Rosiglitazone Ameliorates Adverse Effects of High-Fat Diet in Largemouth Bass (Micropterus salmoides): Modulation of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response, and Gut Microbiota
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets and Feeding Management
2.2. Sample Collection
2.3. Ammonia Challenge Test
2.4. Analytical Procedures
2.5. Hepatic Gene Expression Profiles
2.6. Tissue Sectioning
2.7. 16S rRNA Sequencing and Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Body Indexes
3.2. Whole-Body Composition
3.3. Plasma Lipid Profiles
3.4. Lipid Metabolism-Related Genes
3.5. Liver Histology and Plasma Aminotransferase Levels
3.6. Hepatic Antioxidant Parameters
3.7. Inflammation-Related mRNA Expression
3.8. ER Stress-Related mRNA Expression
3.9. Gut Microbiota
3.10. Ammonia Stress
4. Discussion
4.1. Growth and Lipid Metabolism
4.2. Hepatic Health and Oxidative Stress
4.3. ER Stress and Inflammation
4.4. Intestinal Microbial Community
4.5. Ammonia Stress Tolerance
4.6. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiser, F.; Harbach, H.; Schulz, C. Rapeseed proteins as fishmeal alternatives: A review. Rev. Aquac. 2022, 14, 1887–1911. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Y.; Shi, H.; Miao, L.; Liu, B.; Ge, X. Dietary ferulic acid supplementation improved cottonseed meal-based diet utilization by enhancing intestinal physical barrier function and liver antioxidant capacity in grass carp (Ctenopharyngodon Idellus). Front. Physiol. 2022, 13, 922037. [Google Scholar] [CrossRef]
- Xia, T.; Mao, X.-J.; Zhang, J.; Rahimnejad, S.; Lu, K.-L. Effects of quercetin and hydroxytyrosol supplementation in a high-fat diet on growth, lipid metabolism, and mitochondrial function in spotted seabass (Lateolabrax maculatus). Aquaculture 2024, 582, 740538. [Google Scholar] [CrossRef]
- Weil, C.; Lefèvre, F.; Bugeon, J. Characteristics and metabolism of different adipose tissues in fish. Rev. Fish Biol. Fish. 2013, 23, 157–173. [Google Scholar] [CrossRef]
- Lu, K.-L.; Cai, L.-S.; Wang, L.; Song, K.; Zhang, C.-X.; Rahimnejad, S. Effects of dietary protein/energy ratio and water temperature on growth performance, digestive enzymes activity and non-specific immune response of spotted seabass (Lateolabrax maculatus). Aquac. Nutr. 2020, 26, 2023–2031. [Google Scholar] [CrossRef]
- Dai, Y.J.; Jiang, G.Z.; Yuan, X.Y.; Liu, W.B. High-fat-diet-induced inflammation depresses the appetite of blunt snout bream (Megalobrama amblycephala) through the transcriptional regulation of leptin/mammalian target of rapamycin. Br. J. Nutr. 2018, 120, 1422–1431. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Xie, S.; Zhuang, Z.; He, X.; Tang, X.; Tian, L.; Liu, Y.; Niu, J. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Guo, J.-L.; Tang, R.-J.; Ma, H.-J.; Chen, Y.-J.; Lin, S.-M. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol. Biochem. 2020, 46, 125–134. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, K.; Shi, P.; Xie, F.; Xu, J. Dietary microalgal mixture improve survival, growth performance, lipid metabolism, and inflammation in black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture 2025, 607, 742647. [Google Scholar] [CrossRef]
- Li, H.; Ji, S.; Song, L.; Wei, M.; Tian, Z.; Ji, H.; Sun, J. Caffeic acid phenethyl ester promotes adipocyte hyperplasia and improves the growth performance, lipid metabolism, and inflammation in grass carp, Ctenopharyngodon idellus fed with high-fat diet. Aquaculture 2025, 599, 742201. [Google Scholar] [CrossRef]
