Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.1.1. Collection and Preparation
2.1.2. Ultrasound-Assisted Extraction
2.1.3. Liquid/Liquid Extraction
2.2. Total Phenolic Content, Radical Scavenging, and Antioxidant Activity
2.2.1. Total Phenolic Content (TPC)
2.2.2. Determination of DPPH Radical Scavenging Activity
2.2.3. Determination of Ferric Reducing Antioxidant Power
2.2.4. Antioxidant Power 1 (AOP1) Assay on Keratinocytes
2.2.5. Online RP-HPLC-DPPH
2.3. UHPLC-MS/MS Analysis
2.4. Molecular Network
3. Results and Discussion
3.1. Extraction
3.2. Total Phenolic Content (TPC)
3.3. DPPH Radical Scavenging Activity
3.4. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.5. Scavenging and Antioxidant Properties of Liquid/Liquid Extracts of F. prolixa
3.6. Antioxidant Power Assay on F. prolixa Extract
3.7. Online RP HPLC DPPH Assay
3.8. UHPLC-MS/MS and Molecular Network
N° | Annotation | Molecular Formula | RT (min) | IC | MS | MSMS | Ref | Plants | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MM N° + | [M+H]+ (Error in ppm) | MM N° − | [M-H]− (Error in ppm) | [M+H]+ (Relative Intensity in %) | [M-H]− (Relative Intensity in %) | |||||||
1 | Lithospermoside | C14H19NO8 | 0.62 | L2b | 3 | 330.1184 (+0.2) | 4 | 328.1037 (−0.3) | 168.0653 (100); 122.0599 (33); 105.0333 (20); 330.1186 (15) | 148.0406 (100); 130.0301 (95); 283.2646 (88); 146.0243 (81); 161.0450 (55) | [41,47,48] | C. subcordata |
2 | Pantothenic acid | C9H17NO5 | 1.04 | L2b | 21 | 220.1183 (+1.6) | ND | ND | 90.0552 (100); 202.1067 (37); 116.0349 (35); 184.0964 (32); 103.0750 (24); 95.0494 (22) | ND | [49] | F. prolixa C. subcordata |
3 | Prunasin amide | C14H19NO7 | 1.39 | L3 | 36 | 314.124 (+1.8) | ND | ND | 152.0708 (100); 107.0501 (15); 194.0799 (10); 296.1128 (10); 134.0601 (9); 314.1247 (7) | ND | [50] | C. subcordata |
4 | Sinapic acid | C11H12O5 | 1.80 | L2a | 51 | 225.0761 (+1.6) | ND | ND | 91.0542 (100); 147.0439 (93); 119.0490 (80); 95.0492 (34); 175.0387 (32); 123.0441 (19); 189.0545 (16) | ND | [51] | G. taitensis |
5 | Gardenoside | C17H24O11 | 1.80 | L2a | ND | ND | 29 | 403.1245 (−0.2) | ND | 127.0403 (100); 241.0699 (70); 177.0557 (41); 89.0246 (34) | [39,52,53] | G. taitensis |
6 | Chlorogenic acid (5-CQA) | C16H18O9 | 3.46 | L1 | 71 | 355.1026 (+0.7) | 46 | 353.0877 (−0.3) | 163.0388 (100); 135.0437 (12); 145.0283 (7); 117.0334 (4) | 191.0559 (100); 85.0294 (4); 127.0403 (2) | [39,46] | F. prolixa G. taitensis |
7 | Cryptochlorogenic acid (4-CQA) | C16H18O9 | 4.22 | L2a | 89 | 355.1032 (+2.4) | 58 | 353.0872 (−1.7) | 163.0394 (00); 135.0443 (14); 145.0286 (8); 193.0501 (5) | 173.0452 (100); 135.0446 (88); 179.0359 (81); 191.0552 (65) | [54] | F. prolixa G. taitensis |
8 | Procyanidin B1 or B2 | C30H26O12 | 5.06 | L2a | 94 | 579.1505 (+1.4) | 64 | 577.1351 (−0.1) | 127.0390 (100); 139.0390 (43); 287.0551 (35); 163.0390 (34); 289.0712 (33); 291.0855 (33); 271.0605 (30); 275.0543 (24); 247.0592 (23) | 289.0714 (100); 407.0765 (86); 125.0245 (47); 425.0857 (46); 577.1339 (31); 426.0897 (24); 451.1021 (24); 245.0822 (20) | [36,46,55,56] | F. prolixa C. inophyllum leaves |
9 | Epicatechin | C15H14O6 | 5.41 | L2a | 102 | 291.0867 (+1.3) | 70 | 289.0716 (−0.6) | 139.0390 (100); 123.0440 (62); 147.0440 (16); 207.0650 (14); 165.0543 (12) | 123.0450 (100); 109.0285 (81); 137.0235 (52); 151.0390 (52); 245.0807 (41); 121.0292 (40); 125.0237 (39); 149.0247 (38); 205.0508 (36) | [46,57,58] | F. prolixa C. inophyllum leaves |
10 | Geniposide | C17H24O10 | 5.43 | L2a | ND | [M+NH4]+ 406.1709 | ND | ND | 209.0810 (100); 149.0596 (75); 227.0913 (46); 121.0649 (39); 177.0547 (38) | ND | [39,59] | G. taitensis |
11 | 5-O-caffeoylshikimic acid | C16H16O8 | 5.65 | L2a | 114 | 337.0917 (−0.3) | 80 | 335.0771 (−0.4) | 163.0387 (100); 135.0440 (16); 145.0281 (7); 117.0336 (5); 89.0384 (3) | 135.0450 (100); 179.0349 (81); 161.0245 (27); 133.0293 (16); 93.0342 (9) | [60] | F. prolixa |
12 | Procyanidin type C | C45H38O18 | 6.26 | L2a | 127 | 867.2144 (1.5) | 96 | 865.1986 (+0.1) | 289.0705 (100); 247.0599 (58); 127.0388 (49); 275.0544 (35); 163.0385 (34); 409.0918 (32); 579.1512 (31) | 865.1976 (100); 287.0559 (78); 407.0757 (67); 289.0716 (65); 577.1346 (60); 575.1208 (48); 425.0879 (48); 125.0242 (43); 451.1039 (32); 413.0849 (30) | [61,62] | F. prolixa |
13 | Icariside B5 | C19H32O8 | 6.70 | L2b | 143 | 389.2179 (−0.5) | ND | ND | 209.1531 (100); 191.1436 (55); 149.0962 (35); 173.1327 (27); 163.1470 (23) | ND | [63] | C. inophyllum leaves |
