Antioxidant Effect of Lippia alba (Miller) N. E. Brown
Abstract
:1. Introduction
2. Experimental Section
2.1. Plant Material
City | State | Country | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
Barra do Quaraí | RS | Brazil | 30°23′14.3″ | 56°27′20″ | 35 |
Caxias do Sul | RS | Brazil | 29°09′78″ | 51°08′65.9″ | 760 |
Harmonia | RS | Brazil | 31°19′19.01″ | 52º17′17.02″ | 126 |
Pelotas | RS | Brazil | 31°44′29.23″ | 52°20′43.76″ | 13.24 |
Pinheira | SC | Brazil | 27°53′3.96″ | 48°35′4.15″ | 3 |
Porto Alegre | RS | Brazil | 30°4′10.58″ | 51°8′27.83″ | 47 |
Santa Vitória do Palmar | RS | Brazil | 33°31′4.36″ | 53°22′9.55″ | 24 |
2.2. Preparation of Lippia alba Extracts
2.3. Determination of Total Phenolic Content
2.4. Quantification of the Main Flavonoids of Lippia alba
2.5. Antioxidant Activity of the Different Accessions of Lippia alba
2.6. Effects of Lippia alba Extract in Brain and Liver Tissues of Wistar Rats
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Content in the Extracts
Accessions of
Lippia alba | Apigenin | Luteolin | Naringin | Rutin | Total phenolic
content |
---|---|---|---|---|---|
Barra do Quaraí | 67.08 ± 0.82 b | 13.08 ± 0.99 f | 133.92± 1.06 d,e | 22.82 ± 0.37 b | 338.39 ± 4.00 c |
Caxias do Sul | 73.36 ± 3.30 a | 24.81 ± 0.84 c,d | 116.56 ± 4.09 e | 21.93 ± 0.55 b | 289.73 ± 2.78 e |
Harmonia | 58.58 ± 2.90 c | 67.82 ± 3.53 a | 436.65 ± 5.78 b | 34.53 ± 2.13 a | 226.15 ± 4.63 f |
Pelotas | 39.30 ± 0.95 d | 20.75 ± 1.15 d,e | 155.19 ± 6.44 c | 22.59 ± 0.19 b | 364.01 ± 1.85 b |
Pinheira | 28.71 ± 1.61 e | 27.03 ± 0.79 c | 144.42 ± 4.35 c,d | 24.40 ± 1.40 b | 320.80 ± 4.45 d |
Porto Alegre | 15.57 ± 0.94 f | 16.95 ± 0.49 e,f | 136.12 ± 0.95 c,d | 24.14 ± 0.22 b | 368.95 ± 4.32 b |
Santa Vitória do Palmar | 38.19 ± 0.62 d | 35.72 ± 0.66 b | 707.04 ± 7.67 a | 24.74 ± 0.12 b | 403.51 ± 4.32 a |
3.2. Antioxidant Activity of the Different Accessions of Lippia alba
Accessions of
Lippia alba | DPPH• radical scavenging (IC50) # | Superoxide dismutase-like activity (IC50) § | Catalase-like activity (mmol of H2O2 decomposed/min) |
---|---|---|---|
Barra do Quaraí | 0.20 ± 0.01 c | 20.05 ± 0.42 b | 23.75 × 102 ± 193.65 ª |
Caxias do Sul | 0.23 ± 0.01 a,b | 26.71 ± 0.06 a | 19.37 × 102 ± 153.09 e |
Harmonia | 0.09 ± 0.01 f | 10.43 ± 0.50 d | 21.87 × 102 ± 153.09 b |
Pelotas | 0.23 ± 0.01 a,b | 13.41 ± 0.30 c | 15.53 × 102 ± 141.74 g |
Pinheira | 0.24 ± 0.01 a | 5.80 ± 0.12 e | 17.81 × 102 ± 173.59 f |
Porto Alegre | 0.14 ± 0.01 d | 13.89 ± 0.26 c | 19.68 × 102 ± 187.50 d |
Santa Vitória do Palmar | 0.12 ± 0.01 e | 14.27 ± 0.46 c | 21.75 × 102 ± 167.71 c |
Total phenolic content | Apigenin | Luteolin | Naringin | Rutin | |
---|---|---|---|---|---|
DPPH• | 0.846 * | 0.662 * | 0.718 * | 0.646 * | 0.893 * |
SOD-like | 0.771 * | 0.884 * | 0.409 * | 0.353 ** | 0.700 * |
CAT-like | 0.927 * | 0.835 * | 0.719 * | 0.634 ** | 0.958 * |
3.3. Effects of Lippia alba Extract in Brain and Liver Tissue Homogenates
Treatments | Lipid damage (nmol of TBARS/mg of protein) | Protein damage (nmol of DNPH/mg of protein) | ||||||