- Quan, F.; Wang, X.; Huang, Z.; Kong, L.; Lin, Y.; Lin, H.; Zhou, S.; Ma, J.; Zhao, Y.; Zhao, Y.; et al. The potential effects of inulin on lipid metabolism disorders in spotted sea bass (Lateolabrax maculatus) induced by a high-fat diet. Aquaculture 2025, 605, 742510. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, Y.; Yan, Y.; Deng, H.; Wang, S.; He, Y.; Tian, Y.; Zhang, W.; Teng, H. Polysaccharide-rich extract of Potentilla anserina ameliorates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/sugar diet-fed mice. Food Sci. Hum. Wellness 2024, 13, 3351–3360. [Google Scholar] [CrossRef]
- Sun, C.; Shan, F.; Liu, M.; Liu, B.; Zhou, Q.; Zheng, X.; Xu, X. High-fat-diet-induced oxidative stress in giant freshwater prawn (Macrobrachium rosenbergii) via NF-κB/NO signal pathway and the amelioration of vitamin E. Antioxidants 2022, 11, 228. [Google Scholar] [CrossRef]
- Guo, J.-L.; Zhou, Y.-L.; Zhao, H.; Chen, W.-Y.; Chen, Y.-J.; Lin, S.-M. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 2019, 506, 394–400. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, M.; Li, M. Administration of Cetobacterium somerae ceto isolated from the intestine of yellow catfish (Pelteobagrus fulvidraco) as potential probiotics against chronic ammonia stress. Aquaculture 2025, 602, 742352. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, M.; Li, M. Effects of dietary sodium acetate on growth, intestinal microbiota composition, and ammonia tolerance of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture 2024, 581, 740480. [Google Scholar] [CrossRef]
- Li, M.; Liang, H.; Yang, H.; Ding, Q.; Xia, R.; Chen, J.; Zhou, W.; Yang, Y.; Zhang, Z.; Yao, Y.; et al. Deciphering the gut microbiome of grass carp through multi-omics approach. Microbiome 2024, 12, 2. [Google Scholar] [CrossRef]
- Meng, D.; Hao, Q.; Zhang, Q.; Yu, Z.; Liu, S.; Yang, Y.; Ran, C.; Zhang, Z.; Zhou, Z. A compound of paraprobiotic and postbiotic derived from autochthonous microorganisms improved growth performance, epidermal mucus, liver and gut health and gut microbiota of common carp (Cyprinus carpio). Aquaculture 2023, 570, 739378. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Z.; Teame, T.; Guan, L.; Wang, R.; Zhu, R.; Zhang, Q.; Yang, H.; Cui, N.; Huang, Y.; et al. Yeast cell wall extract as a strategy to mitigate the effects of aflatoxin B1 and deoxynivalenol on liver and intestinal health, and gut microbiota of largemouth bass (Micropterus salmoides). Aquaculture 2025, 597, 741917. [Google Scholar] [CrossRef]
- Ramos, M.A.; Weber, B.; Gonçalves, J.F.; Santos, G.A.; Rema, P.; Ozório, R.O. Dietary probiotic supplementation modulated gut microbiota and improved growth of juvenile rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 166, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Belvisi, M.G.; Mitchell, J.A. Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. Br. J. Pharmacol. 2009, 158, 994–1003. [Google Scholar] [CrossRef]
- Ryu, S.L.; Shim, J.W.; Kim, D.S.; Jung, H.L.; Park, M.S.; Park, S.-H.; Lee, J.; Lee, W.-Y.; Shim, J.Y. Expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ in the lung tissue of obese mice and the effect of rosiglitazone on proinflammatory cytokine expressions in the lung tissue. Korean J. Pediatr. 2013, 56, 151–158. [Google Scholar]
- Bajaj, M.; Suraamornkul, S.; Hardies, L.J.; Glass, L.; Musi, N.; DeFronzo, R.A. Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007, 50, 1723–1731. [Google Scholar]
- Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, A.J.; Goa, K.L. Rosiglitazone. Drugs 2002, 62, 1805–1837. [Google Scholar] [CrossRef] [PubMed]
