Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = phytic acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 109
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 191
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 379
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

20 pages, 542 KiB  
Article
Elucidation of Nutritional Quality, Antinutrients, and Protein Digestibility of Dehulled and Malted Flours Produced from Three Varieties of Bambara Groundnut (Vigna subterranean)
by Mpho Edward Mashau, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Foods 2025, 14(14), 2450; https://doi.org/10.3390/foods14142450 - 12 Jul 2025
Viewed by 376
Abstract
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This [...] Read more.
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This study investigated the impact of dehulling and malting on the nutritional composition, antinutritional factors, and protein digestibility of flours obtained from three BGN varieties (red, cream, and brown). Dehulling and malting significantly enhanced the moisture and protein content of BGN flours (dry basis), with values varying from 6.01% (control brown variety) to 8.71% (malted cream and brown varieties), and from 18.63% (control red variety) to 21.87% (dehulled brown), respectively. Dehulling increased the fat content from 5.82% (control red variety) to 7.84% (dehulled cream), whereas malting decreased the fat content. Nevertheless, malting significantly increased (p < 0.05) the fiber content from 4.78% (control cream) to 8.28% (malted brown variety), while dehulling decreased the fiber content. Both processing methods decreased the ash and carbohydrate contents of the BGN flours. Dehulling and malting significantly enhanced the amino acids of BGN flours, except for tryptophan and asparagine. Dehulling and malting notably increased the phosphorus, magnesium, potassium, and sulfur contents of the BGN flours, while calcium and zinc were reduced. Malting significantly enhanced the iron content of BGN flour, whereas dehulling reduced it. Both processing methods significantly enhanced palmitic, arachidic, and y-Linolenic acids. Nonetheless, processing methods significantly reduced phytic acid and oxalate, and dehulling achieved the most significant reductions. Dehulling and malting significantly enhanced the protein digestibility of the BGN flours from 69.38 (control red variety) to 83.29 g/100 g (dehulled cream variety). Overall, dehulling and malting enhanced the nutritional quality and decreased the antinutritional factors of BGN flours. Full article
Show Figures

Figure 1

15 pages, 2628 KiB  
Article
High Anti-Swelling Zwitterion-Based Hydrogel with Merit Stretchability and Conductivity for Motion Detection and Information Transmission
by Qingyun Zheng, Jingyuan Liu, Rongrong Chen, Qi Liu, Jing Yu, Jiahui Zhu and Peili Liu
Nanomaterials 2025, 15(13), 1027; https://doi.org/10.3390/nano15131027 - 2 Jul 2025
Viewed by 415
Abstract
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor [...] Read more.
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor long-term stability, and signal interference. In this paper, a double-network structure was constructed by polyvinyl alcohol (PVA) and poly([2-(methacryloyloxy) ethyl]7 dimethyl-(3-sulfopropyl) ammonium hydroxide) (PSBMA). The resultant PVA/PSBMA-PA hydrogel demonstrated notable swelling resistance, a property attributable to the incorporation of non-covalent interactions (electrostatic interactions and hydrogen bonding) through the addition of phytic acid (PA). The hydrogel exhibited high stretchability (maximum tensile strength up to 304 kPa), high conductivity (5.8 mS/cm), and anti-swelling (only 1.8% swelling occurred after 14 days of immersion in artificial seawater). Assembled as a sensor, it exhibited high strain sensitivity (0.77), a low detection limit (1%), and stable electrical properties after multiple tensile cycles. The utilization of PVA/PSBMA-PA hydrogel as a wearable sensor shows promise for detecting human joint movements, including those of the fingers, wrists, elbows, and knees. Due to the excellent resistance to swelling, the PVA/PSBMA-PA-based sensors are also suitable for underwater applications, enabling the detection of underwater mannequin motion. This study proposes an uncomplicated and pragmatic methodology for producing hydrogel sensors suitable for use within subaquatic environments, thereby concomitantly broadening the scope of applications for wearable electronic devices. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

24 pages, 4564 KiB  
Article
Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses
by Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni and Shiv Kumar
Plants 2025, 14(13), 2019; https://doi.org/10.3390/plants14132019 - 1 Jul 2025
Viewed by 377
Abstract
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat [...] Read more.
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1372
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