14 | Rutin | C27H30O16 | 7.45 | L2a | 158 | 611.1609 (+0.4) | 122 | 609.1465 (+0.6) | 303.0504 (100); 129.0551 (8); 85.0285 (7); 465.1044 (4) | 300.0275 (100); 609.1464 (85); 271.0254 (3); 178.9994 (2); 151.0036 (1); 255.0309 (1) | [39,64,65,66] | C. subcordata G. taitensis |
15 | Quercetin-O-hexose | C21H20O12 | 7.58 | L2a | 161 | 465.1031 (+0.7) | 127 | 463.088 (−0.4) | 303.0500 (100); 85.0282 (7); 145.0494 (5); 127.0389 (4); 97.0288 (3); 91.0396 (1) | 300.0272 (100); 463.0879 (54); 271.0243 (25); 255.0299 (10) | [39,67,68] | C. subcordata G. taitensis |
16 | 7,8,11-trihydroxyguai-4-en-3-one-8-O-β-D-glucopyranoside | C21H34O9 | 7.86 | L2a | 165 | 431.2282 (+1.5) | 133 | 429.2129 (−0.2) | 269.1851 (100); 251.1644 (57); 233.1533 (44); 163.1117 (23); 137.0962 (15); | 174.9579 (100); 209.1232 (92) | [40,69] | G. taitensis |
17 | Quercetin 3-malonylglucoside | C24H22O15 | 8.02 | L2a | 166 | 551.104 (+1.5) | 137 | 549.0888 (+0.4) | 303.0502 (100); 127.0387 (14); 159.0293 (7); 145.0496 (7); 109.0284 (6) | 300.0283 (100); 505.0992 (67); 271.0268 (1) | [70] | C. subcordata |
18 | Quercetin- O-rhamnoside | C21H20O11 | 8.34 | L2a | 171 | 449.1081 (+0.6) | 145 | 447.093 (−0.6) | 303.0500 (100); 85.0281 (21); 129.0543 (15); 71.0488 (8) | 300.0271 (100); 447.0929 (51); 271.0242 (26); 255.0295 (13) | [36,71,72] | C. subcordata C. inophyllum leaves |
19 | Rosmarinic acid | C18H16O8 | 8.77 | L2a | 187 | 361.0922 (+1.1) | 153 | 359.0772 (−0.1) | 163.0391 (100); 135.0441 (19); 139.0390 (9); 145.0287 (7); 181.0495 (5); 117.0337 (4); 89.0385 (2) | 161.0242 (100); 197.0454 (36); 135.0450 (30); 133.0294 (28); 179.0349 (20); 123.0448 (14); 72.9931 (13) | [45,73,74] | C. subcordata |
20 | Kaempferol O-malonylglucoside | C24H22O14 | 8.86 | L2a | 193 | 535.1092 (+1.8) | ND | ND | 287.0553 (100); 127.0391 (14); 145.0495 (7); 159.0287 (6); 109.0287 (6) | ND | [75] | C. subcordata |
21 | 3,5-di-O-caffeoyl-4-O-(3-hydroxy, 3-methyl)glutaroylquinic acid | C31H32O16 | 9.17 | L2a | 198 | 661.1764 (+0.1) | 163 | 659.1616 (−0.2) | 163.0393 (100); 301.0927 (5); 135.0445 (2); 355.1032 (2); 337.0919 (2); 145.0286 (2) | 497.1298 (100); 335.0771 (40); 191.0559 (37); 161.0454 (35); 335.0974 (21); 659.1616 (19); 353.0875 (16) | [39,76,77] | G. taitensis |
22 | Kaempferol- O-rhamnoside | C21H20O10 | 9.21 | L2a | 202 | 433.1127 (−0.5) | 166 | 431.0977 (−1.6) | 287.0549 (100); 85.0279 (25); 129.0540 (22) | 285.04 (100); 255.0292 (40); 227.0367 (38); 431.0974 (37) | [78] | C. inophyllum leaves |
23 | Lithospermate B | C36H30O16 | 9.64 | L2a | 209 | 719.1613 (+0.9) | 167 | 717.1456 (−0.7) | 181.0496 (100); 323.0553 (71); 295.0606 (53); 139.0390 (36); 521.1081 (34) | 321.0399 (100); 519.0931 (97); 339.0509 (48); 295.0600 (17) | [79,80] | C. subcordata |
24 | Curcumalongin A | C20H16O6 | 11.63 | L2a | 233 | 353.1024 (+1.2) | 191 | 351.0877 (+0.8) | 353.1022 (100); 147.0446 (22); 153.0546 (18); 166.0260 (16); 149.0233 (9); 121.0287 (8); 150.0313 (7); 338.0804 (6) | 351.0880 (100); 279.0660 (94); 308.0698 (90); 336.0657 (73); 291.0671 (63); 143.0505 (44) | [38] | C. longa |
25 | Bisdemethoxycurcumin (keto form) | C19H16O4 | 11.66 | L2a | ND | 309.1126 (+1.5) | 192 | 307.0979 (+1.0) | 147.0442 (100); 119.0490 (22); 91.0543 (6) | 145.0294 (100); 119.0505 (65); 117.0346 (49); 161.0611 (26); 143.0502 (16); 214.9273 (10) | [38] | C. longa |
26 | Curcumalongin B | C21H18O7 | 11.98 | L2a | 237 | 383.1129 (+1.0) | 200 | 381.0985 (+1.4) | 383.1129 (100); 153.0546 (13); 149.0233 (7); 177.0550 (6); 163.0385 (6); 294.0881 (5); 145.0287 (5) | 381.0985 (100); 366.0756 (63); 277.0505 (36); 309.0773 (34); 295.0609 (31); 267.0681 (24); 338.005 (23) | [38] | C. longa |
27 | Demethoxycurcumin (keto form) | C20H18O5 | 12.06 | L2a | ND | 339.1230 (+0.9) | 202 | 337.1083 (+0.5) | 177.0547 (100); 147.0441 (66); 145.0285 (32); 119.0495 (11) | 145.0293 (100); 175.0404 (77); 160.0161 (57); 119.0501 (55); 117.0353 (45) | [38] | C. longa |
28 | Curcumin (keto form) | C21H20O6 | 12.44 | L2a | ND | 369.1337 (+1.2) | 207 | 367.1195 (+2.1) | 177.0550 (100); 145.0287 (39); 117.0336 (12) | 175.0404 (100); 160.0172 (83); 134.0378 (28); 132.0218 (23); | [38] | C. longa |
29 | Centaureidin | C18H16O8 | 12.86 | L2b | 250 | 361.0924 (+1.7) | 211 | 359.0773 (+0.2) | 361.0923 (100); 303.0501 (53); 331.0439 (17); 346.0687 (13); 345.0618 (11); 328.0593 (9) | 344.0550 (100); 329.0307 (80); 286.0119 (80); 301.0378 48); 359.0772 (39); 258.0170 (37) | [81] | G. taitensis |
