Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds
Abstract
:1. Introduction
2. Development of Lipid Nanoparticles Technology in the Form of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
2.1. The Superiority and Weakness of SLNs
2.2. The Differences between SLNs and NLCs
3. Fabrication Methods for SLNs
3.1. High-Shear Homogenization/High-Speed Homogenization and Ultrasonication
3.2. High-Pressure Homogenization
3.3. Solvent Evaporation
3.4. Other Methods
4. Applications of SLNs in Various Fields
4.1. SLNs in Various Medical Fields and Cosmetics
4.2. SLNs in Various Food Products and as the Delivery System for Drugs or Active Compounds
5. Solid Lipid Nanoparticles for the Encapsulation of Antioxidant Compounds
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallan, S.S.; Sguizzato, M.; Esposito, E.; Cortesi, R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021, 13, 549. [Google Scholar] [CrossRef]
- Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems. Trends Food Sci. Technol. 2012, 23, 13–27. [Google Scholar] [CrossRef]
- Indiarto, R.; Indriana, L.P.A.; Andoyo, R.; Subroto, E.; Nurhadi, B. Bottom–up Nanoparticle Synthesis: A Review of Techniques, Polyphenol-Based Core Materials, and Their Properties. Eur. Food Res. Technol. 2022, 248, 1–24. [Google Scholar] [CrossRef]
- Maravajhala, V.; Papishetty, S.; Bandlapalli, S. Nanotechnology in Development of Drug Delivery System. Int. J. Pharm. Sci. 2012, 3, 84–96. [Google Scholar]
- Matei, A.-M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.; Badarau, I.A.; et al. Applications of Nanosized-Lipid-Based Drug Delivery Systems in Wound Care. Appl. Sci. 2021, 11, 4915. [Google Scholar] [CrossRef]
- Alsaad, A.A.A.; Hussien, A.A.; Gareeb, M.M. Solid Lipid Nanoparticles (SLN) as a Novel Drug Delivery System: A Theoretical Review. Syst. Rev. Pharm. 2020, 11, 259–273. [Google Scholar] [CrossRef]
- Ekambaram, P.; Sathali, A.H.; Priyanka, K. Solid Lipid Nanoparticles–A Review. Int. J. Appl. Pharm. 2012, 2, 80–102. [Google Scholar]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Mirchandani, Y.; Patravale, V.B.S.B. Solid Lipid Nanoparticles for Hydrophilic Drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; de Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants 2020, 9, 998. [Google Scholar] [CrossRef] [PubMed]
- Jaspreet, K.; Gurpreet, S.; Seema, S.; Rana, A. Innovative Growth in Developing New Methods for Formulating Solid Lipid Nanoparticles and Microparticles. J. Drug Deliv. Ther. 2012, 2, 146–150. [Google Scholar]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009, 71, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. The Biophysics of Digestion: Lipids. Curr. Opin. Food Sci. 2018, 21, 1–6. [Google Scholar] [CrossRef]
- McClements, D.J. Edible Lipid Nanoparticles: Digestion, Absorption, and Potential Toxicity. Prog. Lipid Res. 2013, 52, 409–423. [Google Scholar] [CrossRef]
- Joye, I.J.; Davidov-Pardo, G.; McClements, D.J. Nanotechnology for Increased Micronutrient Bioavailability. Trends Food Sci. Technol. 2014, 40, 168–182. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Sharipova, A.A.; Aidarova, S.B.; Mutaliyeva, B.Z.; Babayev, A.A.; Issakhov, M.; Issayeva, A.B.; Madybekova, G.M.; Grigoriev, D.O.; Miller, R. The Use of Polymer and Surfactants for the Microencapsulation and Emulsion Stabilization. Colloids Interfaces 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Geszke-Moritz, M.; Moritz, M. Solid Lipid Nanoparticles as Attractive Drug Vehicles: Composition, Properties and Therapeutic Strategies. Mater. Sci. Eng. C 2016, 68, 982–994. [Google Scholar] [CrossRef]
- Lima, A.M.; Pizzol, C.D.; Monteiro, F.B.F.; Creczynski-Pasa, T.B.; Andrade, G.P.; Ribeiro, A.O.; Perussi, J.R. Hypericin Encapsulated in Solid Lipid Nanoparticles: Phototoxicity and Photodynamic Efficiency. J. Photochem. Photobiol. B Biol. 2013, 125, 146–154. [Google Scholar] [CrossRef]
- Anjum, R.; Lakshmi, P.K. A Review on Solid Lipid Nanoparticles; Focus on Excipients and Formulation Techniques. Int. J. Pharm. Sci. Res. 2019, 10, 4090–4099. [Google Scholar] [CrossRef]
- Assali, M.; Zaid, A.-N. Features, Applications, and Sustainability of Lipid Nanoparticles in Cosmeceuticals. Saudi Pharm. J. 2022, 30, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.A.; Nguyen, T.T.L.; Maeng, H.J. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020, 25, 4781. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chen, C.-H.; Lin, Z.-C.; Fang, J.-Y. Recent Advances in Oral Delivery of Drugs and Bioactive Natural Products Using Solid Lipid Nanoparticles as the Carriers. J. Food Drug Anal. 2017, 25, 219–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of Nanotechnology in Improving Bioavailability and Bioactivity of Diet-Derived Phytochemicals. J. Nutr. Biochem. 2014, 25, 363–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, P.; Ramalingam, P.; Karthivashan, G.; Ko, Y.T.; Choi, D.K. Recent Developments in Solid Lipid Nanoparticle and Surface-Modified Solid Lipid Nanoparticle Delivery Systems for Oral Delivery of Phyto-Bioactive Compounds in Various Chronic Diseases. Int. J. Nanomed. 2018, 13, 1569–1583. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, C.; Ramalho, M.J.; Silva, R.; Silva, V.; Marques-Oliveira, R.; Silva, A.C.; Pereira, M.C.; Loureiro, J.A. Lipid Nanoparticles Containing Mixtures of Antioxidants to Improve Skin Care and Cancer Prevention. Pharmaceutics 2021, 13, 2042. [Google Scholar] [CrossRef]
- López-Martínez, A.; Rocha-Uribe, A. Antioxidant Hydrophobicity and Emulsifier Type Influences the Partitioning of Antioxidants in the Interface Improving Oxidative Stability in O/W Emulsions Rich in n-3 Fatty Acids. Eur. J. Lipid Sci. Technol. 2018, 120, 1700277. [Google Scholar] [CrossRef]
- Aanisah, N.; Sulistiawati, S.; Djabir, Y.Y.; Asri, R.M.; Sumarheni, S.; Chabib, L.; Hamzah, H.; Permana, A.D. Development of Solid Lipid Nanoparticle-Loaded Polymeric Hydrogels Containing Antioxidant and Photoprotective Bioactive Compounds of Safflower (Carthamus tinctorius L.) for Improved Skin Delivery. Langmuir 2023, 39, 1838–1851. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F. Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods. Food Res. Int. 2013, 52, 64–74. [Google Scholar] [CrossRef]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Molet-Rodríguez, A.; Martín-Belloso, O.; Salvia-Trujillo, L. Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules 2021, 26, 312. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Madureira, A.R.; Sarmento, B.; Pintado, M.M.; Gomes, A.M. Technological Stability of Solid Lipid Nanoparticles Loaded with Phenolic Compounds: Drying Process and Stability along Storage. J. Food Eng. 2017, 196, 1–10. [Google Scholar] [CrossRef]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.-H. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants 2021, 10, 713. [Google Scholar] [CrossRef]
