Manual Dexterity is not Related to Media Viewing but is Related to Perceptual Bias in School-Age Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Questionnaire on Media Viewing
2.2.2. Temporal Order Judgment Task
2.2.3. Manual Dexterity Test of the Movement Assessment Battery for Children—2nd Edition (M-ABC-2)
2.3. Statistical Analyses
2.3.1. Correlation Analysis
2.3.2. Hierarchical Multiple Regression Analysis
2.3.3. Comparison between Groups
3. Results
3.1. Correlation Analysis Results
3.2. Hierarchical Multiple Regression Analysis Results
3.3. Comparison Results between Groups
4. Discussion
Limitations of the Current Study and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Age (Years) | Sex | Preferred Hand (handedness) | Questionnaire On Media Viewing | TOJ Task | Manual Dexterity Test of the M-ABC-2 | |||
---|---|---|---|---|---|---|---|---|---|
Media Viewing Time (Hour) | Media Preference Level | PSE | Component Score | Standard Score | Percentile | ||||
1 | 10 | M | R | 3 | 3 | −44.73 | 35 | 13 | 84 |
2 | 8 | F | L | 2 | 2 | −45.87 | 26 | 9 | 37 |
3 | 9 | F | R | 2 | 2 | −1.653 | 39 | 15 | 95 |
4 | 10 | F | R | 2 | 2 | −41.38 | 28 | 9 | 37 |
5 | 12 | M | R | 3 | 3 | 17.65 | 36 | 13 | 84 |
6 | 11 | M | R | 2 | 3 | 33.67 | 33.5 | 12 | 75 |
7 | 12 | M | R | 3 | 3 | −24.72 | 24 | 8 | 25 |
8 | 8 | F | L | 2 | 3 | 66.88 | 36 | 13 | 84 |
9 | 9 | F | R | 2 | 3 | −12.34 | 37.5 | 15 | 95 |
10 | 9 | F | R | 2 | 3 | −89.45 | 31.5 | 11 | 63 |
11 | 9 | M | R | 5 | 3 | −49.32 | 27 | 9 | 37 |
12 | 8 | M | L | 1 | 3 | −39.67 | 27.5 | 9 | 37 |
13 | 12 | F | R | 2 | 2 | −25.27 | 33.5 | 12 | 75 |
14 | 10 | M | R | 5 | 3 | −2.319 | 36.5 | 14 | 91 |
15 | 7 | F | R | 3 | 3 | −49.89 | 32 | 11 | 63 |
16 | 7 | F | L | 1 | 3 | −1.758 | 23 | 7 | 16 |
17 | 12 | M | R | 3 | 3 | −88.93 | 24 | 8 | 25 |
18 | 10 | F | R | 2 | 3 | −80.35 | 28 | 9 | 37 |
19 | 9 | M | L | 3 | 2 | 2.523 | 36.5 | 14 | 91 |
20 | 12 | F | R | 2 | 3 | −13.78 | 34.5 | 13 | 84 |
21 | 7 | M | R | 2 | 3 | −74.58 | 31.5 | 11 | 63 |
22 | 12 | F | R | 5 | 3 | 25.24 | 38 | 15 | 95 |
23 | 8 | M | R | 1 | 3 | −47.86 | 30.5 | 11 | 63 |
24 | 11 | F | R | 0 | 1 | −5.713 | 31.5 | 11 | 63 |
25 | 12 | M | R | 2 | 3 | 2.132 | 40.5 | 17 | 99 |
26 | 11 | M | R | 5 | 3 | −17.56 | 25 | 8 | 25 |
27 | 12 | M | R | 2 | 1 | −2.593 | 37 | 14 | 91 |
28 | 12 | F | R | 4 | 2 | −18.72 | 30.5 | 11 | 63 |
29 | 12 | F | R | 4 | 2 | 2.134 | 33.5 | 12 | 75 |
30 | 8 | M | R | 2 | 2 | 12.33 | 32 | 11 | 63 |
31 | 9 | F | L | 3 | 2 | 2.102 | 35 | 13 | 84 |
32 | 11 | F | R | 3 | 3 | −42.5 | 35 | 13 | 84 |
33 | 8 | F | R | 3 | 3 | 17.2 | 32 | 11 | 63 |
34 | 10 | M | R | 1 | 0 | 12.69 | 29 | 10 | 50 |
35 | 6 | M | R | 3 | 3 | 13.74 | 34 | 12 | 75 |
36 | 11 | M | R | 4 | 1 | −52.7 | 28 | 9 | 37 |
37 | 10 | M | R | 3 | 3 | −25.17 | 35.5 | 13 | 84 |
38 | 11 | M | R | 2 | 3 | −7.438 | 30.5 | 11 | 63 |
39 | 8 | F | R | 2 | 1 | −41.25 | 35.5 | 13 | 84 |
40 | 8 | F | L | 1 | 3 | 25.67 | 38 | 15 | 95 |
41 | 10 | F | R | 2 | 0 | −60.28 | 33.5 | 12 | 75 |
42 | 12 | F | R | 4 | 3 | −28.57 | 24.5 | 8 | 25 |
43 | 12 | F | R | 2 | 2 | −78.83 | 19 | 6 | 9 |
44 | 10 | F | L | 1 | 1 | 49.79 | 35 | 13 | 84 |
45 | 7 | F | R | 1 | 0 | 1.039 | 38 | 15 | 95 |
46 | 10 | M | R | 1 | 3 | −5.977 | 36 | 13 | 84 |
47 | 9 | M | R | 2 | 3 | −50.3 | 29.5 | 10 | 50 |
48 | 7 | F | R | 1 | 1 | 18.56 | 37.5 | 15 | 95 |
49 | 6 | F | R | 3 | 3 | −150 | 24 | 8 | 25 |
50 | 12 | F | R | 4 | 3 | −37.31 | 37 | 14 | 91 |
51 | 10 | M | R | 3 | 3 | −89.47 | 34.5 | 13 | 84 |
52 | 10 | F | R | 1 | 1 | 8.513 | 23.5 | 8 | 25 |
53 | 8 | F | R | 2 | 2 | −10.65 | 32 | 11 | 63 |
54 | 7 | F | R | 2 | 3 | −80.35 | 21.5 | 7 | 16 |
55 | 12 | M | R | 1 | 3 | −25.3 | 25.5 | 9 | 37 |
56 | 9 | F | R | 1 | 1 | 2.253 | 39.5 | 16 | 98 |
57 | 8 | F | R | 2 | 3 | 7.618 | 38.5 | 15 | 95 |
58 | 11 | M | R | 3 | 2 | 11.65 | 41.5 | 18 | 99.5 |
