
APA StylePushparaj, F. S., & Urooj, A. (2014). Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing. Antioxidants, 3(1), 55-66. https://doi.org/10.3390/antiox3010055