- Tang, C.-H.; Chen, H.-L.; Dong, J.-R. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives. Appl. Sci. 2023, 13, 1726. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.B.; Gunvantrao, D.S.; Vivekanand, S.M. Lipid Based Nanoparticles: SLN/NLCs-Formulation Techniques, Its Evaluation and Applications. Int. J. Creat. Innov. Res. All Stud. 2019, 1, 20–31. [Google Scholar]
- Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Pulmonary Application: A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2014, 86, 7–22. [Google Scholar] [CrossRef]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Hu, L.; Tang, X.; Cui, F. Solid Lipid Nanoparticles (SLNs) to Improve Oral Bioavailability of Poorly Soluble Drugs. J. Pharm. Pharmacol. 2004, 56, 1527–1535. [Google Scholar] [CrossRef]
- Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys. 2008, 3, 146–154. [Google Scholar] [CrossRef]
- Amalia, A.; Jufri, M.; Anwar, E. Preparation and Characterization of Solid Lipid Nanoparticle (SLN) of Gliclazide. J. Ilmu Kefarmasian Indones. 2015, 13, 108–114. [Google Scholar]
- Yadav, N.; Khatak, S.; Vir, U.; Sara, S. Solid Lipid Nanoparticles–A Review. Int. J. Appl. Pharm. 2013, 5, 8–18. [Google Scholar]
- Basso, J.; Mendes, M.; Cova, T.; Sousa, J.; Pais, A.; Fortuna, A.; Vitorino, R.; Vitorino, C. A Stepwise Framework for the Systematic Development of Lipid Nanoparticles. Biomolecules 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Andoyo, R.; Indiarto, R.; Wulandari, E.; Wadhiah, E.F.N. Preparation of Solid Lipid Nanoparticle-Ferrous Sulfate by Double Emulsion Method Based on Fat Rich in Monolaurin and Stearic Acid. Nanomaterials 2022, 12, 3054. [Google Scholar] [CrossRef]
- Basha, S.K.; Dhandayuthabani, R.; Muzammil, M.S.; Kumari, V.S. Solid Lipid Nanoparticles for Oral Drug Delivery. Mater. Today Proc. 2019, 36, 313–324. [Google Scholar] [CrossRef]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules 2022, 27, 2202. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, S.; Passerini, N.; Albertini, B. Liquid Lipids Act as Polymorphic Modifiers of Tristearin-Based Formulations Produced by Melting Technologies. Pharmaceutics 2021, 13, 1089. [Google Scholar] [CrossRef]
- Blanco-Llamero, C.; Fonseca, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Señoráns, F.J.; Souto, E.B. Nutraceuticals and Food-Grade Lipid Nanoparticles: From Natural Sources to a Circular Bioeconomy Approach. Foods 2022, 11, 2318. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery–A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Dhiman, N.; Awasthi, R.; Sharma, B.; Kharkwal, H.; Kulkarni, G.T. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front. Chem. 2021, 9, 580118. [Google Scholar] [CrossRef] [PubMed]
- Jafar, G.; Darijanto, S.T.; Mauludin, R. Formulasi Solid Lipid Nanoparticle Ceramide. J. Pharmascience 2015, 2, 80–87. [Google Scholar]
- Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Mumper, R.J. A Critical Review of Lipid-Based Nanoparticles for Taxane Delivery. Cancer Lett. 2013, 334, 157–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid Lipid Based Nanocarriers: An Overview. Acta Pharm. 2012, 62, 433–472. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chaudhury, A. Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech 2011, 12, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Lingayat, V.J.; Zarekar, N.S.; Shendge, R.S. Solid Lipid Nanoparticles: A Review. Nanosci. Nanotechnol. Res. 2017, 5, 67–72. [Google Scholar] [CrossRef]
- Bahari, L.A.S.; Hamishehkar, H. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review. Adv. Pharm. Bull. 2016, 6, 143–151. [Google Scholar] [CrossRef]
- Shi, L.; Li, Z.; Yu, L.; Jia, H.; Zheng, L. Effects of Surfactants and Lipids on the Preparation of Solid Lipid Nanoparticles Using Double Emulsion Method. J. Dispers. Sci. Technol. 2011, 32, 254–259. [Google Scholar] [CrossRef]
- Deshpande, A.; Mohamed, M.; Daftardar, S.B.; Patel, M.; Boddu, S.H.S.; Nesamony, J. Solid Lipid Nanoparticles in Drug Delivery: Opportunities and Challenges. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–330. ISBN 9780323429979. [Google Scholar]
- Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured Lipid Carriers System: Recent Advances in Drug Delivery. J. Drug Target. 2012, 20, 813–830. [Google Scholar] [CrossRef]
- Rohmah, M.; Raharjo, S.; Hidayat, C.; Martien, R. Application of Response Surface Methodology for the Optimization of β-Carotene-Loaded Nanostructured Lipid Carrier from Mixtures of Palm Stearin and Palm Olein. JAOCS J. Am. Oil Chem. Soc. 2019, 97, 213–223. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 2002, 54, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured Lipid Carriers (NLCs) as Drug Delivery Platform: Advances in Formulation and Delivery Strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.A.; Silva, A.M.; Souto, E.B. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. J. Drug Deliv. 2012, 2012, 750891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chutoprapat, R.; Kopongpanich, P.; Chan, L.W. A Mini-Review on Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Topical Delivery of Phytochemicals for the Treatment of Acne Vulgaris. Molecules 2022, 27, 3460. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Baldi, A. Nanostructured Lipid Carriers: A Review Journal. J. Dev. Drugs 2018, 7, 1. [Google Scholar]
- Fanun, M. Propylene Glycol and Ethoxylated Surfactant Effects on the Phase Behavior of Water/Sucrose Stearate/Oil System. J. Dispers. Sci. Technol. 2007, 28, 1244–1253. [Google Scholar] [CrossRef]
- Sriarumtias, F.F.; Tarini, S.; Damayanti, S. Formulasi Dan Uji Potensi Antioksidan Nanostructured Lipid Carrier (NLC) Retinil Palmitat. Acta Pharm. Indones. 2017, 42, 25–31. [Google Scholar] [CrossRef]
- Gundogdu, E.; Demir, E.-S.; Ekinci, M.; Ozgenc, E.; Ilem-Ozdemir, D.; Senyigit, Z.; Gonzalez-Alvarez, I.; Bermejo, M. An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies. Nanomaterials 2022, 12, 250. [Google Scholar] [CrossRef]
- Calderon-Jacinto, R.; Matricardi, P.; Gueguen, V.; Pavon-Djavid, G.; Pauthe, E.; Rodriguez-Ruiz, V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022, 12, 780. [Google Scholar] [CrossRef]