59 | 9 | M | R | 0 | 2 | −54.62 | 23 | 7 | 16 |
60 | 8 | F | R | 4 | 2 | −21.28 | 33.5 | 12 | 75 |
61 | 6 | F | R | 1 | 1 | 15.46 | 38 | 15 | 95 |
62 | 12 | F | R | 5 | 3 | −75.15 | 34.5 | 13 | 84 |
63 | 9 | M | L | 1 | 2 | 5.086 | 32.5 | 12 | 75 |
64 | 7 | M | R | 2 | 3 | −62.07 | 22 | 7 | 16 |
65 | 11 | F | R | 5 | 3 | 12.7 | 36.5 | 14 | 91 |
66 | 11 | M | R | 5 | 2 | −26.77 | 27.5 | 9 | 37 |
67 | 9 | F | R | 2 | 3 | 36.22 | 35 | 13 | 84 |
68 | 8 | F | L | 3 | 2 | −1.766 | 38 | 15 | 95 |
69 | 10 | M | L | 2 | 2 | −25.29 | 31.5 | 11 | 63 |
70 | 7 | M | R | 1 | 3 | 3.581 | 36.5 | 14 | 91 |
71 | 7 | F | R | 1 | 3 | 105.4 | 35.5 | 13 | 84 |
72 | 10 | F | R | 5 | 3 | 24.74 | 38.5 | 15 | 95 |
73 | 10 | F | R | 2 | 3 | 13.79 | 36.5 | 14 | 91 |
74 | 8 | M | R | 3 | 3 | −2.125 | 31 | 11 | 63 |
75 | 7 | F | R | 2 | 2 | −7.782 | 37 | 14 | 91 |
76 | 6 | F | R | 1 | 3 | −88.55 | 30 | 10 | 50 |
77 | 8 | F | R | 4 | 2 | −5.67 | 32.5 | 12 | 75 |
78 | 11 | F | R | 1 | 1 | −58.4 | 19.5 | 6 | 9 |
79 | 9 | M | R | 2 | 2 | 12.69 | 33.5 | 12 | 75 |
80 | 7 | M | R | 2 | 3 | −7.35 | 33 | 12 | 75 |
81 | 6 | F | R | 2 | 3 | 17.1 | 38 | 15 | 95 |
82 | 7 | M | R | 3 | 3 | −76.54 | 20 | 6 | 9 |
83 | 9 | F | R | 2 | 3 | 5.078 | 34.5 | 13 | 84 |
84 | 8 | F | R | 2 | 3 | −2.126 | 41 | 17 | 99 |
85 | 10 | F | R | 2 | 2 | −2.126 | 40 | 16 | 98 |
86 | 11 | F | R | 2 | 2 | 39.52 | 39.5 | 16 | 98 |
87 | 7 | F | R | 3 | 2 | 29.36 | 38 | 15 | 95 |
88 | 8 | M | R | 4 | 2 | 12.06 | 27.5 | 9 | 37 |
89 | 6 | M | R | 4 | 3 | −84.35 | 34 | 12 | 75 |
90 | 7 | F | L | 3 | 3 | −26.7 | 26 | 9 | 37 |
91 | 10 | F | R | 4 | 2 | −11.33 | 39 | 15 | 95 |
92 | 8 | F | R | 2 | 3 | 88.84 | 26 | 9 | 37 |
93 | 12 | F | R | 2 | 2 | −24.33 | 26.5 | 9 | 37 |
94 | 7 | M | L | 1 | 0 | −107.7 | 30 | 10 | 50 |
95 | 9 | M | R | 2 | 3 | −0.6862 | 37.5 | 15 | 95 |
96 | 6 | F | R | 1 | 3 | −19.37 | 36.5 | 14 | 91 |
97 | 12 | F | R | 2 | 1 | 32.59 | 35.5 | 13 | 84 |
98 | 11 | F | R | 5 | 3 | 5.219 | 35 | 13 | 84 |
99 | 6 | M | R | 0 | 1 | −1.004 | 34.5 | 13 | 84 |
100 | 7 | F | R | 2 | 3 | 1.952 | 32.5 | 12 | 75 |
Mean | 9.2 | 2.4 | 2.4 | −15.6 | 32.5 | 11.9 | 67.9 | ||
SD | 1.9 | 1.2 | 0.8 | 41.1 | 5.4 | 2.7 | 26.7 | ||
Range | 6–12 | 0–5 | 0–3 | −150–105.4 | 19–41.5 | 6–18 | 9–99.5 | ||
Skewness | 0.02 | 0.54 | −1.20 | −0.31 | −0.66 | −0.25 | −0.74 | ||
Kurtosis | −1.20 | −0.25 | 0.59 | 0.99 | −0.38 | −0.63 | −0.74 |
References
- Council on Communications and Media. Media use in school-aged children and adolescents. Pediatrics 2016, 138, e20162592. [Google Scholar] [CrossRef]
- Reid Chassiakos, Y.L.; Radesky, J.; Christakis, D.; Moreno, M.A.; Cross, C. Council on Communications and Media. Children and adolescents and digital media. Pediatrics 2016, 138, e20162593. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.; Caldwell, P.H.; Go, H. Impact of social media on the health of children and young people. J. Paediatr. Child Health 2015, 51, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Subrahmanyam, K. Cognitive impacts of digital media workgroup. Digital screen media and cognitive development. Pediatrics 2017, 140, S57–S61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gortmaker, S.L.; Must, A.; Sobol, A.M.; Peterson, K.; Colditz, G.A.; Dietz, W.H. Television viewing as a cause of increasing obesity among children in the United States, 1986–1990. Arch. Pediatr. Adolesc. Med. 1996, 150, 356–362. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Visscher, T.L.; HiraSing, R.A.; Heymans, M.W.; Seidell, J.C.; Renders, C.M. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children. Int. J. Obes. Lond 2013, 37, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goris, J.M.; Petersen, S.; Stamatakis, E.; Veerman, J.L. Television food advertising and the prevalence of childhood overweight and obesity: A multicountry comparison. Publ. Health Nutr. 2010, 13, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Blass, E.M.; Anderson, D.R.; Kirkorian, H.L.; Pempek, T.A.; Price, I.; Koleini, M.F. On the road to obesity: Television viewing increases intake of high-density foods. Physiol. Behav. 2006, 88, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Diamond, D.; Li, Z.; Adachi-Mejia, A.M.; McClure, A.C.; Sargent, J.D. Association of a television in the bedroom with increased adiposity gain in a nationally representative sample of children and adolescents. JAMA Pediatr. 2014, 168, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Borghese, M.M.; Tremblay, M.S.; Katzmarzyk, P.T.; Tudor-Locke, C.; Schuna, J.M., Jr.; Leduc, G.; Boyer, C.; LeBlanc, A.G.; Chaput, J.P. Mediating role of television time, diet patterns, physical activity and sleep duration in the association between television in the bedroom and adiposity in 10 year-old children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Bruni, O.; Sette, S.; Fontanesi, L.; Baiocco, R.; Laghi, F.; Baumgartner, E. Technology use and sleep quality in preadolescence and adolescence. J. Clin. Sleep Med. 2015, 11, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.C.; Shensa, A.; Sidani, J.E.; Colditz, J.B.; Primack, B.A. The association between social media use and sleep disturbance among young adults. Prev. Med. 2016, 85, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, O.M.; Chang, A.M.; Spilsbury, J.C.; Bos, T.; Emsellem, H.; Knutson, K.L. Sleep in the modern family: Protective family routines for child and adolescent sleep. Sleep Health 2015, 1, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahnschaffe, A.; Haedel, S.; Rodenbeck, A.; Stoll, C.; Rudolph, H.; Kozakov, R.; Schoepp, H.; Kunz, D. Out of the lab and into the bathroom: Evening short-term exposure to conventional light suppresses melatonin and increases alertness perception. Int. J. Mol. Sci. 2013, 14, 2573–2589. [Google Scholar] [CrossRef]
- Cheung, C.H.; Bedford, R.; Saez De Urabain, I.R.; Karmiloff-Smith, A.; Smith, T.J. Daily touchscreen use in infants and toddlers is associated with reduced sleep and delayed sleep onset. Sci. Rep. 2017, 7, 46104. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, F.J.; Christakis, D.A.; Meltzoff, A.N. Associations between media viewing and language development in children under age 2 years. J. Pediatr. 2007, 151, 364–368. [Google Scholar] [CrossRef]
- Dworak, M.; Schierl, T.; Bruns, T.; Strüder, H.K. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children. Pediatrics 2015, 120, 978–985. [Google Scholar] [CrossRef]
- Christakis, D.A.; Zimmerman, F.J.; DiGiuseppe, D.L.; McCarty, C.A. Early television exposure and subsequent attentional problems in children. Pediatrics 2004, 113, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Swing, E.L.; Gentile, D.A.; Anderson, C.A.; Walsh, D.A. Television and video game exposure and the development of attention problems. Pediatrics 2010, 126, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Barr, R.; Lauricella, A.; Zack, E.; Calvert, S.L. Infant and early childhood exposure to adult-directed and child-directed TV programming. Merrill Palmer Q. 2010, 56, 21–48. [Google Scholar] [CrossRef]
- Zimmerman, F.J.; Christakis, D.A. Children’s television viewing and cognitive outcomes: A longitudinal analysis of national data. Arch. Pediatr. Adolesc. Med. 2005, 159, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasburger, V.C.; Jordan, A.B.; Donnerstein, E. Children, adolescents, and the media: Health effects. Pediatr. Clin. N. Am. 2012, 59, 533–587. [Google Scholar] [CrossRef] [PubMed]