30 | Amentoflavone | C30H18O10 | 13.54 | L2a | 257 | 539.0986 (+2.5) | 216 | 537.0834 (+1.3) | 539.0986 (100); 403.0453 (8); 377.0662 (7); 387.0876 (3); 497.0882 (2); 421.0565 (2); 335.0548 (2) | 537.0833 (100); 375.0514 (80); 417.0616 (22); 376.0545 (19); 331.0612 (12) | [19,82] | C. inophyllum leaves |
31 | 2,3-dihydro amentoflavone | C30H20O10 | 14.01 | L2a | 274 | 541.1136 (+1.3) | 231 | 539.0983 (+0.2) | 389.1039 (100); 541.1131 (63); 153.0182 (41); 171.0293 (28) | 413.0663 (100); 387.0870 (76); 539.0982 (46); 537.0840 (29); 251.0355 (26); 225.0551 (25) | [83,84] | C. inophyllum leaves |
32 | Chikusetsusaponin iva | C42H66O14 | 14.54 | L2a | ND | ND | 239 | 793.4371 (−1.1) | ND | 793.4372 (100); 631.3829 (6); 569.3832 (2) | [85] | G. taitensis |
33 | Bisdemethoxycurcumin (enol form) | C19H16O4 | 15.69 | L2a | 309 | 309.1129 (+2.5) | 280 | 307.0978 (+0.7) | 147.0445 (100); 225.0918 (46); 119.0497 (39); 91.0546 (12) | 119.0505 (100); 143.0504 (25); 187.0401 (7) | [38,86] | C. longa |
34 | Demethoxycurcumin (enol form) | C20H18O5 | 16.11 | L2a | 321 | 339.1238 (+3.2) | 292 | 337.1087 (+1.6) | 147.0446 (100); 177.0553 (85); 255.1026 (68); 145.0291 (41); 119.0497 (29); 117.0341 (18); 223.0763 (16) | 119.0505 (100); 134.0375 (12); 158.0374 (11); 173.0611 (10); 143.0503 (9); 217.0509 (6); 149.0609 (6); 202.0272 (4) | [38,86] | C. longa |
35 | Curcumin (enol form) | C21H20O6 | 16.53 | L2a | 329 | 369.134 (+2.0) | 300 | 367.1187 (0) | 177.0549 (100); 145.0287 (54); 285.1127 (30); 117.0338 (18); 161.0603 (12) | 134.0374 (100); 149.0609 (55); 173.0609 (24); 158.0375 (22); 217.0509 (12) | [38,86] | C. longa |
36 | Jacareubin | C18H14O6 | 16.80 | L2a | 335 | 327.0869 (+1.8) | 305 | 325.0721 (+1.0) | 327.0871 (100); 273.0407 (33); 257.0460 (13); 285.0403 (11) | 325.0720 (100); 309.0405 (23); 295.0257 (9); 310.0466 (8); 267.0306 (4) | [87,88] | C. inophyllum leaves |
37 | Inophyllum G | C25H24O5 | 20.27 | L3 | 396 | 405.1701 (+1.6) | 350 | 403.155 (−0.2) | 387.1601 (100); 349.1072 (33); 405.1701 (27) 311.0548 (19); 345.1122 (18) | 403.1554 (100); 347.0925 (46); 348.0968 (11); 303.1034 (9) | [34] | C. inophyllum leaves |
38 | Tomentolide A | C25H22O5 | 20.43 | L3 | 401 | 403.1547 (+1.7) | ND | ND | 403.1547 (100); 347.0914 (77); 365.1015 (12); 293.0432 (11); 171.0448 (10) | ND | [35] | C. inophyllum leaves |
39 | Calophyllic acid | C25H24O6 | 20.55 | L2a | 409 | 421.1653 (+1.7) | 353 | 419.1496 (−1.0) | 403.1538 (100); 347.0913 (56); 377.1746 (46); 321.1121 (31) | 375.1592 (100); 319.0958 (12); 419.1489 (11) | [34] ID | C. inophyllum nuts C. inophyllum leaves |
40 | 12-oxocalanolide A or B | C22H24O5 | 20.64 | L3 | 423 | 369.1695 (−0.7) | ND | ND | 369.1695 (100); 285.1121 (45); 341.1746 (19); 313.1056 (14); 257.1165 (9); 243.0637 (8) | ND | [21] | C. inophyllum nuts |
41 | Calanolide D | C22H24O5 | 21.06 | L2a | 448 | 369.1694 (−0.7) | ND | ND | 369.1695 (100); 285.1121 (29); 341.1739 (21); 313.1075 (9); 189.1273 (9); 257.1155 (7) | ND | [21] ID | C. inophyllum nuts |
42 | Calanolide A | C22H26O5 | 21.15 | L3 | 456 | 371.1847 (−1.6) | ND | ND | 353.1741 (100); 371.1847 (17); 311.1270 (12); 283.0966 (7); 325.1800 (6) | ND | [21,31] | C. inophyllum nuts |
43 | Soulattrolone | C25H22O5 | 21.16 | L2b | 458 | 403.154 (0) | ND | ND | 403.1534 (100); 347.0911 (64); 365.1017 (8); 293.0439 (5); 319.0950 (5) | ND | [89] | C. inophyllum nuts C. inophyllum leaves |
44 | Tamanolide E | C23H26O5 | 21.28 | L2a | 469 | 383.1855 (+0.5) | ND | ND | 383.149 (100); 327.1226 (51); 299.1277 (27); 355.1902 (25); 328.1254 (11); 269.0804 (9); 281.1163 (7) | ND | ID | C. inophyllum nuts C. inophyllum leaves |
45 | Calanolide B | C22H26O5 | 21.33 | L3 | 476 | 371.1855 (+0.5) | ND | ND | 353.1745 (100); 371.1849 (42); 311.1278 (16); 325.1794 (8); 283.1321 (7) | ND | [21,31] | C. inophyllum nuts |
46 | Inophyllum A or D | C25H24O5 | 21.47 | L2b | 484 | 405.1691 (−1.4) | ND | ND | 387.1595 (100); 405.1701 (17); 345.1129 (15); 317.0821 (21) | ND | [34] | C. inophyllum nuts C. inophyllum leaves |
47 | Caledonic acid | C27H38O6 | 21.50 | L3 | 487 | 459.2737 (−0.9) | 389 | 457.2578 (−3.9) | 275.1275 (100); 335.1485 (75); 317.1380 (69); 233.0804 (24); 336.1520 (15) | 457.2573 (100); 315.1587 (80); 301.1425 (52); 413.2671 (22) | [90] | C. inophyllum nuts |
48 | Inophyllum E | C25H22O5 | 21.54 | L2a | 492 | 403.154 (0) | ND | ND | 403.1537 (100); 347.0911 (61); 387.1580 (7); 293.0443 (7); 365.1018 (6); 319.0961 (5) | ND | [21,34,91] ID | C. inophyllum nuts C. inophyllum leaves |
49 | Calophyllolide | C26H24O5 | 21.64 | L2a | 497 | 417.1696 (−0.1) | ND | ND | 417.1692 (100); 361.1066 (57); 331.0599 (14); 362.1099 (13); 329.0803 (11) | ND | [34,91] ID | C. inophyllum nuts C. inophyllum leaves |