- Javed, S.; Mangla, B.; Almoshari, Y.; Sultan, M.H.; Ahsan, W. Nanostructured Lipid Carrier System: A Compendium of Their Formulation Development Approaches, Optimization Strategies by Quality by Design, and Recent Applications in Drug Delivery. Nanotechnol. Rev. 2022, 11, 1744–1777. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, A.; Ghanbarzadeh, B.; Hamishehkar, H. Formulation of Food Grade Nanostructured Lipid Carrier (NLC) for Potential Applications in Medicinal-Functional Foods. J. Drug Deliv. Sci. Technol. 2017, 39, 50–58. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Thuy, V.N.; Van, T.V.; Dao, A.H.; Lee, B.-J. Nanostructured Lipid Carriers and Their Potential Applications for Versatile Drug Delivery via Oral Administration. OpenNano 2022, 8, 100064. [Google Scholar] [CrossRef]
- Gaba, B.; Fazil, M.; Ali, A.; Baboota, S.; Sahni, J.K.; Ali, J. Nanostructured Lipid (NLCs) Carriers as a Bioavailability Enhancement Tool for Oral Administration. Drug Deliv. 2015, 22, 691–700. [Google Scholar] [CrossRef]
- Esposito, E.; Sguizzato, M.; Drechsler, M.; Mariani, P.; Carducci, F.; Nastruzzi, C.; Valacchi, G.; Cortesi, R. Lipid Nanostructures for Antioxidant Delivery: A Comparative Preformulation Study. Beilstein J. Nanotechnol. 2019, 10, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Doktorovova, S.; Zielinska, A.; Silva, A.M. Key Production Parameters for the Development of Solid Lipid Nanoparticles by High Shear Homogenization. Pharm. Dev. Technol. 2019, 24, 1181–1185. [Google Scholar] [CrossRef]
- Mahajan, A.; Kaur, S. Design, Formulation, and Characterization of Stearic Acid-Based Solid Lipid Nanoparticles of Candesartan Cilexetil to Augment Its Oral Bioavailability. Asian J. Pharm. Clin. Res. 2018, 11, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021, 26, 5510. [Google Scholar] [CrossRef]
- Sastri, K.T.; Radha, G.V.; Pidikiti, S.; Vajjhala, P. Solid Lipid Nanoparticles: Preparation Techniques, Their Characterization, and an Update on Recent Studies. J. Appl. Pharm. Sci. 2020, 10, 126–141. [Google Scholar] [CrossRef]
- Ganesan, P.; Narayanasamy, D. Lipid Nanoparticles: Different Preparation Techniques, Characterization, Hurdles, and Strategies for the Production of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Oral Drug Delivery. Sustain. Chem. Pharm. 2017, 6, 37–56. [Google Scholar] [CrossRef]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A.; Bou-Chacra, N.A. Nanoemulsion: Process Selection and Application in Cosmetics–A Review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolatabadi, J.E.N.; Valizadeh, H.; Hamishehkar, H. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Adv. Pharm. Bull. 2015, 5, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, V.R.; Srivastava, S.; Goel, H.; Jindal, V. Solid Lipid Nanoparticles (SLN’S) -Trends and Implications in Drug Targeting. Int. J. Adv. Pharm. Sci. 2010, 1, 212–238. [Google Scholar] [CrossRef]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef] [PubMed]
- Alarifi, S.; Massadeh, S.; Al-Agamy, M.; Al Aamery, M.; Al Bekairy, A.; Yassin, A.E. Enhancement of Ciprofloxacin Activity by Incorporating It in Solid Lipid Nanoparticles. Trop. J. Pharm. Res. 2020, 19, 909–918. [Google Scholar] [CrossRef]
- Xie, S.; Zhu, L.; Dong, Z.; Wang, X.; Wang, Y.; Li, X.; Zhou, W.Z. Preparation, Characterization and Pharmacokinetics of Enrofloxacin-Loaded Solid Lipid Nanoparticles: Influences of Fatty Acids. Colloids Surf. B Biointerfaces 2011, 83, 382–387. [Google Scholar] [CrossRef]
- Woo, J.O.; Misran, M.; Lee, P.F.; Tan, L.P. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery. Sci. World J. 2014, 2014, 205703. [Google Scholar] [CrossRef] [Green Version]
- Karthik, S.; Raghavan, C.V.; Marslin, G.; Rahman, H.; Selvaraj, D.; Balakumar, K.; Franklin, G. Quillaja Saponin: A Prospective Emulsifier for the Preparation of Solid Lipid Nanoparticles. Colloids Surf. B Biointerfaces 2016, 147, 274–280. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Babaei, R.; Nabili, M.; Shokohi, T.; Saeedi, M.; Gholami, S.; Moazeni, M.; Nokhodchi, A. Improved Delivery of Voriconazole to Aspergillus Fumigatus through Solid Lipid Nanoparticles as an Effective Carrier. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 338–342. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid Lipid Nanoparticles: Production, Characterization and Applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef] [PubMed]
- Mesa, J.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef] [PubMed]
- Rahmi, D. Lemak Padat Nanopartikel; Sintesis Dan Aplikasi. J. Kim. dan Kemasan 2010, 32, 27. [Google Scholar] [CrossRef]
- Garg, U.; Jain, K. Dermal and Transdermal Drug Delivery through Vesicles and Particles: Preparation and Applications. Adv. Pharm. Bull. 2022, 12, 45–57. [Google Scholar] [CrossRef]
- Sjöström, B.; Bergenståhl, B. Preparation of Submicron Drug Particles in Lecithin-Stabilized o/w Emulsions I. Model Studies of the Precipitation of Cholesteryl Acetate. Int. J. Pharm. 1992, 88, 53–62. [Google Scholar] [CrossRef]
- Westesen, K.; Siekmann, B. Investigation of the Gel Formation of Phospholipid-Stabilized Solid Lipid Nanoparticles. Int. J. Pharm. 1997, 151, 35–45. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Pooja, D.; Tunki, L.; Kulhari, H.; Reddy, B.B.; Sistla, R. Optimization of Solid Lipid Nanoparticles Prepared by a Single Emulsification-Solvent Evaporation Method. Data Br. 2016, 6, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, P.; Shekunov, B.Y.; Yim, D.; Cipolla, D.; Boyd, B.; Farr, S. Production of Solid Lipid Nanoparticle Suspensions Using Supercritical Fluid Extraction of Emulsions (SFEE) for Pulmonary Delivery Using the AERx System. Adv. Drug Deliv. Rev. 2007, 59, 444–453. [Google Scholar] [CrossRef]
- Campardelli, R.; Cherain, M.; Perfetti, C.; Iorio, C.; Scognamiglio, M.; Reverchon, E.; Porta, G.D. Lipid Nanoparticles Production by Supercritical Fluid Assisted Emulsion–Diffusion. J. Supercrit. Fluids 2013, 82, 34–40. [Google Scholar] [CrossRef]
- Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double Emulsion Solvent Evaporation Techniques Used for Drug Encapsulation. Int. J. Pharm. 2015, 496, 173–190. [Google Scholar] [CrossRef]
- Nabi-Meibodi, M.; Navidi, B.; Navidi, N.; Vatanara, A.; Reza Rouini, M.; Ramezani, V. Optimized Double Emulsion-Solvent Evaporation Process for Production of Solid Lipid Nanoparticles Containing Baclofene as a Lipid Insoluble Drug. J. Drug Deliv. Sci. Technol. 2013, 23, 225–230. [Google Scholar] [CrossRef]
- Mudrić, J.; Šavikin, K.; Đekić, L.; Pavlović, S.; Kurćubić, I.; Ibrić, S.; Đuriš, J. Development of Lipid-Based Gastroretentive Delivery System for Gentian Extract by Double Emulsion–Melt Dispersion Technique. Pharmaceutics 2021, 13, 2095. [Google Scholar]
- Freitas, C.; Müller, R.H. Spray-Drying of Solid Lipid Nanoparticles (SLNTM). Eur. J. Pharm. Biopharm. 1998, 46, 145–151. [Google Scholar] [CrossRef]
