Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and reagents
2.2. Samples
2.3. Extraction of Polyphenols
2.4. Total Phenolic Content
2.5. Total Flavonoids
2.6. DPPH Free Radical-Scavenging Assay
2.7. Ferric Reducing/Antioxidant Power (FRAP) Assay
2.8. Identification of Polyphenols by HPLC
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Solvent System
Solvent | Seed Cakes | ||
---|---|---|---|
Hemp | Flax | Canola | |
Methanol | 432.33 ± 2.52 eB | 275.00 ± 1.00 eC | 1776.33 ± 1.53 cA |
Ethanol | 351.33 ± 2.08 fB | 255.00 ± 3.00 fC | 1025.00 ± 2.65 eA |
Hexane | 167.00 ± 2.00 gB | 108.33 ± 0.58 gC | 488.67 ± 7.02 fA |
Acetone | 483.67 ± 3.51 dB | 374.67 ± 3.51 dC | 1390.67 ± 4.04 dA |
Acetone 80% | 642.67 ± 0.58 bB | 564.67 ± 2.52 bC | 1976.33 ± 1.53 bA |
Methanol 80% | 545.33 ± 2.08 cB | 406.67 ± 2.08 cC | 1987.33 ± 2.08 bA |
Methanol:acetone:water (7:7:6 v/v/v) | 733.33 ± 1.53 aC | 774.33 ± 2.08 aB | 2104.67 ± 2.52 aA |
Solvent | Seed Cakes | ||
---|---|---|---|
Hemp | Flax | Canola | |
Methanol | 3.86 ± 0.06 eB | 3.47 ± 0.06 eC | 28.13 ± 0.06 dA |
Ethanol | 0.81 ± 0.06 fB | 0.58 ± 0.08 fB | 25.28 ± 0.42 eA |
Hexane | 0.23 ± 0.10 gB | 0.08 ± 0.05 gB | 20.27 ± 0.57 fA |
Acetone | 4.31 ± 0.06 dB | 4.33 ± 0.09 dB | 28.63 ± 0.09 dA |
Acetone 80% | 8.04 ± 0.07 bB | 5.36 ± 0.11 bC | 36.05 ± 0.12 bA |
Methanol 80% | 7.61 ± 0.04 cB | 5.01 ± 0.18 cC | 35.03 ± 0.05 cA |
Methanol:acetone:water (7:7:6 v/v/v) | 27.41 ± 0.04 aB | 9.18 ± 0.17 aC | 37.79 ± 0.04 aA |
3.2. Antioxidant Capacity
3.2.1. DPPH Free Radical-Scavenging Assay
Solvent | Seed Cakes | ||
---|---|---|---|
Hemp | Flax | Canola | |
Methanol | 5.33 ± 0.30 eB | 4.42 ± 0.26 cC | 26.60 ± 0.22 dA |
Ethanol | 3.09 ± 0.23 fB | 3.58 ± 0.22 dB | 15.07 ± 0.46 eA |
Hexane | 1.93 ± 0.32 gB | 1.72 ± 0.47 eB | 6.59 ± 0.26 fA |
Acetone | 8.68 ± 0.10 dB | 3.09 ± 0.15 dC | 28.04 ± 0.17 cA |
Acetone 80% | 12.48 ± 0.46 bB | 7.81 ± 0.10 bC | 29.29 ± 0.38 bA |
Methanol 80% | 11.01 ± 0.23 cB | 7.36 ± 0.10 bC | 28.54 ± 0.17 bcA |
Methanol:acetone:water (7:7:6 v/v/v) | 16.79 ± 0.09 aB | 11.39 ± 0.09 aC | 33.03 ± 0.38 aA |
3.2.2. Ferric Reducing/Antioxidant Power (FRAP) Assay
Solvent | Seed Cakes | ||
---|---|---|---|
Hemp | Flax | Canola | |
Methanol | 1.11 ± 0.02 eB | 0.60 ± 0.01 eC | 3.46 ± 0.03 cdA |
Ethanol | 1.03 ± 0.05 eB | 0.51 ± 0.01 fC | 2.45 ± 0.04 dA |
Hexane | 0.07 ± 0.02 fB | 0.03 ± 0.00 gC | 1.20 ± 0.02 dA |
Acetone | 2.09 ± 0.05 dB | 0.64 ± 0.01 dC | 5.15 ± 2.36 bcA |
Acetone 80% | 3.19 ± 0.03 bB | 1.10 ± 0.01 bC | 8.15 ± 0.06 aA |
Methanol 80% | 2.41 ± 0.08 cAB | 0.93 ± 0.02 cC | 7.18± 0.18 abA |
Methanol:acetone:water (7:7:6 v/v/v) | 3.51 ± 0.04 aB | 1.48 ± 0.00 aC | 8.78 ± 0.07 aA |
Polyphenol compounds (mg/100 g fresh weight) | ||||||||
---|---|---|---|---|---|---|---|---|
Gallic acid | p-Coumaric | Catechin | Caffeic acid | Epicatechin | Ferulic acid | Quercetin | Luteolin | |
Defatted hemp seed cake extracts | ||||||||
A | - | - | - | 8.31 ± 0.02 aC | - | - | 62.11 ± 0.19 fA | 40.15 ± 0.12 dB |
B | - | - | - | 7.90 ± 0.10 bC | - | - | 66.02 ± 0.30 dA | 37.69 ± 0.34 eB |
C | - | - | - | - | - | - | 44.69 ± 0.34 gA | 44.15 ± 0.17 bB |
D | - | - | - | 6.00 ± 0.20 dC | - | - | 80.00 ± 0.15 bA | 42.15 ± 0.17 cB |
E | - | - | - | 7.28 ± 0.07 cC | - | - | 74.19 ± 0.17 cA | 44.11 ± 0.19 bB |
F | - | - | - | 8.27 ± 0.04 aC | - | - | 64.89 ± 0.14 eA | 40.04 ± 0.08 dB |
G | - | - | - | 5.37 ± 0.12 e | - | - | 104.11 ± 0.19 aA | 46.11 ± 0.19 aB |
Defatted flax seed cake extract | ||||||||
A | - | 10.15 ± 0.17 bA | - | - | - | 5.60 ± 0.25 bB | - | - |
B | - | 10.05 ± 0.07 bA | - | - | - | 5.05 ± 0.12 bB | - | - |