50 | Inophyllum P | C25H24O5 | 21.70 | L2a | 510 | 405.1688 (−2.1) | ND | ND | 405.1676 (100); 387.1594 (33); 345.1129 (6); 317.0815 (4) | ND | [21,34,91] ID | C. inophyllum nuts C. inophyllum leaves |
51 | Tamanolide C | C23H26O5 | 21.69 | L2a | 506 | 383.1851 (−0.5) | ND | ND | 383.1851 (100); 355.1904 (56); 299.1277 (43); 281.1175 (15); 287.1278 (14) | ND | ID | C. inophyllum nuts |
52 | 12-Methoxycalanolide A | C23H28O5 | 21.81 | L3 | 516 | 385.2007 (−0.7) | ND | ND | 367.1905 (100); 385.2007 (23); 339.1952 (19); 295.1326 (14) | ND | [31] | C. inophyllum nuts |
53 | Tamanolide | C24H28O5 | 21.85 | L2a | 517 | 397.2007 (−0.6) | ND | ND | 397.2008 (100); 369.2056 (35); 313.1432 (26); 341.1381 (23); 370.2091 (10); 339.1590 (8); 283.0964 (6); 245.0806 (6) | ND | [21] ID | C. inophyllum nuts |
54 | 12-Methoxycalanolide B | C23H28O5 | 21.97 | L3 | 530 | 385.2006 (−0.9) | ND | ND | 367.1901 (100); 385.2006 (59); 339.1950 (25); 295.1327 (13) | ND | [31] | C. inophyllum nuts |
55 | Inocalophyllin B 1 | C32H46O6 | 23.61 | L2a | 604 | 527.3363 (−0.8) | 461 | 525.3205 (−3.2) | 335.1487 (100); 275.1276 (84); 317.1382 (73); 318.1415 (16); 276.1310 (15); 233.0805 (10) | 525.3205 (100); 383.2219 (36); 369.2061 (20); 481.3322 (18) | [32] ID | C. inophyllum nuts |
56 | Inocalophyllin A | C35H44O6 | 23.64 | L2b | 606 | 561.3209 (−0.3) | 466 | 559.3056 (−1.6) | 369.1333 (100); 351.1227 (64); 309.1122 (56); 221.0808 (53); 233.0809 (27) | 559.3049 (100); 355.1907 (19); 323.1283 (16); 446.2451 (13); 471.3243 (10); | [32] | C. inophyllum nuts C. inophyllum leaves |
57 | Inocalophyllin B 2 | C32H46O6 | 23.88 | L2a | 619 | 527.3373 (+1.1) | 473 | 525.3212 (−1.8) | 317.1385 (100); 335.1496 (76); 275.1281 (75); 336.1526 (30); 276.1314 (25); 69.0697 (24); 233.0810 (20) | 525.3206 (100); 383.2216 (56); 369.2057 (33) | [32] ID | C. inophyllum nuts C. inophyllum leaves |
58 | Linoleic acid | C18H32O2 | 24.03 | L2a | 629 | 281.2477 (+0.7) | 484 | 279.2322 (−2.7) | 97.1011 (100); 83.0851 (69); 95.0857 (64); 109.1017 (55) | 279.2325 (100); 146.9580 (1) | [92] | C. inophyllum nuts |
59 | Inocalophyllin B 3 | C32H46O6 | 24.60 | L2a | 660 | 527.3368 (+0.2) | 498 | 525.3218 (−0.7) | 335.1492 (100); 275.1279 (92); 317.1384 (89); 276.1313 (20); 318.1418 (18); 459.2743 (17); 233.0807 (13); 69.0698 (13) | 525.3209 (100); 333.1338 (50); 387.1805 (13); 334.1376 (12); 219.0658 (12) | [32] ID | C. inophyllum nuts |
60 | Pheophorbide A | C35H36N4O5 | 24.73 | L2b | 668 | 593.2764 (+0.9) | ND | ND | 593.2761 (100); 533.2560 (18); 534.2571 (26); 460.2277 (3); | ND | [93] | C. inophyllum leaves C. subcordata |
61 | Inocalophillin B methyl ester | C33H48O6 | 25.15 | L3 | 689 | 541.3519 (−0.9) | 520 | 539.3368 (−1.9) | 349.1642 (100); 331.1539 (87); 289.1434 (86) | 539.3375 (100); 347.1490 (51); 348.1534 (14); 303.1585 (14) | [32] | C. inophyllum nuts |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, M.-G. Oxidative Stress and Antioxidant Strategies in Dermatology. Redox Rep. Commun. Free Radic. Res. 2016, 21, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef] [PubMed]
- Ndwiga, D.W.; MacMillan, F.; McBride, K.A.; Simmons, D. Lifestyle Interventions for People with, and at Risk of Type 2 Diabetes in Polynesian Communities: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2018, 15, 882. [Google Scholar] [CrossRef]
- Pétard, P. Plantes Utiles de Polynésie et Raau Tahiti; Edition Haere po no Tahiti: Papeete, French Polynesia, 1986; ISBN 978-2-904171-06-21. [Google Scholar]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Pétard, P. Raau Tahiti, Plantes Médicinales Polynésiennes et Remèdes Tahitiens; (Technical Document); South Pacific Commission: Nouméa, New Caledonia, 1972; Volume 167. [Google Scholar]
- Girardi, C.; Butaud, J.F.; Ollier, C.; Ingert, N.; Weniger, B.; Raharivelomanana, P.; Moretti, C. Herbal Medicine in the Marquesas Islands. J. Ethnopharmacol. 2015, 161, 200–213. [Google Scholar] [CrossRef]
- Moretti, C.; Butaud, J.F.; Girardi, C.; Ollier, C.; Ingert, N.; Raharivelomanana, P.; Weniger, B. Médecine et pharmacopée végétale traditionnelles aux Iles Marquises (Polynésie française). J. Ethnopharmacol. 2015, 53, 7–27. [Google Scholar]