- Ristroph, K.D.; Feng, J.; McManus, S.A.; Zhang, Y.; Gong, K.; Ramachandruni, H.; White, C.E.; Prud’homme, R.K. Spray Drying OZ439 Nanoparticles to Form Stable, Water-Dispersible Powders for Oral Malaria Therapy. J. Transl. Med. 2019, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- James, O.; Oloo, F.; Ng’etich, J.; Kivunzya, M.; Omwoyo, W.; Gathirwa, J. Comparison of Freeze and Spray Drying to Obtain Primaquine-Loaded Solid Lipid Nanoparticles. J. Nanotoxicol. Nanomed. 2017, 2, 31–50. [Google Scholar] [CrossRef]
- Silva, A.C.; Kumar, A.; Wild, W.; Ferreira, D.; Santos, D.; Forbes, B. Long-Term Stability, Biocompatibility and Oral Delivery Potential of Risperidone-Loaded Solid Lipid Nanoparticles. Int. J. Pharm. 2012, 436, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy–An Overview on Recent Advances. Pharmaceutics 2022, 14, 533. [Google Scholar] [CrossRef]
- Mu, H.; Holm, R.; Müllertz, A. Lipid-Based Formulations for Oral Administration of Poorly Water-Soluble Drugs. Int. J. Pharm. 2013, 453, 215–224. [Google Scholar] [CrossRef]
- Sguizzato, M.; Esposito, E.; Cortesi, R. Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. Int. J. Mol. Sci. 2021, 22, 8319. [Google Scholar] [CrossRef]
- Ahmad, J. Lipid Nanoparticles Based Cosmetics with Potential Application in Alleviating Skin Disorders. Cosmetics 2021, 8, 84. [Google Scholar] [CrossRef]
- Rubiano, S.; Echeverri, J.D.; Salamanca, C.H. Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization. Cosmetics 2020, 7, 42. [Google Scholar] [CrossRef]
- Souto, E.B.; Müller, R.H. Cosmetic Features and Applications of Lipid Nanoparticles (SLN®, NLC®). Int. J. Cosmet. Sci. 2008, 30, 157–165. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. Cosmetic Applications for Solid Lipid Nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and Biopharmaceutical Aspects Influencing Skin Permeation and Role of SLN and NLC for Skin Drug Delivery. Heliyon 2022, 8, e08938. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, M.W.; Iswandana, R.; Jufri, M. Preparation, Characterization, and Formulation of Solid Lipid Nanoparticles Lotion from Mulberry Roots (Morus Alba L.). Int. J. Appl. Pharm. 2020, 12, 182–186. [Google Scholar] [CrossRef]
- Lai, F.; Wissing, S.A.; Müller, R.H.; Fadda, A.M. Artemisia arborescens L. Essential Oil-Loaded Solid Lipid Nanoparticles for Potential Agricultural Application: Preparation and Characterization. AAPS PharmSciTech 2006, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Cirri, M.; Mennini, N.; Maestrelli, F.; Mura, P.; Ghelardini, C.; di Cesare Mannelli, L. Development and in Vivo Evaluation of an Innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” Formulation with Sustained Release and Enhanced Oral Bioavailability for Potential Hypertension Treatment in Pediatrics. Int. J. Pharm. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Jain, A.; Sharma, G.; Thakur, K.; Raza, K.; Shivhare, U.S.; Ghoshal, G.; Katare, O.P. Beta-Carotene-Encapsulated Solid Lipid Nanoparticles (BC-SLNs) as Promising Vehicle for Cancer: An Investigative Assessment. AAPS PharmSciTech 2019, 20, 100. [Google Scholar] [CrossRef]
- Oehlke, K.; Behsnilian, D.; Mayer-Miebach, E.; Weidler, P.G.; Greiner, R. Edible Solid Lipid Nanoparticles (SLN) as Carrier System for Antioxidants of Different Lipophilicity. PLoS ONE 2017, 12, e0171662. [Google Scholar] [CrossRef]
- Mendoza-Muñoz, N.; Urbán-Morlán, Z.; Leyva-Gómez, G.; De La Luz Zambrano-Zaragoza, M.; Piñón-Segundo, E.; Quintanar-Guerrero, D. Solid Lipid Nanoparticles: An Approach to Improve Oral Drug Delivery. J. Pharm. Pharm. Sci. 2021, 24, 509–532. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, S.; Wang, J.; Chen, Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front. Nutr. 2021, 8, 783831. [Google Scholar] [CrossRef]
- Satapathy, M.K.; Yen, T.-L.; Jan, J.-S.; Tang, R.-D.; Wang, J.-Y.; Taliyan, R.; Yang, C.-H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021, 13, 1183. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Ana, R.D.; Fonseca, J.; Karczewski, J.; Silva, A.M.; Zielińska, A.; Souto, E.B. Lipid-Based Nanoparticulate Systems for the Ocular Delivery of Bioactives with Anti-Inflammatory Properties. Int. J. Mol. Sci. 2022, 23, 12102. [Google Scholar] [CrossRef]
- Montoto, S.S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef] [PubMed]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Formulation Design, Production and Characterisation of Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for the Encapsulation of a Model Hydrophobic Active. Food Hydrocoll. Health 2021, 1, 100024. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, K.; Mohapatra, H.; Sindhu, R.K.; Bulzan, M.; Cavalu, S.; Paneshar, G.; Elansary, H.O.; El-Sabrout, A.M.; Mahmoud, E.A.; et al. Supersaturation-Based Drug Delivery Systems: Strategy for Bioavailability Enhancement of Poorly Water-Soluble Drugs. Molecules 2022, 27, 2969. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Pople, P.V.; Singh, K.K. Development and Evaluation of Topical Formulation Containing Solid Lipid Nanoparticles of Vitamin A. AAPS PharmSciTech 2006, 7, E63–E69. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Jang, D.J.; Kim, J.H.; Park, J.Y.; Lim, J.S.; Lee, S.Y.; Lee, K.M.; Lim, S.J.; Kim, C.K. Topical Administration of Cyclosporin A in a Solid Lipid Nanoparticle Formulation. Pharmazie 2009, 64, 510–514. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; et al. The Onpattro Story and the Clinical Translation of Nanomedicines Containing Nucleic Acid-Based Drugs. Nat. Nanotechnol. 2019, 14, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.E.; Skakic, I.; Dekiwadia, C.; Shukla, R.; Taki, A.C.; Walduck, A.; Smooker, P.M. Solid Lipid Nanoparticle Carrier Platform Containing Synthetic TLR4 Agonist Mediates Non-Viral DNA Vaccine Delivery. Vaccines 2020, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Anderluzzi, G.; Schmidt, S.T.; Woods, S.; Gallorini, S.; Brazzoli, M.; Giusti, F.; Ferlenghi, I.; Johnson, R.N.; Roberts, C.W.; et al. Delivery of Self-Amplifying MRNA Vaccines by Cationic Lipid Nanoparticles: The Impact of Cationic Lipid Selection. J. Control. Release 2020, 325, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Marto, J.; Sangalli, C.; Capra, P.; Perugini, P.; Ascenso, A.; Gonçalves, L.; Ribeiro, H. Development and Characterization of New and Scalable Topical Formulations Containing N-Acetyl-d-Glucosamine-Loaded Solid Lipid Nanoparticles. Drug Dev. Ind. Pharm. 2017, 43, 1792–1800. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, N.; Lopez-Garcia, M.; Ambrose, D.; Lee, J.; Annelin, C.; Peterson, T. Development and Evaluation of Resveratrol, Vitamin E, and Epigallocatechin Gallate Loaded Lipid Nanoparticles for Skin Care Applications. Eur. J. Pharm. Biopharm. 2017, 117, 286–291. [Google Scholar] [CrossRef]