- Pistrosch, F.; Passauer, J.; Fischer, S.; Fuecker, K.; Hanefeld, M.; Gross, P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care 2004, 27, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhou, W.; Ren, Y.; Lu, J.; Chen, A.; Jin, R.; Xuan, F. The ameliorating effects of Guizhi Fuling Wan combined with rosiglitazone in a rat ovarian model of polycystic ovary syndrome by the PI3K/AKT/NF-κB and Nrf2/HO-1 pathways. Gynecol. Endocrinol. 2023, 39, 2254848. [Google Scholar] [PubMed]
- Lu, H.; Sun, X.; Jia, M.; Sun, F.; Zhu, J.; Chen, X.; Chen, K.; Jiang, K. Rosiglitazone suppresses renal crystal deposition by ameliorating tubular injury resulted from oxidative stress and inflammatory response via promoting the Nrf2/HO-1 pathway and shifting macrophage polarization. Oxidative Med. Cell. Longev. 2021, 2021, 5527137. [Google Scholar] [CrossRef]
- Cho, R.L.; Yang, C.C.; Tseng, H.C.; Hsiao, L.D.; Lin, C.C.; Yang, C.M. Haem oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br. J. Pharmacol. 2018, 175, 3928–3946. [Google Scholar]
- Bao, H.; Cong, J.; Qu, Q.; He, S.; Zhao, D.; Zhao, H.; Yin, S.; Ma, D. Rosiglitazone alleviates LPS-induced endometritis via suppression of TLR4-mediated NF-κB activation. PLoS ONE 2024, 19, e0280372. [Google Scholar]
- Ma, L.; Ma, Y.; Ma, B.X.; Ma, M. Rosiglitazone ameliorates acute hepatic injury via activating the Nrf2 signaling pathway and inhibiting activation of the NLRP3 inflammasome. Exp. Ther. Med. 2022, 23, 300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, P.; Zhang, L.; SreeHarsha, N.; Mishra, A.; Su, X. Ameliorative effect of rosiglitazone, a peroxisome proliferator gamma agonist on adriamycin-induced cardio toxicity via suppressing oxidative stress and apoptosis. IUBMB Life 2020, 72, 607–615. [Google Scholar] [CrossRef]
- Lin, C.-F.; Young, K.-C.; Bai, C.-H.; Yu, B.-C.; Ma, C.-T.; Chien, Y.-C.; Chiang, C.-L.; Liao, C.-S.; Lai, H.-W.; Tsao, C.-W. Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. BioMed Res. Int. 2014, 2014, 787924. [Google Scholar] [CrossRef]
- Wei, M.; Song, L.; Yuan, X.; Li, H.; Ji, H.; Sun, J. Dietary supplementation with a PPARγ agonist promotes adipocyte hyperplasia and improves high-fat diet tolerance and utilization in grass carp (Ctenopharyngodon idellus). Aquaculture 2024, 578, 740081. [Google Scholar] [CrossRef]
- Guan, D.; Sun, H.; Wang, J.; Wang, Z.; Li, Y.; Han, H.; Li, X.; Fang, T. Effects of rosiglitazone on growth and skeletal muscle glucose metabolism of GIFT tilapia based on PI3K/Akt signaling pathway. Aquac. Res. 2021, 52, 3911–3922. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; An, N.; Li, D.-C.; Huang, M.-M.; Fei, H. Updates on infectious diseases of largemouth bass: A major review. Fish Shellfish. Immunol. 2024, 154, 109976. [Google Scholar] [CrossRef]
- Yu, P.; Chen, H.; Liu, M.; Zhong, H.; Wang, X.; Wu, Y.; Sun, Y.; Wu, C.; Wang, S.; Zhao, C.; et al. Current status and application of largemouth bass (Micropterus salmoides) germplasm resources. Reprod. Breed. 2024, 4, 73–82. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, B.; Li, Q.-L.; Zhao, T.; Xu, P.-C.; Song, Y.-F.; Luo, Z. Dietary lecithin attenuates adverse effects of high fat diet on growth performance, lipid metabolism, endoplasmic reticulum stress and antioxidant capacity in the intestine of largemouth bass (Micropterus salmoides). Aquaculture 2025, 595, 741688. [Google Scholar] [CrossRef]