- Hosry, L.E.; Boyer, L.; Garayev, E.E.; Mabrouki, F.; Bun, S.-S.; Debrauwer, L.; Auezova, L.; Cheble, E.; Elias, R. Chemical Composition, Antioxidant and Cytotoxic Activities of Roots and Fruits of Berberis libanotica. Nat. Prod. Commun. 2016, 11, 1934578X1601100523. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Breaud, C.; Lallemand, L.; Mares, G.; Mabrouki, F.; Bertolotti, M.; Simmler, C.; Greff, S.; Mauduit, M.; Herbette, G.; Garayev, E.; et al. LC-MS Based Phytochemical Profiling towards the Identification of Antioxidant Markers in Some Endemic Aloe Species from Mascarene Islands. Antioxidants 2023, 12, 50. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gironde, C.; Rigal, M.; Dufour, C.; Furger, C. AOP1, a New Live Cell Assay for the Direct and Quantitative Measure of Intracellular Antioxidant Effects. Antioxidants 2020, 9, 471. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, E96. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Ho, R.; Butaud, J.-F.; Filaire, E.; Ranouille, E.; Berthon, J.-Y.; Raharivelomanana, P. A Selection of Eleven Plants Used as Traditional Polynesian Cosmetics and Their Development Potential as Anti-Aging Ingredients, Hair Growth Promoters and Whitening Products. J. Ethnopharmacol. 2019, 245, 112159. [Google Scholar] [CrossRef]
- Prasad, J.; Shrivastava, A.; Khanna, A.K.; Bhatia, G.; Awasthi, S.K.; Narender, T. Antidyslipidemic and Antioxidant Activity of the Constituents Isolated from the Leaves of Calophyllum inophyllum. Phytomedicine 2012, 19, 1245–1249. [Google Scholar] [CrossRef]
- Patil, S.S.; Bhasarkar, S.; Rathod, V.K. Extraction of Curcuminoids from Curcuma longa: Comparative Study between Batch Extraction and Novel Three Phase Partitioning. Prep. Biochem. Biotechnol. 2019, 49, 407–418. [Google Scholar] [CrossRef]
- Cassien, M.; Mercier, A.; Thétiot-Laurent, S.; Culcasi, M.; Ricquebourg, E.; Asteian, A.; Herbette, G.; Bianchini, J.-P.; Raharivelomanana, P.; Pietri, S. Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts. Antioxidants 2021, 10, 199. [Google Scholar] [CrossRef]
- Hapsari, S.; Yohed, I.; Kristianita, R.A.; Jadid, N.; Aparamarta, H.W.; Gunawan, S. Phenolic and Flavonoid Compounds Extraction from Calophyllum inophyllum Leaves. Arab. J. Chem. 2022, 15, 103666. [Google Scholar] [CrossRef]
- Febrilliant Susanto, D.; Wirawasista Aparamarta, H.; Widjaja, A.; Firdaus; Gunawan, S. Calophyllum inophyllum: Beneficial Phytochemicals, Their Uses, and Identification. In Phytochemicals in Human Health; Rao, V., Mans, D., Rao, L., Eds.; IntechOpen: London, UK, 2019; p. 13. [Google Scholar]
- Singh, K.; Srichairatanakool, S.; Chewonarin, T.; Prommaban, A.; Samakradhamrongthai, R.S.; Brennan, M.A.; Brennan, C.S.; Utama-ang, N. Impact of Green Extraction on Curcuminoid Content, Antioxidant Activities and Anti-Cancer Efficiency (In Vitro) from Turmeric Rhizomes (Curcuma longa L.). Foods 2022, 11, 3633. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.M.; Zeb, A.; Mahmood, M.; Abbas, S.R.; Ahmad, Z.; Iqbal, N. Phytochemical Analysis and Biological Activities of Ethanolic Extract of Curcuma longa Rhizome. Braz. J. Biol. 2020, 81, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wei, Y. A Study on the Antioxidant Activities in Different Parts of Gardenia jasminoides. Front. Soc. Sci. Technol. 2019, 1, 25–29. [Google Scholar]
- Yu, R.; Li, Y.; Si, D.; Yan, S.; Liu, J.; Si, J.; Zhang, X. Identification, Quantitative and Bioactivity Analyses of Aroma and Alcohol-Soluble Components in Flowers of Gardenia jasminoides and Its Variety during Different Drying Processes. Food Chem. 2023, 420, 135846. [Google Scholar] [CrossRef] [PubMed]
- Gandhimathi, R.; Saravana Kumar, A. Evaluation of Antioxidant Activity of Cordia subcordata Lam. Against Carbon Tetrachloride (CCl4) Induced Erythrocyte Damage in Rats. Pharmacol. 2019, 2, 720–727. [Google Scholar]
- Ao, C.; Deba, F.; Tako, M.; Tawata, S. Biological Activity and Composition of Extract from Aerial Root of Ficus microcarpa L. fil. Int. J. Food Sci. Technol. 2009, 44, 349–358. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H.I.; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr.; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. HIV Inhibitory Natural Products. Part 7. The Calanolides, a Novel HIV-Inhibitory Class of Coumarin Derivatives from the Tropical Rainforest Tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Hung, M.-C.; Wang, L.-T.; Chen, C.-Y. Inocalophyllins A, B and Their Methyl Esters from the Seeds of Calophyllum inophyllum. Chem. Pharm. Bull. 2003, 51, 802–806. [Google Scholar] [CrossRef]
- Li, Z.-L.; Liu, D.; Li, D.-Y.; Hua, H.-M. A Novel Prenylated Xanthone from the Stems and Leaves of Calophyllum inophyllum. Nat. Prod. Res. 2011, 25, 905–908. [Google Scholar] [CrossRef]
- Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R. The Inophyllums, Novel Inhibitors of HIV-1 Reverse Transcriptase Isolated from the Malaysian Tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993, 36, 4131–4138. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Parmar, S.S.; Bhatnagar, S.C.; Misra, G.; Nigam, S.K. Anticonvulsant and Antiinflammatory Activity of Natural Plant Coumarins and Triterpenoids. Res. Commun. Chem. Pathol. Pharmacol. 1974, 9, 11–22. [Google Scholar] [PubMed]
- Hughes, K.; Ho, R.; Greff, S.; Herbette, G.; Filaire, E.; Ranouille, E.; Berthon, J.-Y.; Raharivelomanana, P. Feature-Based Molecular Networks Identification of Bioactive Metabolites from Three Plants of the Polynesian Cosmetopoeia Targeting the Dermal Papilla Cells of the Hair Cycle. Molecules 2022, 27, 105. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Filho, J.G.; De Almeida, M.J.; Sousa, T.L.; Dos Santos, D.C.; Egea, M.B. Bioactive Compounds of Turmeric (Curcuma Longa L.). In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–22. [Google Scholar]
- Jia, S.; Du, Z.; Song, C.; Jin, S.; Zhang, Y.; Feng, Y.; Xiong, C.; Jiang, H. Identification and Characterization of Curcuminoids in Turmeric Using Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1521, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, X.; Jiang, Y.; He, J.; Ge, W.; Hao, H.; Huang, T.; He, Y.; Wen, J.; Zhou, T. Characterization and Quantification of the Chinese Medical Formula Zhi-Zi-Chi Decoction, a Systematic Strategy for the Attenuation and Synergy of Compatibility Mechanism. J. Pharm. Biomed. Anal. 2023, 223, 115130. [Google Scholar] [CrossRef]
- Machida, K.; Oyama, K.; Ishii, M.; Kakuda, R.; Yaoita, Y.; Kikuchi, M. Studies of the Constituents of Gardenia Species. II. Terpenoids from Gardeniae Fructus. Chem. Pharm. Bull. 2000, 48, 746–748. [Google Scholar] [CrossRef]
- Sosa, A.; Winternitz, F.; Wylde, R.; Pavia, A.A. Structure of a Cyanoglucoside of Lithospermum purpureo-caeruleum. Phytochemistry 1977, 16, 707–709. [Google Scholar] [CrossRef]
- Fouseki, M.M.; Damianakos, H.; Karikas, G.A.; Roussakis, C.; Gupta, M.P.; Chinou, I. Chemical Constituents from Cordia alliodora and C. colloccoca (Boraginaceae) and Their Biological Activities. Fitoterapia 2016, 115, 9–14. [Google Scholar] [CrossRef]
- Al-Musayeib, N.; Perveen, S.; Fatima, I.; Nasir, M.; Hussain, A. Antioxidant, Anti-Glycation and Anti-Inflammatory Activities of Phenolic Constituents from Cordia sinensis. Molecules 2011, 16, 10214–10226. [Google Scholar] [CrossRef]
- Murata, T.; Oyama, K.; Fujiyama, M.; Oobayashi, B.; Umehara, K.; Miyase, T.; Yoshizaki, F. Diastereomers of Lithospermic Acid and Lithospermic Acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013, 91, 51–59. [Google Scholar] [CrossRef]
- Dai, J.; Sorribas, A.; Yoshida, W.Y.; Williams, P.G. Sebestenoids A–D, BACE1 Inhibitors from Cordia sebestena. Phytochemistry 2010, 71, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Ao, C.; Higa, T.; Ming, H.; Ding, Y.; Tawata, S. Isolation and Identification of Antioxidant and Hyaluronidase Inhibitory Compounds from Ficus microcarpa L. fil. bark. J. Enzyme Inhib. Med. Chem. 2010, 25, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Jiang, B.; Mei, S.; Ding, G.; Sun, H.; Xie, J.; Liu, Y. Constituents from the Roots of Semiaquilegia adoxoides. Fitoterapia 2001, 72, 86–88. [Google Scholar] [CrossRef]
- Lithospermoside CFM-ID Spectrum Prediction. Available online: https://cfmid.wishartlab.com/queries/c3c2dbf85618324c8cfa3f3adefb5bb98b3e7108 (accessed on 27 June 2023).
- Pantothenic Acid [M+H]+ MassBank Record: MSBNK-RIKEN-PR100400. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100400&dsn=RIKEN (accessed on 29 June 2023).
- Sendker, J.; Ellendorff, T.; Hölzenbein, A. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus Laurocerasus. J. Nat. Prod. 2016, 79, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Sinapic Acid [M+H]+ MassBank Record: MSBNK-RIKEN-PR101042. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR101042 (accessed on 27 June 2023).
- Zhu, H.; Bi, K.; Han, F.; Guan, J.; Zhang, X.; Mao, X.; Zhao, L.; Li, Q.; Hou, X.; Yin, R. Identification of the Absorbed Components and Metabolites of Zhi-Zi-Da-Huang Decoction in Rat Plasma by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2015, 111, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Gardenoside [M-H]- MoNA Spectrum Bruker_HCD_library000119. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/display/Bruker_HCD_library000119 (accessed on 23 June 2023).