- Park, J.H.; Ban, S.J.; Ahmed, T.; Choi, H.S.; Yoon, H.E.; Yoon, J.H.; Choi, H.K. Development of DH-I-180-3 Loaded Lipid Nanoparticle for Photodynamic Therapy. Int. J. Pharm. 2015, 491, 393–401. [Google Scholar] [CrossRef]
- Sangsen, Y.; Wiwattanawongsa, K.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. Modification of Oral Absorption of Oxyresveratrol Using Lipid Based Nanoparticles. Colloids Surf. B Biointerfaces 2015, 131, 182–190. [Google Scholar] [CrossRef]
- Öztürk, A.A.; Aygül, A.; Şenel, B. Influence of Glyceryl Behenate, Tripalmitin and Stearic Acid on the Properties of Clarithromycin Incorporated Solid Lipid Nanoparticles (SLNs): Formulation, Characterization, Antibacterial Activity and Cytotoxicity. J. Drug Deliv. Sci. Technol. 2019, 54, 101240. [Google Scholar] [CrossRef]
- Zariwala, M.G.; Elsaid, N.; Jackson, T.L.; Corral López, F.; Farnaud, S.; Somavarapu, S.; Renshaw, D. A Novel Approach to Oral Iron Delivery Using Ferrous Sulphate Loaded Solid Lipid Nanoparticles. Int. J. Pharm. 2013, 456, 400–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatefi, L.; Farhadian, N. A Safe and Efficient Method for Encapsulation of Ferrous Sulfate in Solid Lipid Nanoparticle for Non-Oxidation and Sustained Iron Delivery. Colloids Interface Sci. Commun. 2020, 34, 100227. [Google Scholar] [CrossRef]
- Hamishehkar, H.; Shokri, J.; Fallahi, S.; Jahangiri, A.; Ghanbarzadeh, S.; Kouhsoltani, M. Histopathological Evaluation of Caffeine-Loaded Solid Lipid Nanoparticles in Efficient Treatment of Cellulite. Drug Dev. Ind. Pharm. 2015, 41, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Üner, M.; Karaman, E.F.; Aydoǧmuş, Z. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of Loratadine for Topical Application: Physicochemical Stability and Drug Penetration through Rat Skin. Trop. J. Pharm. Res. 2014, 13, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of MRNA Vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tran, V.; Loi Nguyen, T.; Moon, J.-Y.; Lee, Y.-C. Core-Shell Materials, Lipid Particles and Nanoemulsions, for Delivery of Active Anti-Oxidants in Cosmetics Applications: Challenges and Development Strategies. Chem. Eng. J. 2019, 368, 88–114. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of Hydrophobic and Low-Soluble Food Bioactive Compounds within Different Nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Schjoerring-Thyssen, J.; Olsen, K.; Koehler, K.; Jouenne, E.; Rousseau, D.; Andersen, M.L. Morphology and Structure of Solid Lipid Nanoparticles Loaded with High Concentrations of β-Carotene. J. Agric. Food Chem. 2019, 67, 12273–12282. [Google Scholar] [CrossRef]
- Kakkar, V.; Singh, S.; Singla, D.; Kaur, I.P. Exploring Solid Lipid Nanoparticles to Enhance the Oral Bioavailability of Curcumin. Mol. Nutr. Food Res. 2011, 55, 495–503. [Google Scholar] [CrossRef]
- Sandhu, S.K.; Kumar, S.; Raut, J.; Singh, M.; Kaur, S.; Sharma, G.; Roldan, T.L.; Trehan, S.; Holloway, J.; Wahler, G.; et al. Systematic Development and Characterization of Novel, High Drug-Loaded, Photostable, Curcumin Solid Lipid Nanoparticle Hydrogel for Wound Healing. Antioxidants 2021, 10, 725. [Google Scholar] [CrossRef]
- Santonocito, D.; Sarpietro, M.G.; Carbone, C.; Panico, A.; Campisi, A.; Siciliano, E.A.; Sposito, G.; Castelli, F.; Puglia, C. Curcumin Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A Preliminary Study. Molecules 2020, 25, 2991. [Google Scholar] [CrossRef]
- Shylaja, P.A.; Mathew, M.M. Preparation and Characterization of Alpha Tocopherol Loaded Solid Lipid Nanoparticles by Hot Homogenization Method. Int. J. Pharm. Pharm. Res. 2016, 7, 437–448. [Google Scholar]
- de Carvalho, S.M.; Noronha, C.M.; Floriani, C.L.; Lino, R.C.; Rocha, G.; Bellettini, I.C.; Ogliari, P.J.; Barreto, P.L.M. Optimization of α-Tocopherol Loaded Solid Lipid Nanoparticles by Central Composite Design. Ind. Crops Prod. 2013, 49, 278–285. [Google Scholar] [CrossRef]
- Geetha, T.; Kapila, M.; Prakash, O.; Deol, P.K.; Kakkar, V.; Kaur, I.P. Sesamol-Loaded Solid Lipid Nanoparticles for Treatment of Skin Cancer. J. Drug Target. 2015, 23, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I.P. Sesamol Loaded Solid Lipid Nanoparticles: A Promising Intervention for Control of Carbon Tetrachloride Induced Hepatotoxicity. BMC Complement. Altern. Med. 2015, 15, 142. [Google Scholar] [CrossRef] [Green Version]
- Lacatusu, I.; Badea, N.; Murariu, A.; Oprea, O.; Bojin, D.; Meghea, A. Antioxidant Activity of Solid Lipid Nanoparticles Loaded with Umbelliferone. Soft Mater. 2013, 11, 75–84. [Google Scholar] [CrossRef]
- Argimón, M.; Romero, M.; Miranda, P.; Mombrú, Á.W.; Miraballes, I.; Zimet, P.; Pardo, H. Development and Characterization of Vitamin A-Loaded Solid Lipid Nanoparticles for Topical Application. J. Braz. Chem. Soc. 2017, 28, 1177–1184. [Google Scholar] [CrossRef]
- Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer’s Disease: Formulation Development and Optimization. Nanomaterials 2021, 11, 391. [Google Scholar] [CrossRef]
- Ledinski, M.; Marić, I.; Peharec Štefanić, P.; Ladan, I.; Caput Mihalić, K.; Jurkin, T.; Gotić, M.; Urlić, I. Synthesis and In Vitro Characterization of Ascorbyl Palmitate-Loaded Solid Lipid Nanoparticles. Polymers 2022, 14, 1751. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Senthil, N.; Min, T. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front. Pharmacol. 2020, 11, 487. [Google Scholar] [CrossRef]
- da Silva Santos, V.; Ribeiro, A.P.B.; Santana, M.H.A. Solid Lipid Nanoparticles as Carriers for Lipophilic Compounds for Applications in Foods. Food Res. Int. 2019, 122, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, N.; Mandal, A.K.A. Pharmacokinetic, Toxicokinetic, and Bioavailability Studies of Epigallocatechin-3-Gallate Loaded Solid Lipid Nanoparticle in Rat Model. Drug Dev. Ind. Pharm. 2019, 45, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Andoyo, R.; Indiarto, R.; Lembong, E. Physicochemical Properties, Sensory Acceptability, and Antioxidant Activity of Chocolate Bar Fortified by Solid Lipid Nanoparticles of Gallic Acid. Int. J. Food Prop. 2022, 25, 1907–1919. [Google Scholar] [CrossRef]
- Mostafa, E.S.; Maher, A.; Mostafa, D.A.; Gad, S.S.; Nawwar, M.A.M.; Swilam, N. A Unique Acylated Flavonol Glycoside from Prunus persica (L.) Var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare. Antioxidants 2021, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Güney, G.; Kutlu, H.M.; Genç, L. Preparation and Characterization of Ascorbic Acid Loaded Solid Lipid Nanoparticles and Investigation of Their Apoptotic Effects. Colloids Surf. B Biointerfaces 2014, 121, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Veiga, M.; Costa, E.M.; Oliveira, A.L.S.; Madureira, A.R.; Pintado, M. Nanoencapsulation of Polyphenols towards Dairy Beverage Incorporation. Beverages 2018, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Shtay, R.; Keppler, J.K.; Schrader, K.; Schwarz, K. Encapsulation of (—)-Epigallocatechin-3-Gallate (EGCG) in Solid Lipid Nanoparticles for Food Applications. J. Food Eng. 2019, 244, 91–100. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Kulhari, H.; Pooja, D.; Gudem, S.; Bhargava, S.; Shukla, R.; Sistla, R. Encapsulation of Biophenolic Phytochemical EGCG within Lipid Nanoparticles Enhances Its Stability and Cytotoxicity against Cancer. Chem. Phys. Lipids 2016, 198, 51–60. [Google Scholar] [CrossRef]