25 pages, 2627 KiB  
Article
Development and Evaluation of Gluten-Free Rice Biscuits: Impact on Glycaemic Index and Bioactive Compounds
by Cristiana L. Pereira, Inês Sousa, Cristina Roseiro, Manuela Lageiro, Vanda M. Lourenço and Carla Brites
Foods 2025, 14(13), 2276; https://doi.org/10.3390/foods14132276 - 26 Jun 2025
Viewed by 387
Abstract
Biscuits are widely consumed snacks traditionally made from wheat flour, which poses challenges for individuals with gluten intolerance and/or diabetes due to their high glycaemic index (GI). This study explored the production of gluten-free biscuits using rice flour from two varieties, Type III [...] Read more.
Biscuits are widely consumed snacks traditionally made from wheat flour, which poses challenges for individuals with gluten intolerance and/or diabetes due to their high glycaemic index (GI). This study explored the production of gluten-free biscuits using rice flour from two varieties, Type III (Basmati) and Ariete (Long A), incorporating varying proportions of rice bran as a substitute for milled and brown rice flour. Results show that biscuits made with rice bran had lower starch digestibility and reduced GI (57.06–62.75) compared to control biscuits (66.23–66.95). Rice bran also increased bioactive compounds, such as phytic acid (0.16 to 1.96 g/100 g), γ-oryzanol (0.20 to 86.56 mg/100 g), and γ-aminobutyric acid (6.78 to 16.23 mg/100 g), known for their benefits to diabetes metabolism. Physicochemical analysis further revealed higher protein (6.49%) and lower starch content (30.07%) in rice bran biscuits than in control biscuits (4.20% and 47.38%, respectively). The control biscuits exhibited the highest spread ratio (5.90 and 6.35) and the Ariete variety produced less brittle biscuits (168.30 N), although the addition of bran increased brittleness under cutting force (54.55 N). Sensory evaluation of four rice biscuit formulations showed no significant differences in consumer preferences, regardless of flour type, bran proportion, or rice variety. Among the formulations, the Type III biscuits with an equal blend of milled flour and rice bran stood out, offering improved nutritional quality and a promising option for gluten-free, low-GI diets for consumers seeking healthier alternatives. This formulation also proved a strong balance across key nutritional and bioactive parameters, when compared to a commercial wellness biscuit. Full article
Show Figures

Figure 1

32 pages, 952 KiB  
Review
Dietary Zn—Recent Advances in Studies on Its Bioaccessibility and Bioavailability
by Joanna Tokarczyk and Wojciech Koch
Molecules 2025, 30(13), 2742; https://doi.org/10.3390/molecules30132742 - 25 Jun 2025
Viewed by 1344
Abstract
Zn is a trace element necessary for the functioning of about 300 enzymes. It plays a biochemical, structural, and regulatory role. It participates in the immune response, proper functioning of the endocrine system, and regulation of gene expression. Its deficiencies are most often [...] Read more.
Zn is a trace element necessary for the functioning of about 300 enzymes. It plays a biochemical, structural, and regulatory role. It participates in the immune response, proper functioning of the endocrine system, and regulation of gene expression. Its deficiencies are most often caused by the mismatch between dietary intake and the body’s needs. Bioavailability of zinc depends on interactions with other food components. Phytates negatively affect this element’s absorption, whereas proteins, peptides, and amino acids increase its bioavailability. It has been proven that organic forms of zinc are better absorbed than inorganic compounds, like zinc oxide and sulfate. Amino acid combinations with zinc can use amino acid transporters in the absorption process. Estimation of Zn bioavailability and bioaccessibility are based on in vivo and in vitro studies, each having their advantages and disadvantages. The current review aims to gather and summarize recent research on the dietary role of Zn, especially data on bioavailability from food substances promoting/inhibiting absorption, and the latest methods for determining the level of bioavailability of this nutrient. Full article
Show Figures

Figure 1

13 pages, 855 KiB  
Article
Putative Second-Site Mutations in the Barley Low Phytic Acid 1-1 (lpa 1-1) Genetic Background Further Reduce Seed Total Phosphorus
by Beverly L. Agesa, Victor Raboy, Paul J. A. Withers and Katherine A. Steele
Agronomy 2025, 15(7), 1550; https://doi.org/10.3390/agronomy15071550 - 25 Jun 2025
Viewed by 306
Abstract
Inefficient crop phosphorus (P) use impacts global food security and P fertilizer use can be environmentally harmful. Lines homozygous for barley (Hordeum vulgare L.) low phytic acid 1-1 (lpa 1-1) have yields equivalent to the wild type but ~15% less [...] Read more.
Inefficient crop phosphorus (P) use impacts global food security and P fertilizer use can be environmentally harmful. Lines homozygous for barley (Hordeum vulgare L.) low phytic acid 1-1 (lpa 1-1) have yields equivalent to the wild type but ~15% less seed Total P (TP). The objective here was to identify second-site mutations in the lpa1-1 background that condition a further reduction in seed TP, again with little impact on yield. A chemically mutagenized population was derived from lpa 1-1 and screened to identify lines with seed TP reductions greater than 15% (as compared with wild-type) but with seed weights per plant within 80% of wild-type. Three M4 lines were selected and evaluated in a greenhouse pot experiment. Plants were grown to maturity either on a soil with low soil P fertility (16 to 25 mg Olsen P L−1; Soil P Index 1) or with that soil supplemented (36 kg P ha−1) to provide optimal available soil P. Mean seed P reduction across the three lines and two soil P levels was 28%, a near doubling of the lpa1-1 seed Total P reduction. When grown with optimal soil available P, no impact of these putative mutations on grain yield was observed. These findings suggest that the three lpa 1-1-derived mutant lines carry second-site mutations conferring substantially (~17%) greater decreases in seed TP than that conferred by lpa 1-1. If the putative mutations are confirmed to be heritable and to have negligible impact on yield, they could be used in breeding P-efficient barley cultivars as a step towards reducing regional and global P demand. Full article
Show Figures