---|---|---|---|---|---|---|---|---|
Cerebellum | Cerebral Cortex | Hippocampus | Liver | Cerebellum | Cerebral Cortex | Hippocampus | Liver | |
Control | 12.85 ± 0.90 b | 7.17 ± 0.41 c | 26.80 ± 1.67 c | 14.14 ± 1.26 c | 0.76 ± 0.01 c | 0.58 ± 0.01 c | 0.11 ± 0.01 b | 0.26 ± 0.02 b |
H2O2 | 24.05 ± 1.46 a | 43.73 ± 3.75 a | 76.32 ± 5.36 a | 36.75 ± 0.89 a | 2.06 ± 0.03 a | 1.63 ± 0.03 a | 0.18 ± 0.01 a | 0.64 ± 0.02 a |
L. alba | 11.46 ± 0.99 b,c | 8.12 ± 0.57 b,c | 25.48 ± 1.92 c | 13.67 ± 0.73 c | 0.21 ± 0.02 d | 0.50 ± 0.03 d | 0.08 ± 0.01 c | 0.24 ± 0.01 b |
L. alba + H2O2 | 9.90 ± 0.89 c | 10.73 ± 0.27 b | 38.87 ± 0.98 b | 27.57 ± 1.18 b | 0.92 ± 0.03 b | 1.36 ± 0.01 b | 0.10 ± 0.01 b,c | 0.29 ± 0.01 b |
Treatments | SOD activity (U/mg of protein) | CAT activity (U/mg of protein) | ||||||
---|---|---|---|---|---|---|---|---|
Cerebellum | Cerebral Cortex | Hippocampus | Liver | Cerebellum | Cerebral Cortex | Hippocampus | Liver | |
Control | 93.08 ± 1.75 b | 12.53 ± 0.24 b | 77.70 ± 1.26 b | 18.91 ± 0,93 b | 41.79 ± 2.40 b | 5.72 ± 0.54 b | 24.04 ± 2.17 b | 101.79 ± 7.58 b |
H2O2 | 105.37 ± 1.72 a | 64.30 ± 0.70 a | 122.33 ± 0.71 a | 53.01 ± 3.08 a | 60.37 ± 3.08 a | 26.74 ± 2.06 a | 58.33 ± 3.61 a | 144.64 ± 7.58 a |
L. alba | 91.93 ± 2.42 b | 13.20 ± 0.20 b | 76.91 ± 1.33 b | 19.25 ± 1.41 b | 40.84 ± 3.08 b | 4.87 ± 0.46 b | 21.92 ± 2.08 b | 92.86 ± 6.19 b |
L. alba + H2O2 | 84.60 ± 3.75 b | 13.67 ± 0.18 b | 81.51 ± 6.25 b | 21.54 ± 0.33 b | 38.18 ± 2.17 b | 7.63 ± 0.69 b | 23.83 ± 2.26 b | 52.23 ± 3.79 c |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Corrêa, C.B.V. Anatomical and histochemical study of Lippia alba (Mill.) N. E. Br. Ex Britt. and Wilson-known as erva-cidreira. Revista Bras. Farm. 1992, 73, 57–64. [Google Scholar]
- Albuquerque, U.P.; de Medeiros, P.M.; de Almeida, A.L.S.; Monteiro, J.M.; Neto, E.M.F.L.; de Melo, J.G.; Dos Santos, J.P. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2007, 114, 325–354. [Google Scholar] [CrossRef]
- Di Stasi, L.C.; Hiruma-Lima, C.A.; Guimarães, E.M.; Santos, C.M. Medicinal plants popularly used in Brazilian Amazon. Fitoterapia 1994, 65, 529–540. [Google Scholar]
- Di Stasi, L.C.; Oliveira, G.P.; Carvalhaes, M.A.; Queiroz-Júnior, M.; Tien, O.S.; Kakinami, S.H.; Reis, M.S. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia 2002, 73, 69–91. [Google Scholar] [CrossRef]
- Duarte, M.C.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef]
- Manica-Cattani, M.F.; Zacaria, J.; Pauletti, G.; Atti-Serafini, L.; Echeverrigaray, S. Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Braz. J. Biol. 2009, 69, 375–380. [Google Scholar] [CrossRef]
- Oliveira, D.R.; Leitão, G.G.; Santos, S.S.; Bizzo, H.R.; Lopes, D.; Alviano, C.S.; Alviano, D.S.; Leitão, S.G. Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. J. Ethnofarmacol. 2006, 108, 103–108. [Google Scholar] [CrossRef]
- Ricciardi, G.; Cicció, J.F.; Ocampo, R.; Lorenzo, D.; Ricciardi, A.; Bandoni, A.; Dellacassa, E. Chemical variability of essential oils of Lippia alba (Miller) N. E. Brown growing in Costa Rica and Argentina. Nat. Prod. Commun. 2009, 4, 853–858. [Google Scholar] [PubMed]