- Ahangarpour, A.; Oroojan, A.A.; Khorsandi, L.; Kouchak, M.; Badavi, M. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxid. Med. Cell. Longev. 2018, 2018, 7496936. [Google Scholar] [CrossRef] [Green Version]
- Ahangarpour, A.; Oroojan, A.A.; Khorsandi, L.; Kouchak, M.; Badavi, M. Antioxidant, Anti-Apoptotic, and Protective Effects of Myricitrin and Its Solid Lipid Nanoparticles on Streptozotocin-Nicotinamideinduced Diabetic Nephropathy in Type 2 Diabetic Male Mice. Iran. J. Basic Med. Sci. 2019, 22, 1424–1431. [Google Scholar] [CrossRef]
- Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-Loaded Solid Lipid Nanoparticles versus Nanostructured Lipid Carriers: Evaluation of Antioxidant Potential for Dermal Applications. Int. J. Nanomed. 2012, 7, 1841–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J.L.C.; Reis, S. Novel Resveratrol Nanodelivery Systems Based on Lipid Nanoparticles to Enhance Its Oral Bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of Gastrointestinal Absorption of Quercetin by Solid Lipid Nanoparticles. J. Control. Release 2009, 133, 238–244. [Google Scholar] [CrossRef]
- Farboud, E.S.; Nasrollahi, S.A.; Tabbakhi, Z. Novel Formulation and Evaluation of a Q10-Loaded Solid Lipid Nanoparticle Cream: In Vitro and in Vivo Studies. Int. J. Nanomed. 2011, 6, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokce, E.H.; Korkmaz, E.; Tuncay-Tanriverdi, S.; Dellera, E.; Sandri, G.; Cristina Bonferoni, M.; Ozer, O. A Comparative Evaluation of Coenzyme Q10-Loaded Liposomes and Solid Lipid Nanoparticles as Dermal Antioxidant Carriers. Int. J. Nanomed. 2012, 7, 5109–5117. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Zhu, L.; Zhao, D.; Wang, Y.; Wang, X.; Zhou, W. Preparation and Evaluation of Ofloxacin-Loaded Palmitic Acid Solid Lipid Nanoparticles. Int. J. Nanomed. 2011, 6, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, X.; Liu, Z.; Okeke, C.I.; Li, N.; Zhao, H.; Aggrey, M.O.; Pan, W.; Wu, T. Preparation and Evaluation of Charged Solid Lipid Nanoparticles of Tetrandrine for Ocular Drug Delivery System: Pharmacokinetics, Cytotoxicity and Cellular Uptake Studies. Drug Dev. Ind. Pharm. 2014, 40, 980–987. [Google Scholar] [CrossRef]
- Ravanfar, R.; Tamaddon, A.M.; Niakousari, M.; Moein, M.R. Preservation of Anthocyanins in Solid Lipid Nanoparticles: Optimization of a Microemulsion Dilution Method Using the Placket-Burman and Box-Behnken Designs. Food Chem. 2016, 199, 573–580. [Google Scholar] [CrossRef]
- Trapani, A.; Mandracchia, D.; Tripodo, G.; Di Gioia, S.; Castellani, S.; Cioffi, N.; Ditaranto, N.; Esteban, M.A.; Conese, M. Solid Lipid Nanoparticles Made of Self-Emulsifying Lipids for Efficient Encapsulation of Hydrophilic Substances. AIP Conf. Proc. 2019, 2145, 020004. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.-C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E. Monoacylglycerols and Diacylglycerols for Fat-Based Food Products: A Review. Food Res. 2020, 4, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Indiarto, R. Bioactive Monolaurin as an Antimicrobial and Its Potential to Improve the Immune System and against COVID-19: A Review. Food Res. 2020, 4, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Feltes, M.M.C.; de Oliveira, D.; Block, J.M.; Ninow, J.L. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Technol. 2013, 6, 17–35. [Google Scholar] [CrossRef]
- Qushawy, M.; Nasr, A. Solid Lipid Nanoparticles (SLNs) as Nano Drug Delivery Carriers: Preparation, Characterization and Application. Int. J. Appl. Pharm. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Ud Din, F.; Zeb, A.; Shah, K.U. Zia-ur-Rehman Development, in-Vitro and in-Vivo Evaluation of Ezetimibe-Loaded Solid Lipid Nanoparticles and Their Comparison with Marketed Product. J. Drug Deliv. Sci. Technol. 2019, 51, 583–590. [Google Scholar] [CrossRef]
Characteristics | SLNs | NLCs |
---|---|---|
Ingredients | Solid lipids, surfactants, cosurfactants (optional), and active compounds | Solid lipids, liquid lipids, surfactants, cosurfactants (optional), and active compounds |
Active compounds | Hydrophilic and hydrophobic compounds | Suitable for hydrophobic compounds |
Crystal structure | Regular and perfect | Irregular, imperfection, lots of free space |
Lipid matrix ability to bind to active compounds | Little/slight | More than SLNs |
Application | Fortification | Supplementation |
Cost | Inexpensive | Expensive |
Fabrication difficulty | Easy | Difficult |
Method/Treatment | Materials | Product Characteristics | References |
---|---|---|---|
Ultrasonication | Lipids: stearic acid; Surfactant: Tween 80; Cosurfactant: NaDC; Active substance: Ciprofloxacin | The particle size of SLNs is about 163–369 nm, EE of 51.25–90.08%, depending on lipid composition and surfactant. | [87] |
Ultrasonication | Lipids: stearic acid;Active substance: Enrofloxacin | The SLN formed has an entrapment efficiency (EE) of 70.56% with diameter of 217.3 nm. | [88] |
Hot homogenization and ultrasonication | Lipid: stearic acid; Surfactant: Tween 60; Active substance: salicylic acid | The particle size of SLNs is about 194–255 nm, EE values are in the range of 49–69% | [89] |
Hot homogenization and ultrasonication | Lipid: stearic acid and fat rich in monolaurin; Surfactant: Tween 80; Active substance: Ferrous sulfate | The Z-average of SLNs ranges from 278.7 to 540.4 nm, polydispersity index of 0.88–1.24, and EE values are in the range of 99.7–99.9% | [45] |
High-shear homogenization and ultrasonication | Lipids: stearic acid; Surfactant: Quillaja saponin; and Active substance: Imatinib mesylate, | The particle size of SLNs ranges from 143.5 to 641.9 nm, EE of 41–66.2%, polydispersity index (PI) of 0.127–0.237, and Zeta potential (ZP) of −2.43–0.95 mV. | [90] |
High-shear homogenization and ultrasonication | Lipids: stearic acid; Surfactant: Tween80; Active substance: Voriconazole | The particle size of SLNs ranges from 286.6 to 313.1 nm, and ZP of −15 mV to −11 mV | [91] |
High speed homogenization and ultrasonication | Lipid: stearic acid, Surfactant: Poloxamer 188, and Active substance: candesartan cilexetil (CDC) | The optimal SLN particle size is 197.9 nm, and ZP is about −21.3 mV | [79] |