- Chen, W.; Gao, S.; Chang, K.; Zhao, X.; Niu, B. Dietary sodium butyrate supplementation improves fish growth, intestinal microbiota composition, and liver health in largemouth bass (Micropterus salmoides) fed high-fat diets. Aquaculture 2023, 564, 739040. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Y.; Miao, L.; Liu, B.; Ge, X. Iron homeostasis of liver-gut axis alleviates inflammation caused by dietary cottonseed meal through dietary Fe2+ supplementation in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture 2022, 561, 738647. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Y.; Miao, L.; Pan, W.; Jiang, W.; Qian, L.; Hao, J.; Xi, B.; Liu, B.; Ge, X. Ferulic acid alleviates lipopolysaccharide-induced acute liver injury in Megalobrama amblycephala. Aquaculture 2021, 532, 735972. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Li, X.; Li, M. Activation autophagy enhances ammonia detoxification by boosting urea and glutamine synthesis in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2025, 594, 741453. [Google Scholar] [CrossRef]
- Cao, X.-F.; Liu, W.-B.; Zheng, X.-C.; Yuan, X.-Y.; Wang, C.-C.; Jiang, G.-Z. Effects of high-fat diets on growth performance, endoplasmic reticulum stress and mitochondrial damage in blunt snout bream Megalobrama amblycephala. Aquac. Nutr. 2019, 25, 97–109. [Google Scholar] [CrossRef]
- Jia, R.; Cao, L.-P.; Du, J.-L.; He, Q.; Gu, Z.-Y.; Jeney, G.; Xu, P.; Yin, G.-J. Effects of High-Fat Diet on Steatosis, Endoplasmic Reticulum Stress and Autophagy in Liver of Tilapia (Oreochromis niloticus). Front. Mar. Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.; Zhuang, Z.; Fang, H.; Tian, L.; Liu, Y.; Niu, J. Chlorogenic acid improves health in juvenile largemouth bass (Micropterus salmoides) fed high-fat diets: Involvement of lipid metabolism, antioxidant ability, inflammatory response, and intestinal integrity. Aquaculture 2021, 545, 737169. [Google Scholar] [CrossRef]
- Li, Q.-L.; Wang, B.; Zheng, H.; Wu, L.-X.; Xu, P.-C.; Tan, X.-Y. The effects of phospholipids (PL) addition in the high fat diet on growth performance, oxidative stress, lipid and protein metabolism, and muscle development in yellow catfish Pelteobagrus fulvidraco. Aquaculture 2025, 598, 741947. [Google Scholar] [CrossRef]
- Cao, X.-F.; Dai, Y.-J.; Liu, M.-Y.; Yuan, X.-Y.; Wang, C.-C.; Huang, Y.-Y.; Liu, W.-B.; Jiang, G.-Z. High-fat diet induces aberrant hepatic lipid secretion in blunt snout bream by activating endoplasmic reticulum stress-associated IRE1/XBP1 pathway. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1864, 213–223. [Google Scholar] [CrossRef]
- Shen, Y.; Li, X.; Bao, Y.; Zhu, T.; Wu, Z.; Yang, B.; Jiao, L.; Zhou, Q.; Jin, M. Differential regulatory effects of optimal or excessive dietary lipid levels on growth, lipid metabolism and physiological response in black seabream (Acanthopagrus schlegelii). Aquaculture 2022, 560, 738532. [Google Scholar] [CrossRef]
- Dong, X.; Qin, W.; Fu, Y.; Ji, P.; Wang, J.; Du, X.; Miao, S.; Sun, L. Effects of dietary betaine on cholesterol metabolism and hepatopancreas function in gibel carp (Carassius gibelio) fed with a high-fat diet. Aquac. Nutr. 2021, 27, 1789–1797. [Google Scholar] [CrossRef]
- Abasubong, K.P.; Li, X.-F.; Zhang, D.-D.; Jia, E.-T.; Xiang-Yang, Y.; Xu, C.; Liu, W.-B. Dietary supplementation of xylooligosaccharides benefits the growth performance and lipid metabolism of common carp (Cyprinus carpio) fed high-fat diets. Aquac. Nutr. 2018, 24, 1416–1424. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 2009, 48, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-J.; Cao, X.-F.; Zhang, D.-D.; Li, X.-F.; Liu, W.-B.; Jiang, G.-Z. Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. Dev. Comp. Immunol. 2019, 97, 28–37. [Google Scholar] [CrossRef]