Figure 1

43 pages, 2332 KiB  
Review
Application of Microorganisms for the Valorization of Side-Products of Rapeseed De-Oiling
by Michal Jacek Binczarski, Justyna Zuberek, Justyna Fraczyk, Beata Kolesinska, Milivoj Radojčin, Ivan Pavkov, Ewa Wiktorowska-Sowa, Jan Piotrowski, Zbigniew Jerzy Kaminski and Izabela Alina Witonska
Biomolecules 2025, 15(7), 917; https://doi.org/10.3390/biom15070917 - 22 Jun 2025
Viewed by 673
Abstract
The increasing demand for sustainable agriculture and environmental protection has prompted the exploration of innovative methods to valorize byproducts from rapeseed oil production. This review focuses on the application of microorganisms as a promising approach to transforming rapeseed de-oiling residues, such as cake [...] Read more.
The increasing demand for sustainable agriculture and environmental protection has prompted the exploration of innovative methods to valorize byproducts from rapeseed oil production. This review focuses on the application of microorganisms as a promising approach to transforming rapeseed de-oiling residues, such as cake and meal, into valuable products. This review discusses traditional and modern methods of rapeseed oil extraction, the composition and challenges posed by rapeseed byproducts, and the presence of antinutritional components such as glucosinolates, erucic acid, and phytic acid. Microbial applications, including the production of industrial enzymes, enhanced digestibility, and the neutralization of antinutritional factors, are examined as key solutions for waste valorization. Additionally, the role of microbial consortia and genetic modification in optimizing transformation processes is discussed. This review underscores the potential of microorganisms in creating eco-friendly, scalable technologies that contribute to resource efficiency and environmental sustainability in the agricultural and biotechnology sectors. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