- Cryptochlorogenic Acid (4-CQA) [M-H]- GNPS Library Spectrum CCMSLIB00004701970. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00004701970 (accessed on 29 June 2023).
- Procyanidin B1 [M-H]- MassBank Record: MSBNK-BS-BS003943. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-BS-BS003943 (accessed on 27 June 2023).
- Procyanidin B1 [M+H]+ MassBank Record: MSBNK-RIKEN-PR100266. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100266&dsn=RIKEN (accessed on 27 June 2023).
- (+)-Epicatechin [M+H]+ MassBank Record: MSBNK-RIKEN-PR100263. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100263&dsn=RIKEN (accessed on 27 June 2023).
- (+)-Epicatechin [M-H]- MassBank Record: MSBNK-RIKEN-PR100688. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100688&dsn=RIKEN (accessed on 27 June 2023).
- Geniposide Spectrum [M+NH4]+ VF-NPL-QEHF003622. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/display/VF-NPL-QEHF003622 (accessed on 23 June 2023).
- 5-O-Caffeoylshikimic Acid [M+H]+ GNPS Library Spectrum CCMSLIB00000848306. Available online: https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000848306 (accessed on 27 June 2023).
- Procyanidin C1 [M-H]- MassBank Record: MSBNK-RIKEN-PR101005. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR101005 (accessed on 27 June 2023).
- Andrade, C.; Ferreres, F.; Gomes, N.G.M.; Duangsrisai, S.; Srisombat, N.; Vajrodaya, S.; Pereira, D.M.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P. Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules 2019, 9, 400. [Google Scholar] [CrossRef]
- Icariside B5 [M+H]+ GNPS Library Spectrum CCMSLIB00000578418. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000578418 (accessed on 29 June 2023).
- Wang, L.; Liu, S.; Xing, J.; Liu, Z.; Song, F. Characterization of Interaction Property of Multi-Components in Gardenia jasminoides with Aldose Reductase by Microdialysis Combined with Liquid Chromatography Coupled to Mass Spectrometry: Characterization of Interaction Property of Multi-Components in Gardenia jasminoides. Rapid Commun. Mass Spectrom. 2016, 30, 87–94. [Google Scholar]
- Rutin [M+H]+ Spectrum VF-NPL-QTOF009582. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/display/VF-NPL-QTOF009582 (accessed on 27 June 2023).
- Rutin [M-H]- Spectrum VF-NPL-QTOF009580. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/display/VF-NPL-QTOF009580 (accessed on 27 June 2023).
- Hyperoside [M-H]- MassBank Record: MSBNK-RIKEN-PR100676. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100676 (accessed on 27 June 2023).
- Hyperoside [M+H]+ MassBank Record: MSBNK-RIKEN-PR100253. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100253 (accessed on 27 June 2023).
- 2(1H)-Azulenone [M+H]+ GNPS Library Spectrum CCMSLIB00000854577. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000854577 (accessed on 27 June 2023).
- Quercetin 3-(6’’-Malonyl-Glucoside) [M+H]+ HMDB0037368. Available online: https://hmdb.ca/spectra/ms_ms/2238378 (accessed on 27 June 2023).
- Quercitrin [M+H]+ MassBank Record: MSBNK-Fiocruz-FIO00579. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-Fiocruz-FIO00579 (accessed on 27 June 2023).
- Quercitrin [M-H]- MassBank Record: MSBNK-Fiocruz-FIO00585. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-Fiocruz-FIO00585 (accessed on 27 June 2023).
- Rosmarinic Acid [M+H]+MassBank Record: MSBNK-RIKEN-PR040220. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR040220 (accessed on 27 June 2023).
- Rosmarinic Acid [M-H]-MassBank Record: MSBNK-RIKEN-PR100686. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100686 (accessed on 27 June 2023).
- Flavone Base + 4O, O-MalonylHex GNPS Library Spectrum CCMSLIB00005740573. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00005740573 (accessed on 28 June 2023).
- GNPS Library Spectrum CCMSLIB00005721208. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00005721208 (accessed on 27 June 2023).
- Spectrum VF-NPL-QTOF000303. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/display/VF-NPL-QTOF000303 (accessed on 27 June 2023).
- Kaempferol-3-O-Alpha-L-Rhamnoside [M-H]- MassBank Record: MSBNK-RIKEN-PR100970. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-RIKEN-PR100970 (accessed on 27 June 2023).
- Zhu, J.; Yi, X.; Zhang, J.; Chen, S.; Wu, Y. Chemical Profiling and Antioxidant Evaluation of Yangxinshi Tablet by HPLC–ESI-Q-TOF-MS/MS Combined with DPPH Assay. J. Chromatogr. B 2017, 1060, 262–271. [Google Scholar] [CrossRef]
- GNPS Library Spectrum CCMSLIB00000845756. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000845756 (accessed on 27 June 2023).
- Centaureidin [M+H]+ GNPS Library Spectrum CCMSLIB00000845642. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000845642 (accessed on 28 June 2023).
- Amentoflavone [M+H]+ MassBank Record: MSBNK-IPB_Halle-PB006306. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-IPB_Halle-PB006306 (accessed on 27 June 2023).
- Zheng, J.-X.; Zheng, Y.; Zhi, H.; Dai, Y.; Wang, N.-L.; Fang, Y.-X.; Du, Z.-Y.; Zhang, K.; Li, M.-M.; Wu, L.-Y.; et al. New 3′,8′′-Linked Biflavonoids from Selaginella uncinata Displaying Protective Effect against Anoxia. Molecules 2011, 16, 6206–6214. [Google Scholar] [CrossRef]
- 2,3-Dihydroamentoflavone [M+H]+ GNPS Library Spectrum CCMSLIB00000848211. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000848211 (accessed on 28 June 2023).