C | - | - | - | - | - | - | - | - |
D | - | 6.13 ± 0.20 eA | - | - | - | 4.11 ± 0.19 cB | - | - |
E | - | 7.11 ± 0.19 dA | - | - | - | 5.22 ± 0.19 bB | - | - |
F | - | 12.15 ± 0.17 aA | - | - | - | 6.22 ± 0.19 aB | - | - |
G | - | 9.04 ± 0.08 cA | - | - | - | 5.56 ± 0.25 bB | - | - |
Defatted canola seed cake extract | ||||||||
A | 88.11 ± 0.19 bC | 32.44 ± 0.77 bG | 50.19 ± 0.17 dE | 447.33 ± 0.58 cB | 838.33 ± 0.58 cA | 14.11 ± 0.19 bH | 63.33 ± 0.58 cdD | 38.67 ± 1.16 dF |
B | 86.15 ± 0.17 cC | 28.11 ± 0.19 dG | 50.11± 0.19 dE | 439.67 ± 0.58 dB | 786.22 ± 0.19 fA | 14.22 ± 0.19 bF | 68.67 ± 1.16 bD | 50.11 ± 0.20 aE |
C | - | - | 9.95 ± 0.11 fE | 82.00 ± 0.15 fB | 157.22 ± 0.19 gA | - | 53.00 ± 1.00 eC | 48.11 ± 0.20 bD |
D | 76.19 ± 0.17 dC | 24.04 ± 0.08 eG | 46.06 ± 0.24 eF | 405.00 ± 2.00 eB | 832.44 ± 0.51 dA | 9.11 ± 0.19 eH | 67.44 ± 0.51 bD | 50.44 ± 0.51 aF |
E | 86.11 ± 0.19 cC | 30.15 ± 0.17 cG | 52.11 ± 0.19 bE | 442.11 ± 0.19 dB | 825.22 ± 0.19 eA | 12.11 ± 0.19 cH | 65.11 ± 0.19 cD | 48.11 ± 0.19 bF |
F | 88.98 ± 0.04 aC | 32.11 ± 0.19 bG | 52.95 ± 0.20 aE | 452.67 ± 2.52 bB | 857.11 ± 0.19 bA | 11.22 ± 0.19 dH | 62.29 ± 0.27 dD | 41.44 ± 0.19 cF |
G | 88.11 ± 0.19 bC | 34.22 ± 0.19 aF | 51.22 ± 0.19 cE | 479.09 ± 0.21 aB | 1368.66 ± 1.53 aA | 15.55 ± 0.39 aG | 72.22 ± 0.19 aD | 51.22 ± 0.19 aE |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Lea, A.J. Dietary factors associated with death rates from certain neoplasms in man. Lancet 1966, 2, 332–333. [Google Scholar] [CrossRef]
- Mantle, D.; Eddeb, F.; Pickering, A.T. Comparison of relative antioxidant activities of British medicinal plant species in vitro. J. Ethnopharmacol. 2000, 72, 47–51. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 2010, 90, 218–226. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 1080–1089. [Google Scholar] [CrossRef]
- Skórkowska-Telichowska, K.; Zuk, M.; Kulma, A.; Bugajska-Prusak, A.; Ratajczak, K.; Ga̧siorowski, K.; Kostyn, K.; Szopa, J. New dressing materials derived from transgenic flax products to treat long-standing venous ulcers—A pilot study. Wound Repair Regen. 2010, 18, 168–179. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Río, J.A. Uses and properties of citrus flavonoids. J. Agric. Food Chem. 1997, 45, 4505–4515. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.T.; Shetty, K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac. J. Clin. Nutr. 2004, 13, 295–307. [Google Scholar] [PubMed]
- Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. [Google Scholar] [CrossRef]
- Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S. Chemical studies on novel rice hull antioxidants. 2. Identification of isovitexin, a C-glycosyl flavonoid. J. Agric. Food Chem. 1989, 37, 316–319. [Google Scholar] [CrossRef]
- Watanabe, M.; Ohshita, Y.; Tsushida, T. Antioxidant compounds from Buckwheat (Fagopyrum esculentum Möench) hulls. J. Agric. Food Chem. 1997, 45, 1039–1044. [Google Scholar] [CrossRef]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Gorinstein, S.; Martín-Belloso, O.; Park, Y.S.; Haruenkit, R.; Lojek, A.; Íž, M.; Caspi, A.; Libman, I.; Trakhtenberg, S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001, 74, 309–315. [Google Scholar] [CrossRef]
- Neo, Y.P.; Ariffin, A.; Tan, C.P.; Tan, Y.A. Determination of oil palm fruit phenolic compounds and their antioxidant activities using spectrophotometric methods. Int. J. Food Sci. Technol. 2008, 43, 1832–1837. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Peschel, W.; Dieckmann, W.; Sonnenschein, M.; Plescher, A. High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants. Ind. Crop Prod. 2007, 25, 44–54. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Oomah, B.D.; Mazza, G.; Kenaschuk, E.O. Flavonoid content of flaxseed. Influence of cultivar and environment. Euphytica 1996, 90, 163–167. [Google Scholar] [CrossRef]