- Sisson, S.B.; Broyles, S.T.; Baker, B.L.; Katzmarzyk, P.T. Screen time, physical activity, and overweight in US youth: National survey of children’s Health 2003. J. Adolesc. Health 2010, 47, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Taveras, E.M.; Field, A.E.; Berkey, C.S.; Rifas-Shiman, S.L.; Frazier, A.L.; Colditz, G.A.; Gillman, M.W. Longitudinal relationship between television viewing and leisure-time physical activity during adolescence. Pediatrics 2007, 119, e314–e319. [Google Scholar] [CrossRef] [Green Version]
- Radesky, J.S.; Schumacher, J.; Zuckerman, B. Mobile and interactive media use by young children: The good, the bad and the unknown. Pediatrics 2015, 135, 1–3. [Google Scholar] [CrossRef]
- Lin, L.Y.; Cherng, R.J.; Chen, Y.J. Effect of Touch Screen Tablet Use on Fine Motor Development of Young Children. Phys. Occup. Ther. Pediatr. 2017, 37, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Fisch, S.M. Children’s Learning from Educational Television: “Sesame Street” and Beyond; Lawrence Erlbaum: Mahwah, NJ, USA, 2004. [Google Scholar]
- Anderson, D.R.; Huston, A.C.; Schmitt, K.L.; Linebarger, D.L.; Wright, J.C. Early childhood television viewing and adolescent behavior: The recontact study. Monogr. Soc. Res. Child Dev. 2001, 66, 1–147. [Google Scholar] [CrossRef]
- Zill, N. Does Sesame Street enhance school readiness? Evidence from a national survey of children. In G Is for Growing: Thirty Years of Research on Children and Sesame Street; Fisch, S.M., Truglio, R.T., Eds.; Erlbaum: Mahwah, NJ, USA, 2001; pp. 115–130. [Google Scholar]
- Neuman, M.M. Using tablets and apps to enhance emergent literacy skills in young children. Early Child. Res. Q. 2018, 42, 239–246. [Google Scholar] [CrossRef]
- Stevens, T.; Mulsow, M. There is no meaningful relationship between television exposure and symptoms of attention-deficit/hyperactivity disorder. Pediatrics 2006, 117, 665–672. [Google Scholar] [CrossRef]
- Foster, E.M.; Watkins, S. The value of reanalysis: TV viewing and attention problems. Child Dev. 2010, 81, 368–375. [Google Scholar] [CrossRef]
- Zimmerman, F.J.; Christakis, D.A. Associations between content types of early media exposure and subsequent attentional problems. Pediatrics 2007, 120, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Linebarger, D.L.; Barr, R.; Lapierre, M.A.; Piotrowski, J.T. Associations between parenting, media use, cumulative risk, and children’s executive functioning. J. Dev. Behav. Pediatr. 2014, 35, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, R.; Saez de Urabain, I.R.; Cheung, C.H.; Karmiloff-Smith, A.; Smith, T.J. Toddlers’ fine motor milestone achievement is associated with early touchscreen scrolling. Front. Psychol. 2016, 7, 1108. [Google Scholar] [CrossRef] [PubMed]
- Nobre, J.N.P.; Vinolas Prat, B.; Santos, J.N.; Santos, L.R.; Pereira, L.; Guedes, S.D.C.; Ribeiro, R.F.; Morais, R.L.S. Quality of interactive media use in early childhood and child development: A multicriteria analysis. J. Pediatr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Jewitt, C.; Crescenzi, L. The role of iPads in pre-school children’s mark making development. Comput. Educ. 2015, 87, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.; Magalhães, P.; Pereira, A.; Martins, J.; Magalhães, C.; Chaleta, E.; Rosário, P. Games used with serious purposes: A systematic review of interventions in patients with cerebral palsy. Front. Psychol. 2018, 9, 1712. [Google Scholar] [CrossRef] [Green Version]
- Mentiplay, B.F.; FitzGerald, T.L.; Clark, R.A.; Bower, K.J.; Denehy, L.; Spittle, A.J. Do video game interventions improve motor outcomes in children with developmental coordination disorder? A systematic review using the ICF framework. BMC Pediatr. 2019, 19, 22. [Google Scholar] [CrossRef]
- Spence, C.; Parise, C. Prior-entry: A review. Conscious. Cognit. 2010, 19, 364–379. [Google Scholar] [CrossRef]