High speed homogenization and ultrasonication | Lipids: stearic acid, glycerol monostearate and Apifil®, Surfactants: Tego care and Planta care; active ingredients: Ceramide | Stable SLN ceramide has a loading capacity of 4% with Apifil® capacity of 4%, and Planta care 1% had a particle diameter of 113.5 nm and a polydispersity index (PI) of 0.263, and was stable for 2 months of storage with a ceramide content of 92.26%. | [52] |
Method | Advantages | Disadvantages | References |
---|---|---|---|
High-Pressure Homogenization | Low cost, can be produced on a small scale (laboratory) or large scale | It can cause damage to biomolecules, and on a large scale, it requires enormous energy and pressure. | [43,79] |
Ultrasonication/High-Speed Homogenization | Effectively reduces surface tension, the process is easy and sustainable, can be commercialized | There is a potential for metal contamination due to the high rotational speed of the tool, and large-scale production requires a high investment. | [7,43] |
High-shear homogenization | Can be done without the use of solvents, and the process is easy | The particle size is relatively large and less uniform. | [10,79] |
Solvent Evaporation Method | The resulting SLNs are stable and uniform, and commercialization can be carried out. | Requires a lot of energy, biomolecule damage can occur, and there is a potential for toxic solvents. | [46,60] |
Supercritical Fluid Technique | Does not require a solvent; the particles formed are powdery. | Cost is high. | [43,84] |
Double-Emulsion Method | Capable of incorporating hydrophilic components | Large-sized particles at the end of the fabrication | [43,46] |
Spray-Drying Technique | Lower cost than lyophilization | Possibility of particle aggregation due to high temperatures | [46,84] |
Field or Product Type | Fabrication Conditions | Product Characteristics | References |
---|---|---|---|
Skincare for hyperpigmentation |
|
| [137] |
Skincare |
| Resveratrol and Vitamin E show results by providing protection against UV-induced parts to prevent degradation, but EGCG does not show the same results. | [138] |
Photodynamic therapy |
| The incorporation of DH-I-180-3 into SLNs enhances targeting efficacy and enhances photocytotoxicity. | [139] |
Drug delivery |
| Increases the bioavailability of OXY up to 125% compared to OXY that is not coated by SLN. | [140] |
Drug delivery |
|
| [119] |
Drug delivery |
| The best particle size was 318.0 nm with a polydispersity index of 0.228–0.472, and the Clarithromycin-SLNs showed extended release up to 48 h. | [141] |
Drug delivery |
| Spherical-shaped particles with the best size of 745.8 nm, Polydispersity index of 0.776, and absorption efficiency of 75.29%. | [42] |
Iron delivery |
| The particle size of 300.3–495.1 nm, iron absorption indicates Caco-2 iron absorption up to 642.77 ng/mg cell protein or 24.9% greater than free ferrous sulphate, and ferrous sulphate-SLNs have the potential for iron delivery. | [142] |
Encapsulation |
|
| [121] |
Encapsulation |
| The particles are spherical in shape with a size of 358 nm, a polydispersity index of 0.154, and an entrapment efficiency of 92.3%. | [143] |
Fortification |
| Gallic acid-SLNs, which was fortified with 5% in chocolate bars, increased the antioxidant activity and total phenolic content with an IC50 of 174.24 and had good organoleptic characteristics. | [45] |
Skincare for cellulite |
| SLN containing caffeine showed good stability for 12 months of storage. | [144] |
Skin allergy medication |
|
| [145] |
DNA Vaccine Delivery |
| SLNs have particle uptake by cells within 3 h in the endosome compartment. SLNs were able to stimulate the expression of the pro-inflammatory cytokine TNF-α in THP-1 cells. Lipoplexes are compatible with being transfused efficiently in murine immune cells. | [135] |
mRNA Vaccine Delivery |
| Lipid nanoparticles elicit a strong immune response, and the tolerability of mRNA vaccines can be increased without affecting their potency. | [146] |
mRNA Vaccine Delivery |
| Lipid nanoparticles elicited strong humoral and cellular immune responses at a dose of 1.5 µg. Lipid nanoparticles have the potential to become an efficient method for mRNA vaccine delivery. | [136] |
Antioxidant Compound | Lipid Matrices | Fabrication Method | Characteristics of SLNs | References |
---|---|---|---|---|
β-Carotene | glyceryl monostearate, gelucire50/13, and phospholipid S-100 | hot homogenization process with high-shear mixer | SLN increased the stability of antioxidant activity more than 3 times at 90 days. The bioavailability and efficacy also improved. | [120] |
β-Carotene | fully hydrogenated sunflower oil | hot-melt high-pressure homogenization | β-Carotene formed 10 cis isomers, but did not affect the crystals of SLNs in the form of stable β-crystals. | [149] |
Curcumin | Compritol 888, Tween 80, lecithin, Polysorbate 80 | Micro-emulsification technique | Curcumin-SLN increased oral bioavailability and stability 32–155 times more than free curcumin, and sustained release. | [150] |
Curcumin | Compritol® 888 ATO, soya lecithin | Hot-high-pressure homogenization | Curcumin-SLN had an entrapment efficiency of 75%, polydispersity index of 0.143, particle size of <200 nm, and a significant antimicrobial effect. | [151] |
Curcumin | glycerol behenate (Compritol® 888 ATO) | Solvent evaporation method | Curcumin-pSLN has a high antioxidant activity of 3.73 ORAC Units compared to free curcumin of 1.6 ORAC Units, has a zeta potential of −30 mV, a particle size of less than 200 nm, and is stable during storage. | [152] |
Alpha-tocopherol | Stearic acid | Hot homogenization by a high-shear homogenizer | SLN-alpha tocopherol had an in vitro release of 74.33% after 8 h. SLN was spherical in size <1000 nm and EE up to 98.67%. | [153] |
Alpha-tocopherol | Glyceryl behenate (Compritol® 888) | Hot high homogenization with a high-pressure homogenizer | SLN-α-tocopherol has a particle size of 214.5 nm, zeta potential of −41.9 mV, α-tocopherol recovery rate of 75.4%, and was stable for 21 days at 6 °C, with polymorphic forms were α and β′. | [154] |
Alpha-tocopherol and Ferulic acid | Glyceryl tristearate | ultrasound-assisted hot emulsification | SLN-Tocopherol and SLN-Ferulic acid with a lading of 2.5 mg/g were stable for 15 weeks, and significant radical scavenging activity was maintained. | [121] |
Sesamol | Glyceryl monostearate, Sodium deoxycholate, and α-phosphatidylcholine | Microemulsion technique | Sesamol-SLN had an entrapment efficiency of 88.21% and a particle size of 127.9 nm. Application of the cream showed retention in the skin at minimum flux, and showed normalization of post-induced skin cancer. | [155] |