- De Ancos, B.; Sgroppo, S.; Plaza, L.; Cano, M.P. Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J. Sci. Food Agric. 2002, 82, 790–796. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipid 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Caetano, A.C.D.S.; Araújo, C.R.D.; Lima, V.L.A.G.D.; Maciel, M.I.S.; Melo, E.D.A. Evaluation of antioxidant activity of agro-industrial waste of acerola (Malpighia emarginata D.C.) fruit extracts. Ciênc. Tecnol. Aliment. 2011, 31, 769–775. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 1999, 51, 91–94. [Google Scholar] [CrossRef]
- Oomah, B.D.; Mazza, G.; Przybylski, R. Comparison of flaxseed meal lipids extracted with different solvents. LWT-Food Sci. Technol. 1996, 29, 654–658. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 2012, 134, 1030–1037. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT-Food Sci. Technol. 2004, 37, 717–721. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 2002, 50, 3444–3452. [Google Scholar] [CrossRef]
- Enujiugha, V.; Talabi, J.; Malomo, S.; Olagunju, A. DPPH radical scavenging capacity of phenolic extracts from African yam bean (Sphenostylis stenocarpa). Food Nutr. Sci. 2012, 3, 7–13. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. J. Med. Plant Res. 2011, 5, 1147–1154. [Google Scholar]
- Shahidi, F.; Naczk, M. An overview of the phenolics of canola and rapeseed: Chemical, sensory and nutritional significance. J. Am. Oil Chem. Soc. 1992, 69, 917–924. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current research developments on polyphenolics of rapeseed/canola: A review. Food Chem. 1998, 62, 489–502. [Google Scholar] [CrossRef]
- Gupta, P.K.; Haslam, E. Polyphenols in Cereals and Legumes; Hulse, J.H., Ed.; International Development Research Center: Ottawa, Canada, 1980; p. 15. [Google Scholar]
- Mazur, W.; Duke, J.A.; Wähälä, K.; Rasku, S.; Adlercreutz, H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. Nutr. Biochem. 1998, 9, 193–200. [Google Scholar] [CrossRef]
- Westcott, N.D.; Muir, A.D. Process for Extracting and Purifying Lignans and Cinnamic Acid Derivatives from Flaxseed. PCT Patent WO9630468A2, 3 October 1996. [Google Scholar]
- Westcott, N.D.; Hall, T.W.E.; Muir, A.D. Evidence for the Occurrence of Ferulic Acid Derivatives in Flaxseed Meal. In Proceedings of the 58th Flax Institute of the United States, Fargo, ND, USA, 23–25 March 2000; Flax Institute of United States: Doublewood Inn, Fargo, ND, USA, 2000; pp. 49–52. [Google Scholar]
- Eliasson, C.; Kamal-Eldin, A.; Andersson, R.; Åman, P. High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. J. Chromatogr. A 2003, 1012, 151–159. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Teh, S.-S.; Bekhit, A.E.-D.; Birch, J. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents. Antioxidants 2014, 3, 67-80. https://doi.org/10.3390/antiox3010067
Teh S-S, Bekhit AE-D, Birch J. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents. Antioxidants. 2014; 3(1):67-80. https://doi.org/10.3390/antiox3010067
Chicago/Turabian StyleTeh, Sue-Siang, Alaa El-Din Bekhit, and John Birch. 2014. "Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents" Antioxidants 3, no. 1: 67-80. https://doi.org/10.3390/antiox3010067
APA StyleTeh, S.-S., Bekhit, A. E.-D., & Birch, J. (2014). Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents. Antioxidants, 3(1), 67-80. https://doi.org/10.3390/antiox3010067