- Augurelle, A.S.; Smith, A.M.; Lejeune, T.; Thonnard, J.L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 2003, 89, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Johansson, R.S.; Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 1984, 56, 550–564. [Google Scholar] [CrossRef]
- Monzée, J.; Lamarre, Y.; Smith, A.M. The effects of digital anesthesia on force control using a precision grip. J. Neurophysiol. 2003, 89, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Zatsiorsky, V.M.; Latash, M.L. Prehension synergies. Exerc. Sport Sci. Rev. 2004, 32, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Biancotto, M.; Skabar, A.; Bulgheroni, M.; Carrozzi, M.; Zoia, S. Neuromotor deficits in developmental coordination disorder: Evidence from a reach-to-grasp task. Res. Dev. Disabil. 2011, 32, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, J.G.; Missiuna, C.; Harris, S.R.; Boyd, L.A. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics 2010, 126, e678–e686. [Google Scholar] [CrossRef]
- Filbrich, L.; Torta, D.M.; Vanderclausen, C.; Azañón, E.; Legrain, V. Using temporal order judgments to investigate attention bias toward pain and threat-related information. Methodological and theoretical issues. Conscious. Cognit. 2016, 41, 135–138. [Google Scholar] [CrossRef]
- Vanden Bulcke, C.; Crombez, G.; Durnez, W.; Van Damme, S. Is attentional prioritization on a location where pain is expected modality-specific or multisensory? Conscious. Cognit. 2015, 36, 246–255. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children-2, 2nd ed.; Harcourt Assessment: San Antonio, TX, USA, 2007. [Google Scholar]
- Arango, C.M.; Parra, D.C.; Gómez, L.F.; Lema, L.; Lobelo, F.; Ekelund, U. Screen time, cardiorespiratory fitness and adiposity among school-age children from Monteria, Colombia. J. Sci. Med. Sport/Sports Med. Aust. 2014, 17, 491–495. [Google Scholar] [CrossRef]
- Edelson, L.R.; Mathias, K.C.; Fulgoni, V.L., III; Karagounis, L.G. Screen-based sedentary behavior and associations with functional strength in 6-15 year-old children in the United States. BMC Public Health 2016, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Stamatakis, E.; Gama, A.; Carvalhal, I.M.; Nogueira, H.; Rosado, V.; Padez, C. Parent and child screen-viewing time and home media environment. Am. J. Prev. Med. 2012, 43, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Harrar, V.; Harris, L.R. The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp. Brain Res. 2008, 186, 517–524. [Google Scholar] [CrossRef]
- Heed, T.; Azañón, E. Using time to investigate space: A review of tactile temporal order judgments as a window onto spatial processing in touch. Front. Psychol. 2014, 5, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, M.; Hidaka, S. Visual presentation of hand image modulates visuo-tactile temporal order judgment. Exp. Brain Res. 2013, 228, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Shore, D.I.; Klein, R.M. Multisensory prior entry. J. Exp. Psychol. Gen. 2001, 130, 799–832. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Baddeley, R.; Zampini, M.; James, R.; Shore, D.I. Multisensory temporal order judgments: When two locations are better than one. Percept. Psychophys. 2003, 65, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afraz, S.R.; Kiani, R.; Esteky, H. Microstimulation of inferotemporal cortex influences face categorization. Nature 2006, 442, 692–695. [Google Scholar] [CrossRef]
- Nobusako, S.; Sakai, A.; Tsujimoto, T.; Shuto, T.; Nishi, Y.; Asano, D.; Furukawa, E.; Zama, T.; Osumi, M.; Shimada, S.; et al. Deficits in visuo-motor temporal integration impacts manual dexterity in probable developmental coordination disorder. Front. Neurol. 2018, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Shimada, S.; Qi, Y.; Hiraki, K. Detection of visual feedback delay in active and passive self-body movements. Exp. Brain Res. 2010, 201, 359–364. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Bleakley, A.; Piotrowski, J.T.; Hennessy, M.; Jordan, A. Predictors of parents’ intention to limit children’s television viewing. J. Public Health 2013, 35, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Dennison, B.A.; Erb, T.A.; Jenkins, P.L. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics 2002, 109, 1028–1035. [Google Scholar] [CrossRef]