19 pages, 312 KiB  
Article
The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products
by Khaoula Ben Said, Amel Hedhili, Sihem Bellagha, Hela Gliguem and Marie Dufrechou
Foods 2025, 14(13), 2167; https://doi.org/10.3390/foods14132167 - 21 Jun 2025
Viewed by 477
Abstract
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather [...] Read more.
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather than exploited and valued in human nutrition. In this study, the nutritional properties, anti-nutritional factors, and in vitro protein digestibility of pea pod flour and raw and thermally treated (80, 120, 150, and 180 °C during 30 min) faba bean flours were investigated. For pea pod flours, the results showed a very interesting protein content (12.13%) and insoluble fibers (37.45%), as well as appreciable amounts of minerals, mainly calcium, potassium, magnesium, manganese, and iron. For faba bean flours, thermal treatment did not significantly affect the crude protein, ash, starch, and fat contents of the processed beans. Meanwhile, compared with raw faba bean flours, thermal treatment significantly decreased insoluble dietary fibers, anti-nutritional factors such as phytic acid, tannins, trypsin inhibitors, and alpha-galactosides and progressively improved the in vitro protein digestibility by 7,7%. In conclusion, faba bean and pea pod flours show significant potential as novel ingredients in the food industry. Their combination will enable the development of protein, fiber, and mineral-rich food products. Full article
15 pages, 421 KiB  
Article
Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds
by Havva Polat Kaya, Burcu Kaya, Necati Barış Tuncel, Gulay Ozkan, Esra Capanoglu, Seedhabadee Ganeshan and Mehmet Caglar Tulbek
Microorganisms 2025, 13(6), 1421; https://doi.org/10.3390/microorganisms13061421 - 18 Jun 2025
Viewed by 384
Abstract
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic [...] Read more.
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic compounds, antioxidant potential, and anti-nutrient compounds after gastrointestinal digestion. Four treatment groups were designed: a non-fermented control group, and flour samples fermented with S. boulardii CNCM I-745 for 24, 48, and 72 h. All fermentations were carried out at 30 °C. The effects of fermentation and the analysis results were statistically evaluated at the significance level of p < 0.05, and significant differences were detected. Fermentation significantly increased soluble dietary fiber (from 3.32% to 4.43%) and reduced anti-nutritional factors, including phytates (by 18%), tannin (by 19%), and trypsin inhibitor activity (TIA) (by 79%). However, saponin content increased by 21% after 72 h of fermentation. Tannin levels of non-fermented and fermented sainfoin flour decreased dramatically after in vitro digestion. Moreover, it was concluded that the bioaccessibility of phytic acid significantly increased through fermentation, while that of tannins declined. Antimicrobial activity against Escherichia coli ATCC 25922 improved after fermentation, while the antioxidant capacity was enhanced post-digestion. In addition, the highest phenolic content (612 mg GAE/100 g) and antioxidant capacity (1745 mg TE/100 g by CUPRAC assay and 1127 mg TE/100 g by DPPH assay) were determined in fermented sainfoin seed flour at 72 h after gastrointestinal digestion. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 1372 KiB  
Article
Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients
by Chiara Suanno, Lorenzo Marincich, Simona Corneti, Iris Aloisi, Luca Pincigher, Elisa Papi, Luigi Parrotta, Fabiana Antognoni and Stefano Del Duca
Int. J. Mol. Sci. 2025, 26(12), 5830; https://doi.org/10.3390/ijms26125830 - 18 Jun 2025
Viewed by 320
Abstract
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study [...] Read more.
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study aimed to analyze the macronutrient and bioactive compound profiles of these four by-products across five cultivars and two wheat mixtures. Dietary fibers, free and bound phenolics, phytic acid, fatty acids, and aleurone layer markers were examined in all samples. The results indicate that insoluble fibers, phenolic compounds, and phytic acid decreased from CB to LGF, whereas soluble fiber content exhibited a greater variability among fractions. In all samples, coarse bran was the richest fraction in the protein 7S globulin. The same fraction from the two commercial mixtures and Manitoba cultivar exhibited significantly higher levels of bound ferulic acid compared to the other cultivars (+34%). Manitoba CB also had the highest oleic acid content (18.04% of total lipid content) among all samples, followed by the Rumeno cultivar (17.75%), which also had the highest linolenic acid content (6.35%). Given their health-promoting and technological potential, these by-products could be selectively used to enrich food products and dietary supplements with functional nutrients. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 1513 KiB  
Article
Impact of Traditional Food Processing Techniques on Mineral Bioaccessibility in Ghanaian Fermented Millet-Based Koko and Zoomkoom
by Alhassan Wuni, Francis Alemawor, Felix Charles Mills-Robertson, Evans Frimpong Boateng and James Owusu-Kwarteng
Foods 2025, 14(12), 2126; https://doi.org/10.3390/foods14122126 - 18 Jun 2025
Viewed by 462
Abstract
In this study, the impacts of traditional processing on phytates contents, phytate: mineral molar ratios, and the bioaccessibility of calcium, iron, and zinc in three traditional koko production units (KP1, KP2, and KP3) and two zoomkoom production units (ZP1 and ZP2) products were [...] Read more.
In this study, the impacts of traditional processing on phytates contents, phytate: mineral molar ratios, and the bioaccessibility of calcium, iron, and zinc in three traditional koko production units (KP1, KP2, and KP3) and two zoomkoom production units (ZP1 and ZP2) products were assessed based on the variations in their traditional processing techniques. The total calcium content of ZP1 was ranked the highest (58.02 mg/100 g, p < 0.05) compared to other processed samples. A high total value of iron (17.76 mg/100 g, p < 0.05) was revealed among koko compared to zoomkoom. Whereas KP3 and ZP2 showed the highest (p < 0.05) amount of zinc (3.34 mg/100 g). ZP1 showed a calcium bioaccessibility of 6.3% (p < 0.05). The iron bioaccessibility was within the average range of 5–30%, with KP1 ranking the highest (21.8%), while ZP1 showed the highest value (42.2%) (p < 0.05) in bioaccessibility of zinc among the zoomkoom products. The processing techniques adopted caused up to a 56.7% to 76.76% reduction (p < 0.05) of phytic acid in the pearl millet, leading to a decrease in the molar ratios of [Ca]:[Phy], [Fe]:[Phy], and [Phy]:[Zn]. However, the phytic acid content varied among the koko and zoomkoom, corresponding with the varied inhibitory mechanism indices reported. In brief, a positive correlation was shown between the traditional processing techniques, phytate, and in vitro bioaccessibility of minerals, indicating the consumption of koko and zoomkoom as a good source of functional minerals. Full article
Show Figures

Graphical abstract

Back to TopTop