- Tang, T.; Hu, Y.; Peng, M.; Chu, W.; Hu, Y.; Zhong, L. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2019, 234, 34–40. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, Y.; Zhang, L.; Gao, G.; Chen, S.; Chi, C.; Hu, S.; Sang, Y.; Chu, X.; Zhou, Q.; et al. Dietary supplementation with fermented antarctic krill shell improved the growth performance, digestive and antioxidant capability of Macrobrachium nipponense. Aquac. Rep. 2023, 30, 101587. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, Y.; Gu, Z.; Lu, S.; Zhou, Q.; Zhao, Y.; Liu, B.; Miao, L. Dietary fishmeal substitution with Antarctic krill meal improves the growth performance, lipid metabolism, and health status of oriental river prawn (Macrobrachium nipponense). Aquac. Rep. 2024, 37, 102202. [Google Scholar] [CrossRef]
- Lin, Y.; Miao, L.-H.; Pan, W.-J.; Huang, X.; Dengu, J.M.; Zhang, W.-X.; Ge, X.-P.; Liu, B.; Ren, M.-C.; Zhou, Q.-L.; et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. Fish Shellfish Immunol. 2018, 76, 126–132. [Google Scholar] [CrossRef]
- Wang, J.-X.; Zhang, C.; Fu, L.; Zhang, D.-G.; Wang, B.-W.; Zhang, Z.-H.; Chen, Y.-H.; Lu, Y.; Chen, X.; Xu, D.-X. Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases. Toxicol. Lett. 2017, 265, 38–46. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Liu, J.Z.; Hu, J.X.; Chen, H.L.; Li, W.L.; Hai, C.X. Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol Vitr. 2011, 25, 839–847. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative stress in liver pathophysiology and disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Keum, Y.S.; Choi, B.Y. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 2014, 19, 10074–10089. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamamoto, M. Molecular basis of the Keap1–Nrf2 system. Free Radic. Biol. Med. 2015, 88, 93–100. [Google Scholar]
- Du, J.; Xiang, X.; Xu, D.; Zhang, J.; Fang, W.; Xu, W.; Mai, K.; Ai, Q. FXR, a key regulator of lipid metabolism, is inhibited by ER stress-mediated activation of JNK and p38 MAPK in large yellow croakers (Larimichthys crocea) fed high fat diets. Nutrients 2021, 13, 4343. [Google Scholar] [CrossRef]
- Esmaeili, N.; Martyniuk, C.J.; Kadri, S.; Ma, H. Endoplasmic reticulum stress in aquaculture species. Rev. Aquac. 2025, 17, e70036. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, W.; Monroig, Ó.; Bao, Y.; Zhu, T.; Jiao, L.; Sun, P.; Tocher, D.R.; Zhou, Q.; Jin, M. High-fat-diet induced inflammation and apoptosis via activation of Ire1α in liver and hepatocytes of black seabream (Acanthopagrus schlegelii). Fish Shellfish Immunol. 2023, 143, 109212. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shen, Y.; Bao, Y.; Monroig, Ó.; Zhu, T.; Sun, P.; Tocher, D.R.; Zhou, Q.; Jin, M. Lipid-induced lipotoxic damage in liver and hepatocytes of black seabream Acanthopagrus schlegelii is mediated by endoplasmic reticulum stress. Aquaculture 2024, 590, 741102. [Google Scholar] [CrossRef]
- Sovolyova, N.; Healy, S.; Samali, A.; Logue, S.E. Stressed to death—Mechanisms of ER stress-induced cell death. Biol. Chem. 2014, 395, 1–13. [Google Scholar] [CrossRef]
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef]
- Schröder, M. Endoplasmic reticulum stress responses. Cell. Mol. Life Sci. 2008, 65, 862–894. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, M.; Li, M. New insights into oxidative damage to yellow catfish (Pelteobagrus fulvidraco) muscle by acute ammonia stress. Aquaculture 2025, 596, 741850. [Google Scholar] [CrossRef]