- Duch, H.; Fisher, E.M.; Ensari, I.; Harrington, A. Screen time use in children under 3 years old: A systematic review of correlates. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Hoyos Cillero, I.; Jago, R. Sociodemographic and home environment predictors of screen viewing among Spanish school children. J. Public Health 2011, 33, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.B.; Hersey, J.C.; McDivitt, J.A.; Heitzler, C.D. Reducing children’s television-viewing time: A qualitative study of parents and their children. Pediatrics 2006, 118, e1303–e1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayiran, S.M.; Soyak, G.; Gürakan, B. Electronic media use by children in families of high socioeconomic level and familial factors. Turk. J. Pediatr. 2010, 52, 491–499. [Google Scholar] [PubMed]
- Zimmerman, F.J.; Christakis, D.A.; Meltzoff, A.N. Television and DVD/video viewing in children younger than 2 years. Arch. Pediatr. Adolesc. Med. 2007, 161, 473–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linebarger, D.L.; Walker, D. Infants’ and toddlers’ television viewing and language outcomes. Am. Behav. Sci. 2005, 48, 624–645. [Google Scholar] [CrossRef]
- Mendelsohn, A.L.; Brockmeyer, C.A.; Dreyer, B.P.; Fierman, A.H.; Berkule-Silberman, S.B.; Tomopoulos, S. Do verbal interactions with infants during electronic media exposure mitigate adverse impacts on their language development as toddlers? Infant Child Dev. 2010, 19, 577–593. [Google Scholar] [CrossRef]
- Baumrind, D. Current patterns of parental authority. Dev. Psychol. 1971, 4 (Pt 2), 1–103. [Google Scholar] [CrossRef]
- Morgenstern, M.; Sargent, J.D.; Hanewinkel, R. Relation between socioeconomic status and body mass index: Evidence of an indirect path via television use. Arch. Pediatr. Adolesc. Med. 2009, 163, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Sherar, L.B.; Griffin, T.P.; Ekelund, U.; Cooper, A.R.; Esliger, D.W.; Van Sluijs, E.M.; Bo Andersen, L.; Cardon, G.; Davey, R.; Froberg, K.; et al. Association between maternal education and objectively measured physical activity and sedentary time in adolescents. J. Epidemiol. Community Health 2016, 70, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Coombs, N.; Shelton, N.; Rowlands, A.; Stamatakis, E. Children’s and adolescents’ sedentary behaviour in relation to socioeconomic position. J. Epidemiol. Community Health 2013, 67, 868–874. [Google Scholar] [CrossRef] [Green Version]
- Moraeus, L.; Lissner, L.; Olsson, L.; Sjöberg, A. Age and time effects on children’s lifestyle and overweight in Sweden. BMC Public Health 2015, 15, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, P.S.; Zhou, C.; Sallis, J.F.; Cain, K.L.; Frank, L.D.; Saelens, B.E. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drenowatz, C.; Eisenmann, J.C.; Pfeiffer, K.A.; Welk, G.; Heelan, K.; Gentile, D.; Walsh, D. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8-to 11-year old children. BMC Public Health 2010, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salway, R.E.; Emm-Collison, L.; Sebire, S.; Thompson, J.L.; Jago, R. Associations between socioeconomic position and changes in children’s screen-viewing between ages 6 and 9: A longitudinal study. BMJ Open 2019, 9, e027481. [Google Scholar] [CrossRef] [Green Version]