Sesamol | Compritol 888, Soy Lecithin, and Tween 80 | Microemulsion technique | Sesamol-SLN had a particle size of about 120.3 nm, and better hepatoprotection compared to free sesamol. Sesamol-SLN improved bioavailability, reduced toxicity and irritation, and controlled the effect of entrapped sesamol. | [156] |
Umbelliferone (7-hydroxycoumarin) | Glyceryl Stearate and n-Hexadecyl Palmitate | high-shear homogenization | SLN had a particle size of about 173.4 nm, good entrapment efficiency (60.70%), and antioxidant properties of 75%. | [157] |
Vitamin A | Cetyl alcohol, Tween 80, and Gelucire 44/14® | hot homogenization | Vitamin A-SLNs have an entrapment efficiency of >90%, a particle size of about 40 nm, an average size of 30–50 nm in the spherical form, and vitamin A-SLNs have stability >2 times compared to free vitamin A. | [158] |
Astaxanthin | lipid phase: stearic acid, surfactant: Poloxamer | solvent-diffusion method | Astaxanthin-SLNs have a particle size of <200 nm, were able to maintain the stability of astaxanthin during 6 months of storage, and were able to improve antioxidant capacity more than free astaxanthin. | [159] |
Ascorbyl Palmitate (AP) | Lipid phase: Glyceryl monostearate (GMS), Surfactant: Pluronic-F68 | Ultrasonic method | SLN-AP had a cytotoxic effect at lower concentrations than in the form of AA or DHA. Formulation of SLN-AP with 3% Pluronic F-68 produced SLNs with good physicochemical characteristics and stable antioxidants but need further optimization because of their intrinsic cytotoxicity. | [160] |
Antioxidant Compound | Lipid Matrices | Fabrication Method | Characteristics of SLNs | References |
---|---|---|---|---|
Epigallocatechin-3-gallate (EGCG) | Cocoa butter | Hot homogenization method | EGCG-SLNs had an entrapment efficiency of about 68.5%, particle size between 108 and 122 nm, and increased shelf life. | [168] |
Epigallocatechin-3-gallate (EGCG) | Glycerol monostearate, poloxamer 188, polyoxyethylene stearate | Hot melt homogenization | SLN-EGCG had a particle size of about 300.2 nm, an entrapment efficiency of about 81%, and was able to improve the bioavailability and stability of EGCG. | [163] |
Epigallocatechin-3-gallate (EGCG) | Stearic acid, Tripalmitin, and tristearin | Emulsion-solvent evaporation method | EGCG-SLNs had cytotoxicity of 3.8 folds higher against human prostate cancer cells of DU-145 and 8.1 folds higher against human breast cancer cells of MDA-MB 231 compared to free EGCG. | [169] |
Myricitrin | Compritol®888 and oleic acid | Cold homogenization | SLN-myricitrin had antioxidant, antidiabetic, and antiapoptotic effects in vivo and in vitro. | [170] |
Myricitrin | Compritol®888 and oleic acid | Cold homogenization | SLN-myricitrin reduced oxidative stress and increased antioxidant enzymes level | [171] |
Resveratrol | Glyceryl behenate (Compritol® 888) | High-shear homogenization | Resveratrol-SLNs had an antioxidant activity that can reduce ROS effectively. Resveratrol-SLNs had a particle size of about 287.2 nm, ZP was −15.3 mV, and the drug was trapped in the SLNs efficiently. | [172] |
Resveratrol | Cetyl palmitate, polysorbate 60 | High-shear homogenization and the ultrasound method | Resveratrol-SLNs increased oral bioavailability, stability, and sustained release. | [173] |
Gallic acid | Stearic acid and fat rich in monolaurin | Double emulsion assisted by high-speed homogenization and ultrasonication | Gallic acid-SLNs had particle size of 224.4–3596.3 nm, entrapment efficiency of about 93.75%, polydispersity index of about 0.85, and were able to increase the antioxidant activity of chocolate bar. | [164] |
Quercetin | Glyceryl monostearate, Tween-80, Soya Lecithin | Emulsification and low-temperature solidification | SLN-Quercetin had a spherical shape, with zeta potential of −32.2 mV, drug loading of 13,2%, entrapment efficiency of about 91.1%, a particle size of 155.3 nm, and relative bioavailability of 571.4%. | [174] |
Phenolic and flavonoids of Prunus persica (L.) ethanolic extract (PPEE) | Glyceryl monostearate, Tween 80 | Solvent evaporation method | PPEE-SLNs increased the antioxidant activity, anti-tyrosinase, anti-collagenase, and anti-elastase more than free PPEE. | [165] |
Coenzyme Q-10 | Cetyl palmitate or stearic acid | High-speed & high-pressure homogenization | Particle sizes were 100 nm and 50 nm, with polydispersity index between 0.20 and 0.11 | [175] |
Coenzyme Q-10 | Glyceryl behenate (Compritol® 888) | High-shear homogenization | SLN-Coenzyme Q10 was able to enhance cell proliferation more than free Coenzyme Q10, but no better than liposomes; less effective against ROS accumulation. | [176] |
Ofloxacin | Palmitic acid | Hot homogenization and ultrasonication | SLNs had an encapsulation efficiency of 41.36%, loading capacity of 4.40%, diameter of 156.33 nm, zeta potential of about −22.70 mv, and polydispersity index of 0.26. SLNs increased the residence time up to 43.44 h and improved the bioavailability 2.27-fold. | [177] |
Tetrandrine | Glyceryl behenate, Stearyl amine, and PEG stearate | Emulsion evaporation-solidification at low temperature | Tetrandrine-loaded SLNs retained the drug entity better than free tetrandrine, had an average diameter of 18.77 nm, a zeta potential of −8.71, an AUC value 2-fold higher than free tetrandrine, and had no significant toxicity. | [178] |
Anthocyanins | Palmitic acid, Pluronic F127, Span 85, and egg lecithin | Microemulsion-dilution method | Anthocyanin-SLNs had an entrapment efficiency of about 89.2, a particle size of 455 nm, and revealed spherical morphology. | [179] |
Ascorbic acid (AA) | Compritol® and Tween 80 | hot homogenization method | AA-SLNs showed sustained release, high cytotoxic activity against H-Ras 5RP7 cells, high entrapment efficiency, more efficient cellular uptake, and induced apoptosis. | [166] |
Grape seed extract (GSE) rich in Proanthocyanidins | Gelucire® 50/13 and Tween 85 | melt-emulsification method | GSE-SLNs had good loading efficiency of about 0.058 mg/mg, a particle size of 243, stable antioxidant activity, and favorable properties for lung delivery. | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subroto, E.; Andoyo, R.; Indiarto, R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants 2023, 12, 633. https://doi.org/10.3390/antiox12030633
Subroto E, Andoyo R, Indiarto R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants. 2023; 12(3):633. https://doi.org/10.3390/antiox12030633
Chicago/Turabian StyleSubroto, Edy, Robi Andoyo, and Rossi Indiarto. 2023. "Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds" Antioxidants 12, no. 3: 633. https://doi.org/10.3390/antiox12030633