- Wang, J.; Lu, J.; Lv, C.; Xu, T.; Jia, L. Three New Triterpenoid Saponins from Root of Gardenia jasminoides Ellis. Fitoterapia 2012, 83, 1396–1401. [Google Scholar] [CrossRef]
- Quirós-Fallas, M.I.; Vargas-Huertas, F.; Quesada-Mora, S.; Azofeifa-Cordero, G.; Wilhelm-Romero, K.; Vásquez-Castro, F.; Alvarado-Corella, D.; Sánchez-Kopper, A.; Navarro-Hoyos, M. Polyphenolic HRMS Characterization, Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants 2022, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muñiz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. Trypanocidal Constituents in Plants 3. Leaves of Garcinia intermedia and Heartwood of Calophyllum brasiliense. Biol. Pharm. Bull. 2004, 27, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.D.; Salger, M.; Frank, O.; Balemba, O.B.; Wakamatsu, J.; Hofmann, T. Antioxidative Compounds from Garcinia buchananii Stem Bark. J. Nat. Prod. 2015, 78, 234–240. [Google Scholar] [CrossRef]
- Gustafson, K.R.; Bokesch, H.R.; Fuller, R.W.; Cardellina, J.H.; Kadushin, M.R.; Soejarto, D.D.; Boyd, M.R. Calanone, a Novel Coumarin from Calophyllum teysmannii. Tetrahedron Lett. 1994, 35, 5821–5824. [Google Scholar] [CrossRef]
- Hay, A.E.; Guilet, D.; Morel, C.; Larcher, G.; Macherel, D.; Le Ray, A.M.; Litaudon, M.; Richomme, P. Antifungal Chromans Inhibiting the Mitochondrial Respiratory Chain of Pea Seeds and New Xanthones from Calophyllum caledonicum. Planta Med. 2003, 69, 1130–1135. [Google Scholar]
- Charles, L.; Laure, F.; Raharivelomanana, P.; Bianchini, J.-P. Sheath Liquid Interface for the Coupling of Normal-Phase Liquid Chromatography with Electrospray Mass Spectrometry and Its Application to the Analysis of Neoflavonoids. J. Mass Spectrom. 2005, 40, 75–82. [Google Scholar] [CrossRef]
- Linoleic Acid [M+H]+ MassBank Record: MSBNK-BGC_Munich-RP029503. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-BGC_Munich-RP029503 (accessed on 27 June 2023).
- Pheophorbide A [M+H]+ GNPS Library Spectrum CCMSLIB00000076748. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000076748 (accessed on 28 June 2023).
- Truzzi, E.; Marchetti, L.; Gibertini, G.; Benvenuti, S.; Cappellozza, S.; Giovannini, D.; Saviane, A.; Sirri, S.; Pinetti, D.; Assirelli, A.; et al. Phytochemical and Functional Characterization of Cultivated Varieties of Morus Alba L. Fruits Grown in Italy. Food Chemistry 2024, 431, 137113. [Google Scholar] [CrossRef]
- Matito, C.; Agell, N.; Sanchez-Tena, S.; Torres, J.L.; Cascante, M. Protective Effect of Structurally Diverse Grape Procyanidin Fractions against UV-Induced Cell Damage and Death. J. Agric. Food Chem. 2011, 59, 4489–4495. [Google Scholar] [CrossRef]
- Mittraphab, Y.; Amen, Y.; Nagata, M.; Matsumoto, M.; Wang, D.; Shimizu, K. Anti-Phototoxicity Effect of Phenolic Compounds from Acetone Extract of Entada phaseoloides Leaves via Activation of COX-2 and INOS in Human Epidermal Keratinocytes. Molecules 2022, 27, 440. [Google Scholar] [CrossRef]
- Chansriniyom, C.; Nooin, R.; Nuengchamnong, N.; Wongwanakul, R.; Petpiroon, N.; Srinuanchai, W.; Chantarasuwan, B.; Pitchakarn, P.; Temviriyanukul, P.; Nuchuchua, O. Tandem Mass Spectrometry of Aqueous Extract from Ficus dubia Sap and Its Cell-Based Assessments for Use as a Skin Antioxidant. Sci. Rep. 2021, 11, 16899. [Google Scholar] [CrossRef]
- Ha, J.W.; Boo, Y.C. Siegesbeckiae Herba Extract and Chlorogenic Acid Ameliorate the Death of HaCaT Keratinocytes Exposed to Airborne Particulate Matter by Mitigating Oxidative Stress. Antioxidants 2021, 10, 1762. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Plant Parts | Extraction Yield (%, m/m) | TPC (mg GAE/g Extract) 1 |
---|---|---|---|
Ficus prolixa | aerial roots | 16.5 | 148 |
Calophyllum inophyllum | leaves | 21.5 | 143 |
Curcuma longa | rhizomes | 24.6 | 140 |
Cordia subcordata | leaves | 17.5 | 139 |
Gardenia taitensis | flowers | 30.8 | 75 |
Calophyllum inophyllum | nuts | 33.1 | 71 |
L/L Extracts and Positive Control | Extraction Yield (%, m/m) | DPPH EC50 (µg/mL) | SD | FRAP (mmol Fe2+/g) | SD |
---|---|---|---|---|---|
Hexane | 3.4 | ND | ND | ||
Dichloromethane | 2.7 | ND | ND | ||
Ethyl acetate | 5 | 3.87 | ±0.2 | 9.36 | ±1.2 |
Butanol | 15.7 | 3.28 | ±0.0 | 9.18 | ±1.0 |
Ascorbic acid 1 | ND | 5.17 | ±0.1 | 11.67 | ±0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambon, M.; Ho, R.; Baghdikian, B.; Herbette, G.; Bun-Llopet, S.-S.; Garayev, E.; Raharivelomanana, P. Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. Antioxidants 2023, 12, 1870. https://doi.org/10.3390/antiox12101870
Chambon M, Ho R, Baghdikian B, Herbette G, Bun-Llopet S-S, Garayev E, Raharivelomanana P. Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. Antioxidants. 2023; 12(10):1870. https://doi.org/10.3390/antiox12101870
Chicago/Turabian StyleChambon, Marion, Raimana Ho, Beatrice Baghdikian, Gaëtan Herbette, Sok-Siya Bun-Llopet, Elnur Garayev, and Phila Raharivelomanana. 2023. "Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care" Antioxidants 12, no. 10: 1870. https://doi.org/10.3390/antiox12101870
APA StyleChambon, M., Ho, R., Baghdikian, B., Herbette, G., Bun-Llopet, S.-S., Garayev, E., & Raharivelomanana, P. (2023). Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. Antioxidants, 12(10), 1870. https://doi.org/10.3390/antiox12101870