- Green, C.S.; Bavelier, D. Exercising your brain: A review of human brain plasticity and training-induced learning. Psychol. Aging 2008, 23, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Elbert, T.; Pantev, C.; Wienbruch, C.; Rockstroh, B.; Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 1995, 270, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Case-Smith, J. The relationships among sensorimotor components, fine motor skill, and functional performance in preschool children. Am. J. Occup. Ther. 1995, 49, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.M.; Duff, S.V. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 1999, 41, 586–591. [Google Scholar] [CrossRef]
- Troise, D.; Yoneyama, S.; Resende, M.B.; Reed, U.; Xavier, G.F.; Hasue, R. The influence of visual and tactile perception on hand control in children with Duchenne muscular dystrophy. Dev. Med. Child Neurol. 2014, 56, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Bair, W.N.; Barela, J.A.; Whitall, J.; Jeka, J.J.; Clark, J.E. Children with developmental coordination disorder benefit from using vision in combination with touch information for quiet standing. Gait Posture 2011, 34, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Bair, W.N.; Kiemel, T.; Jeka, J.J.; Clark, J.E. Development of multisensory reweighting is impaired for quiet stance control in children with developmental coordination disorder (DCD). PLoS ONE 2012, 7, e40932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deconinck, F.J.; De Clercq, D.; Savelsbergh, G.J.; Van Coster, R.; Oostra, A.; Dewitte, G.; Lenoir, M. Visual contribution to walking in children with developmental coordination disorder. Child Care Health Dev. 2006, 32, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, F.J.; De Clercq, D.; Van Coster, R.; Ooostra, A.; Dewitte, G.; Savelsbergh, G.J.; Cambier, D.; Lenoir, M. Sensory contributions to balance in boys with developmental coordination disorder. Adapt. Phys. Act. Q. 2008, 25, 17–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, L.; McIntosh, R.D. Visual and proprioceptive cue weighting in children with developmental coordination disorder, autism spectrum disorder and typical development. Iperception 2013, 4, 486. [Google Scholar] [CrossRef]
- Wann, J.P.; Mon-Williams, M.A.; Rushton, K. Postural control and coordination disorders: The swinging room revisited. Hum. Mov. Sci. 1998, 17, 491–513. [Google Scholar] [CrossRef]
Age (years) | Number | Sex | Preferred Hand (Handedness) | ||
---|---|---|---|---|---|
Male (n) | Female (n) | Right (n) | Left (n) | ||
6 | 8 | 3 | 5 | 8 | 0 |
7 | 16 | 6 | 10 | 13 | 3 |
8 | 17 | 5 | 12 | 12 | 5 |
9 | 14 | 7 | 7 | 11 | 3 |
10 | 16 | 7 | 9 | 14 | 2 |
11 | 12 | 6 | 6 | 12 | 0 |
12 | 17 | 6 | 11 | 17 | 0 |
Total | 100 | 40 | 60 | 87 | 13 |
N = 100 | Age (years) | Media Viewing Time (hour) | Media Preference Level | Perceptual Biases (PSE; ms) | Manual Dexterity (Standard Score) |
---|---|---|---|---|---|
Mean | 9.2 | 2.4 | 2.4 | −15.6 | 11.9 |
Standard deviation | 1.9 | 1.2 | 0.8 | 41.1 | 2.7 |
Range | 6–12 | 0–5 | 0–3 | −150–105.4 | 6–18 |
Skewness | 0.02 | 0.54 | −1.20 | −0.31 | −0.25 |
Kurtosis | −1.20 | −0.25 | 0.59 | 0.99 | −0.63 |
Age (years) | Media Viewing Time (hour) | Media Preference Level | Perceptual Biases (PSE; ms) | Manual Dexterity (Standard Score) | |
---|---|---|---|---|---|
Age (years) | - | 0.293 ** | −0.077 | −0.016 | −0.013 |
Media viewing time (hour) | - | 0.269 ** | −0.100 | 0.011 | |
Media preference level | - | −0.101 | −0.052 | ||
Perceptual biases (PSE; ms) | - | 0.537 ** | |||
Manual dexterity (standard score) | - |
Dependent Variable | Model | Independent Variable | Partial Regression Coefficient (B) | Standardized Regression Coefficient (β) | p-Value | VIF | AIC | BIC |
---|---|---|---|---|---|---|---|---|
Manual dexterity | 1 | (constant) | 13.080 | <0.001 | 182.715 | 195.741 | ||
Age | −0.092 | −0.064 | 0.499 | 1.139 | ||||