- Lee, S.; Kim, W.; Kang, K.P.; Moon, S.O.; Sung, M.J.; Kim, D.H.; Kim, H.J.; Park, S.K. Agonist of peroxisome proliferator-activated receptor-gamma, rosiglitazone, reduces renal injury and dysfunction in a murine sepsis model. Nephrol. Dial. Transplant. 2005, 20, 1057–1065. [Google Scholar] [CrossRef]
- Wang, W.M.; Chen, H.; Zhong, F.; Lu, Y.; Han, L.; Chen, N. Inhibitory effects of rosiglitazone on lipopolysaccharide-induced inflammation in a murine model and HK-2 Cells. Am. J. Nephrol. 2011, 34, 152–162. [Google Scholar] [CrossRef]
- Tahan, V.; Eren, F.; Avsar, E.; Yavuz, D.; Yuksel, M.; Emekli, E.; Imeryuz, N.; Celikel, C.; Uzun, H.; Haklar, G.; et al. Rosiglitazone attenuates liver inflammation in a rat model of nonalcoholic steatohepatitis. Dig. Dis. Sci. 2007, 52, 3465–3472. [Google Scholar] [CrossRef]
- Gupte, A.A.; Liu, J.Z.; Ren, Y.; Minze, L.J.; Wiles, J.R.; Collins, A.R.; Lyon, C.J.; Pratico, D.; Finegold, M.J.; Wong, S.T.; et al. Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology 2010, 52, 2001–2011. [Google Scholar] [CrossRef]
- Arias-Jayo, N.; Abecia, L.; Alonso-Sáez, L.; Ramirez-Garcia, A.; Rodriguez, A.; Pardo, M.A. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in Zebrafish. Microb. Ecol. 2018, 76, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Zhang, M.; Jiang, H.; Qian, Y.; Wang, R.; Li, M. Comprehensive analysis of metabolomics on flesh quality of yellow catfish (Pelteobagrus fulvidraco) fed plant-based protein diet. Front. Nutr. 2023, 10, 1166393. [Google Scholar] [CrossRef]
- Zhu, C.B.; Shen, Y.T.; Ren, C.H.; Yang, S.; Fei, H. A novel formula of herbal extracts regulates growth performance, antioxidant capacity, intestinal microbiota and resistance against Aeromonas veronii in largemouth bass (Micropterus salmoides). Aquaculture 2024, 583, 740614. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Wang, Y.; Huang, Y.; Wang, C. Effects of alternate feeding between fish meal and novel protein diets on the intestinal health of juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 23, 101023. [Google Scholar] [CrossRef]
- Du, R.-Y.; Zhang, H.-Q.; Chen, J.-X.; Zhu, J.; He, J.-Y.; Luo, L.; Lin, S.-M.; Chen, Y.-J. Effects of dietary Bacillus subtilis DSM 32315 supplementation on the growth, immunity and intestinal morphology, microbiota and inflammatory response of juvenile largemouth bass Micropterus salmoides. Aquac. Nutr. 2021, 27, 2119–2131. [Google Scholar] [CrossRef]
- Lin, S.M.; Zhou, X.M.; Zhou, Y.L.; Kuang, W.M.; Chen, Y.J.; Luo, L.; Dai, F.Y. Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish Shellfish Immunol. 2020, 103, 135–142. [Google Scholar] [CrossRef]
- Yu, F.; Ji, J.-L.; Wang, Y.; Liu, Y.-D.; Lian, Y.-M.; Wang, M.-Z.; Cai, Z.-X. Anti-epileptic and gut-protective effects of trioctanoin and the critical role of gut microbiota in a mouse model of epilepsy. Brain Res. Bull. 2025, 227, 111401. [Google Scholar] [CrossRef]
- Zhang, Y.; Tu, S.; Ji, X.; Wu, J.; Meng, J.; Gao, J.; Shao, X.; Shi, S.; Wang, G.; Qiu, J.; et al. Dubosiella newyorkensis modulates immune tolerance in colitis via the L-lysine-activated AhR-IDO1-Kyn pathway. Nat. Commun. 2024, 15, 1333. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Li, M.; Gao, X.; Zhang, X.; Xu, W.; Lu, Q. Chebulagic acid ameliorates DSS-induced colitis in mice by improving oxidative stress, inflammation and the gut microbiota. Am. J. Transl. Res. 2025, 17, 4101–4118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Liu, W.B.; Zhou, M.; Dai, Y.J.; Xu, C.; Tian, H.Y.; Xu, W.N. Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol. 2016, 55, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xiao, M.; Zhu, R.; Nan, Y.; Yang, Y.; Huang, X.; Zhang, D. Effects of Ammonia Stress on the Antioxidant, Ferroptosis, and Immune Response in the Liver of Golden Pompano Trachinotus ovatus. Antioxidants 2025, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Shi, H.; Cui, C.; Wang, J.; Li, L.; Bei, W.; Cai, Y.; Wang, S. Strain-specific benefits of bacillus on growth, intestinal health, immune modulation, and ammonia-nitrogen stress resilience in hybrid grouper. Antioxidants 2024, 13, 317. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, M.; Li, M. Cetobacterium somerae-derived argininosuccinic acid promotes intestinal and liver ureagenesis to alleviate ammonia intoxication. Microbiome 2025, 13, 163. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Tang, Y.; Zhang, M.; Li, M. Effects of dietary sodium butyrate on growth performance, digestive ability, blood biochemistry, and ammonia tolerance of largemouth bass (Micropterus salmoides). Fishes 2025, 10, 259. [Google Scholar] [CrossRef]
Items | Con | HF | RO |
---|---|---|---|
Feed ingredients (%, dry matter) | |||
Fishmeal | 50.00 | 50.00 | 50.00 |
Soy protein concentrate | 13.00 | 13.00 | 13.00 |
Soybean meal | 10.00 | 10.00 | 10.00 |
Wheat starch | 7.00 | 7.00 | 7.00 |
Fish oil | 3.00 | 7.00 | 7.00 |
Soybean oil | 3.00 | 7.00 | 7.00 |
Vitamin premix 1 | 0.75 | 0.75 | 0.75 |
Mineral premix 2 | 0.75 | 0.75 | 0.75 |
Vitamin C | 0.20 | 0.20 | 0.20 |
Monocalcium phosphate | 1.50 | 1.50 | 1.50 |
Sodium carboxymethyl cellulose | 1.00 | 1.00 | 1.00 |
Microcrystalline cellulose | 9.80 | 1.80 | 1.799 |
Rosiglitazone 3 | 0.00 | 0.00 | 0.001 |
Total | 100.00 | 100.00 | 100.00 |
Nutrition analysis, % dry matter basis premix 4 | |||
Moisture | 3.19 | 3.25 | 3.28 |
Crude protein | 45.99 | 45.57 | 45.98 |
Crude lipid | 10.24 | 18.08 | 18.25 |
Ash | 12.18 | 12.13 | 12.04 |
Genes | Sequences (5′→3′) | Product Length (bp) | Primer Efficiency (%) | Accession Number |
---|---|---|---|---|
Antioxidant genes | ||||
nrf2 | F: CAGACGGGGAAACAAACAATG | 170 | 101.3 | XM_038720536.1 |
R: GGGGTAAAATACGCCACAATAAC | ||||
keap1 | F: TCATTGGGGAATCACATCTTTG | 199 | 97.4 | XM_038713666.1 |
R: TGTCCAGAAAAGTGTTGCCATC | ||||
sod | F: TCCCCACAACAAGAATCATGC | 180 | 96.5 | XM_038708943.1 |
R: TCATCAGCCTTCTCGTGGA | ||||
cat | F: CTGCTGTTCCCGTCCTTCAT | 154 | 102.4 | XM_038704976.1 |
R: GGTAGCCATCAGGCAAACCT | ||||
gpx | F: GCAATCAGTTTGGACATCAGG | 126 | 100.1 | XM_038697220.1 |
R: TTCCATTCACATCCACCTTCT | ||||
gst | F: AATGGAGCACAAGTCACAGGA | 107 | 100.7 | XM_038724634.1 |
R: ACAAGCAGGCAGCATAGGA | ||||
Inflammation genes | ||||
il-10 | F: CGGCACAGAAATCCCAGAGC | 119 | 103.8 | XM_038723321.1 |
R: CAGCAGGCTCACAAAATAAACATCT | ||||
tnfα | F: TCCAGCATCACACGGAAGAAGT | 129 | 101.9 | XM_038729256.1 |
R: CAGCAGATGTCAGAGCCTCAGT | ||||
il-1β | F: GATGCTCTTTAACTCCTCCT | 88 | 99.9 | XM_038733429.1 |
R: CACCAACTTGTACATGTCCT | ||||
nf-κb | F: CCACTCAGGTGTTGGAGCTT | 127 | 98.4 | XM_038699793.1 |
R: TCCAGAGCACGACACACTTC | ||||
Peptide transporters | ||||
grp78 | F: TTGCCGATGACGACGAAA | 180 | 104.6 | XM_038733280.1 |
R: CAATCAGACGCTCACCCT | ||||
eif2α | F: CCTCGTTTGTCCGTCTGTATC | 92 | 98.6 | XM_038693619.1 |
R: GCTGACTCTGTCGGCCTTG | ||||
chop | F: GATGAGCAGCCTAAGCCACG | 153 | 101.7 | XM_038701049.1 |
R: AACAGGTCAGCCAAGAAGTCG | ||||
atf6 | F: GCAACACCTGGACGACAACCT | 111 | 99.2 | XM_038724893.1 |
R: GGCTCTGCTTTCACCTGGAACA | ||||
ire1 | F: CTTGTGTCGAGTGGCGATGGT | 187 | 100.6 | XM_038712961.1 |
R: CGTTGGCAGAGGAGAAGGTGAG | ||||
Amino acid transporters | ||||