- Hennebelle, T.; Sahpaz, S.; Joseph, H.; Bailleul, F. Ethnopharmacology of Lippia alba. J. Ethnopharmacol. 2008, 116, 211–222. [Google Scholar] [CrossRef]
- Pawlak, W.; Kedziora, J.; Zolynski, K.; Kedziora-Komatowska, K.; Blaszazyk, J.; Witknowski, P.; Zicleniewski, J. Effect of long term bed rest in man on enzymatic antioxidative defence and lipid peroxidation in eritrocytes. J. Gravit. Physiol. 1998, 1, 163–164. [Google Scholar]
- Yamaguchi, T.; Takamura, H.; Matoba, T.; Terao, J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 1998, 62, 1201–1204. [Google Scholar] [CrossRef]
- Michelon, F.; Branco, C.S.; Calloni, C.; Giazzon, I.; Agostini, F.; Spada, P.K.W.; Salvador, M. Araucaria angustifolia: A potential nutraceutical with antioxidant and antimutagenic activities. Curr. Nutr. Food Sci. 2012, 8, 155–159. [Google Scholar] [CrossRef]
- Spada, P.D.S.; Souza, G.G.N.; Bortolini, G.V.; Henriques, J.A.P.; Salvador, M. Antioxidant, mutagenic and antimutagenic activity of frozen fruits. J. Med. Food 2008, 11, 144–151. [Google Scholar] [CrossRef]
- Branco Cdos, S.; Scola, G.; Rodrigues, A.D.; Cesio, V.; Laprovitera, M.; Heinzen, H.; Santos, M.T.; Fank, B.; Freitas, S.C.V.; Coitinho, A.S.; et al. Anticonvulsant, neuroprotective and behavioral effects of organic and conventional yerba mate (Ilex paraguariensis St. Hil.) on pentylenetetrazol-induced seizures in Wistar rats. Brain Res. Bull. 2013, 92, 60–68. [Google Scholar] [CrossRef]
- Dani, C.; Oliboni, L.S.; Agostini, F.; Funchal, C.; Serafini, L.; Henriques, J.A.P.; Salvador, M. Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol. In Vitro 2010, 24, 148–153. [Google Scholar] [CrossRef]
- Scola, G.; Scheffel, T.; Gambato, G.; Freitas, S.; Dani, C.; Funchal, C.; Gomez, R.; Coitinho, A.; Salvador, M. Flavan-3-ol compounds prevent pentylenetetrazol-induced oxidative damage in rats without producing mutations and genotoxicity. Neurosci. Lett. 2013, 534, 145–149. [Google Scholar] [CrossRef]
- Balu, M.; Sangeetha, P.; Haripriya, D.; Panneerselvam, C. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract. Neurosci. Lett. 2005, 383, 295–300. [Google Scholar] [CrossRef]
- Whaley-Connell, A.; Mccullough, P.A.; Sowers, J.R. The role of oxidative stress in the metabolic syndrome. Rev. Cardiovasc. Med. 2011, 12, 21–29. [Google Scholar] [PubMed]
- Ara, N.; Nur, H. In vitro antioxidant activity of methanolic leaves and flowers extracts of Lippia alba. Res. J. Med. Med. Sci. 2009, 1, 107–110. [Google Scholar]
- Ramos, A.; Visozo, A.; Piloto, J.; García, A.; Rodríguez, C.A.; Rivero, R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) N. E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. J. Chromatogr. A 2004, 1025, 93–103. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteau Reagent. In Methods in Enzymology, Oxidant and Antioxidant (Part A); Packer, L., Ed.; Academic Press: San Diego, CA, USA, 1999; pp. 159–178. [Google Scholar]