Media viewing time | 0.236 | 0.108 | 0.285 | 1.268 | ||||
Media preference level | −0.169 | −0.052 | 0.585 | 1.138 | ||||
Perceptual biases | 0.033 | 0.501 | <0.001 | 1.011 | ||||
R = 0.503, R2 = 0.253, Adjusted R2 = 0.221, p < 0.001; ΔR2 = 0.253, ΔF = 8.027, p < 0.001 | ||||||||
2 | (constant) | 13.081 | <0.001 | 184.715 | 200.346 | |||
Age | −0.092 | −0.064 | 0.502 | 1.143 | ||||
Media viewing time | 0.236 | 0.108 | 0.287 | 1.268 | ||||
Media preference level | −0.169 | −0.052 | 0.587 | 1.139 | ||||
Perceptual biases | 0.033 | 0.501 | <0.001 | 1.034 | ||||
Interaction effect 1 | 0.000 | 0.000 | 0.999 | 1.027 | ||||
R = 0.503, R2 = 0.253, Adjusted R2 = 0.213, p < 0.001; ΔR2 < 0.001, ΔF < 0.001, p = 0.999 | ||||||||
3 | (constant) | 13.158 | <0.001 | 186.005 | 204.242 | |||
Age | −0.094 | −0.066 | 0.491 | 1.143 | ||||
Media viewing time | 0.240 | 0.109 | 0.281 | 1.269 | ||||
Media preference level | −0.189 | −0.058 | 0.545 | 1.146 | ||||
Perceptual biases | 0.035 | 0.518 | <0.001 | 1.089 | ||||
Interaction effect 1 | 0.002 | 0.027 | 0.777 | 1.169 | ||||
Interaction effect 2 | −0.006 | −0.079 | 0.418 | 1.179 | ||||
R = 0.508, R2 = 0.258, Adjusted R2 = 0.210, p < 0.001; ΔR2 = 0.005, ΔF = 0.662, p = 0.418 | ||||||||
4 | (constant) | 13.198 | <0.001 | 187.337 | 208.179 | |||
Age | −0.084 | −0.059 | 0.543 | 1.154 | ||||
Media viewing time | 0.241 | 0.110 | 0.279 | 1.269 | ||||
Media preference level | −0.228 | −0.070 | 0.472 | 1.175 | ||||
Perceptual biases | 0.038 | 0.571 | <0.001 | 1.664 | ||||
Interaction effect 1 | 0.004 | 0.067 | 0.539 | 1.492 | ||||
Interaction effect 2 | −0.012 | −0.169 | 0.264 | 2.829 | ||||
Interaction effect 3 | −0.007 | −0.115 | 0.434 | 2.662 | ||||
R = 0.513, R2 = 0.263, Adjusted R2 = 0.207, p < 0.001; ΔR2 = 0.005, ΔF = 0.617, p = 0.434 |
Group | Index | Age (years) | Media Viewing Time (hour) | Media Preference Level | Perceptual Biases (PSE; ms) | Manual Dexterity (Standard Score) |
---|---|---|---|---|---|---|
High manual dexterity group n = 71 male = 25 children female = 46 children | Mean | 9.1 | 2.4 | 2.4 | −4.3 | 13.3 |
Standard deviation | 1.9 | 1.2 | 0.8 | 33.8 | 1.7 | |
Range | 6–12 | 0–5 | 0–3 | −89.47–105.4 | 11–18 | |
Skewness | 0.03 | 0.55 | −1.14 | −0.29 | 0.45 | |
Kurtosis | −1.09 | −0.07 | 0.47 | 1.73 | −0.32 | |
Low manual dexterity group n = 29 male = 15 female = 14 | Mean | 9.3 | 2.3 | 2.3 | −43.4 | 8.3 |
Standard deviation | 2.0 | 1.3 | 0.9 | 44.0 | 1.2 | |
Range | 6–12 | 0–5 | 0–3 | −150–88.84 | 6–10 | |
Skewness | −0.03 | 0.57 | −1.34 | 0.45 | −0.60 | |
Kurtosis | −1.43 | −0.47 | 0.88 | 2.12 | −0.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobusako, S.; Tsujimoto, T.; Sakai, A.; Shuto, T.; Furukawa, E.; Osumi, M.; Nakai, A.; Maeda, T.; Morioka, S. Manual Dexterity is not Related to Media Viewing but is Related to Perceptual Bias in School-Age Children. Brain Sci. 2020, 10, 100. https://doi.org/10.3390/brainsci10020100
Nobusako S, Tsujimoto T, Sakai A, Shuto T, Furukawa E, Osumi M, Nakai A, Maeda T, Morioka S. Manual Dexterity is not Related to Media Viewing but is Related to Perceptual Bias in School-Age Children. Brain Sciences. 2020; 10(2):100. https://doi.org/10.3390/brainsci10020100
Chicago/Turabian StyleNobusako, Satoshi, Taeko Tsujimoto, Ayami Sakai, Takashi Shuto, Emi Furukawa, Michihiro Osumi, Akio Nakai, Takaki Maeda, and Shu Morioka. 2020. "Manual Dexterity is not Related to Media Viewing but is Related to Perceptual Bias in School-Age Children" Brain Sciences 10, no. 2: 100. https://doi.org/10.3390/brainsci10020100
APA StyleNobusako, S., Tsujimoto, T., Sakai, A., Shuto, T., Furukawa, E., Osumi, M., Nakai, A., Maeda, T., & Morioka, S. (2020). Manual Dexterity is not Related to Media Viewing but is Related to Perceptual Bias in School-Age Children. Brain Sciences, 10(2), 100. https://doi.org/10.3390/brainsci10020100