srebp1 | F: AGTCTGAGCTACAGCGACAAGG | 127 | 99.3 | XM_038699585.1 |
R: TCATCACCAACAGGAGGTCACA | ||||
dgat1 | F: AGACTGGTGGAACTCTGAGAC | 171 | 105.8 | XM_038724648.1 |
R: ACTAGGTACTCGTGGAAGAAGG | ||||
pparγ | F: ATGTCACACAACGCCATTCG | 135 | 100.8 | XM_038695875.1 |
R: GTACAGATGCCGGGACAGAG | ||||
acox1 | F: CAGTTCTGTTCGTCACCAGTC | 173 | 97.5 | XM_038695271.1 |
R: CGTTGATGTCTCCGCTGATG | ||||
cpt1 | F: AGCCCCACCCCAACCTACCAG | 283 | 96.3 | XM_038705335.1 |
R: CGGCCCTCACGGAATAAACGC | ||||
hsl | F: GAAGATCATATCCAGCGGCATC | 157 | 104.9 | XM_038725627.1 |
R: TCCATAGGCATTGAGGCACTT | ||||
Housekeeping genes | ||||
β-actin | F: TTTATGGATAGAGCCGGGCA | 161 | 102.5 | XM_038695351.1 |
R: CTTCCATGGCTGAACTTTGGG | ||||
ef1α | F: TGCTGCTGGTGTTGGTGAGTT | 147 | 103.2 | XM_038724777.1 |
R: TTCTGGCTGTAAGGGGGCTC |
Items | Con | HF | RO | p |
---|---|---|---|---|
Growth and feed performance (n = 3) | ||||
SR 1, % | 97.78 ± 1.11 | 98.89 ± 1.11 | 98.89 ± 1.11 | 0.729 |
IBW, g/fish | 3.29 ± 0.02 | 3.21 ± 0.03 | 3.30 ± 0.03 | 0.146 |
FBW, g/fish | 39.10 ± 0.85 b | 35.47 ± 0.24 a | 36.60 ± 0.79 ab | 0.024 |
FI 2, g/fish | 38.04 ± 0.75 b | 34.71 ± 0.24 a | 34.68 ± 0.28 a | 0.004 |
FR 3, %/day | 3.52 ± 0.02 | 3.52 ± 0.03 | 3.41 ± 0.10 | 0.636 |
WGR 4, % | 1088.45 ± 18.03 b | 1004.86 ± 14.80 a | 1009.01 ± 21.16 a | 0.029 |
SGR 5, %/day | 4.85 ± 0.03 b | 4.71 ± 0.03 a | 4.72 ± 0.04 a | 0.029 |
FCR 6 | 1.04 ± 0.01 | 1.07 ± 0.01 | 1.03 ± 0.03 | 0.319 |
PER 7, % | 204.61 ± 1.43 | 203.99 ± 1.87 | 212.74 ± 6.68 | 0.430 |
Body indexes and intestinal indicators (n = 9) | ||||
HSI 8, % | 0.95 ± 0.10 a | 1.32 ± 0.12 b | 1.28 ± 0.10 ab | 0.047 |
VSI 9, % | 8.96 ± 0.24 a | 10.54 ± 0.39 b | 9.02 ± 0.27 a | 0.001 |
IPF 10, % | 1.80 ± 0.17 a | 2.87 ± 0.19 b | 2.28 ± 0.16 ab | <0.001 |
CF 11, % | 2.69 ± 0.04 | 3.17 ± 0.31 | 2.46 ± 0.25 | 0.155 |
Taxonomic Level | Increased Taxa (vs. Con) | Decreased Taxa (vs. Con) |
---|---|---|
HF group | Firmicutes, Mycoplasma | Proteobacteria, Plesiomonas |
RO group | Firmicutes, Actinobacteriota, Mycoplasma, Microbacteriaceae_unclassified, Dubosiella, Faecalibaculum | Fusobacteriota, Proteobacteria, Cetobacterium, Plesiomonas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Tang, Y.; Chen, X.; Chen, X.; Zhang, M.; Feng, D.; Li, M. Rosiglitazone Ameliorates Adverse Effects of High-Fat Diet in Largemouth Bass (Micropterus salmoides): Modulation of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response, and Gut Microbiota. Antioxidants 2025, 14, 1230. https://doi.org/10.3390/antiox14101230
Yan Y, Tang Y, Chen X, Chen X, Zhang M, Feng D, Li M. Rosiglitazone Ameliorates Adverse Effects of High-Fat Diet in Largemouth Bass (Micropterus salmoides): Modulation of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response, and Gut Microbiota. Antioxidants. 2025; 14(10):1230. https://doi.org/10.3390/antiox14101230
Chicago/Turabian StyleYan, Ying, Yanjie Tang, Xiting Chen, Xuan Chen, Muzi Zhang, Dexiang Feng, and Ming Li. 2025. "Rosiglitazone Ameliorates Adverse Effects of High-Fat Diet in Largemouth Bass (Micropterus salmoides): Modulation of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response, and Gut Microbiota" Antioxidants 14, no. 10: 1230. https://doi.org/10.3390/antiox14101230
APA StyleYan, Y., Tang, Y., Chen, X., Chen, X., Zhang, M., Feng, D., & Li, M. (2025). Rosiglitazone Ameliorates Adverse Effects of High-Fat Diet in Largemouth Bass (Micropterus salmoides): Modulation of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response, and Gut Microbiota. Antioxidants, 14(10), 1230. https://doi.org/10.3390/antiox14101230