- Cristea, D.; Bareau, I.; Vilarem, G. Identification and quantitative HPLC analysis of the main flavonoids present in weld (Reseda luteola L.). Dyes Pigments 2003, 57, 267–272. [Google Scholar] [CrossRef]
- Bannister, J.V.; Calabrese, L. Assays for Sod. Methods Anal. Biochem. 1987, 32, 279–312. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Wills, E.D. Mechanism of lipid peroxide formation in animal tissues. Biochem. J. 1966, 99, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 7, 248–254. [Google Scholar] [CrossRef]
- Barbosa, F.G.; Lima, M.A.S.; Silveira, E.R. Total NMR assignments of new [C7-O-C7″]-biflavones from leaves of the limonene-carvone chemotype of Lippia alba (Mill) N. E. Brown. E. Brown. Magn. Ressonance Chem. 2005, 43, 334–338. [Google Scholar] [CrossRef]
- Shui, G.; Leong, L.P. Screening and identification of antioxidants in biological samples using high-performance liquid chromatography-mass spectrometry and its application on Salacca edulis Reinw. J. Agric. Food Chem. 2005, 53, 880–886. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press Inc.: New York, NY, USA, 2007; p. 851. [Google Scholar]
- Simonian, N.A.; Coyle, J.T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 83–106. [Google Scholar] [CrossRef]
- Cui, K.; Luo, X.; Xu, K.; Vem Murthy, M.R. Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 771–799. [Google Scholar] [CrossRef]
- Merrill, D.A.; Chiba, A.A.; Tuszynski, M.H. Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. J. Comp. Neurol. 2001, 438, 445–456. [Google Scholar] [CrossRef]
- Oboh, G.; Henle, T. Antioxidant and inhibitory effects of aqueous extracts of Salvia officinalis leaves on pro-oxidant-induced lipid peroxidation in brain and liver in vitro. J. Med. Food 2009, 12, 77–84. [Google Scholar] [CrossRef]
- Yan, L.J. Analysis of oxidative modification of proteins. Curr. Protoc. Protein Sci. 2009. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef]
- Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol. 2012, 50, 2155–2170. [Google Scholar] [CrossRef]
- Vauzour, D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative Med. Cell. Longev. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chies, C.E.; Branco, C.S.; Scola, G.; Agostini, F.; Gower, A.E.; Salvador, M. Antioxidant Effect of Lippia alba (Miller) N. E. Brown. Antioxidants 2013, 2, 194-205. https://doi.org/10.3390/antiox2040194
Chies CE, Branco CS, Scola G, Agostini F, Gower AE, Salvador M. Antioxidant Effect of Lippia alba (Miller) N. E. Brown. Antioxidants. 2013; 2(4):194-205. https://doi.org/10.3390/antiox2040194
Chicago/Turabian StyleChies, Claire E., Cátia S. Branco, Gustavo Scola, Fabiana Agostini, Adriana E. Gower, and Mirian Salvador. 2013. "Antioxidant Effect of Lippia alba (Miller) N. E. Brown" Antioxidants 2, no. 4: 194-205. https://doi.org/10.3390/antiox2040194
APA StyleChies, C. E., Branco, C. S., Scola, G., Agostini, F., Gower, A. E., & Salvador, M. (2013). Antioxidant Effect of Lippia alba (Miller) N. E. Brown. Antioxidants, 2(4), 194-205. https://doi.org/10.3390/antiox2040194